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Depth estimation from a single monocular image has reached great performances thanks to recent works based on deep networks. However, as various choices of losses, architectures and experimental conditions are proposed in the literature, it is difficult to establish their respective influence on the performances. In this paper we propose an in-depth study of various losses and experimental conditions for depth regression, on NYUv2 dataset. From this study we propose a new network for depth estimation combining an encoder-decoder architecture with an adversarial loss. This network reaches top ones state of the art on NUYv2 dataset while being simpler to train in a single phase.

INTRODUCTION

Depth estimation is a major problem in computer vision with several applications in human machine interaction, augmented reality and robotics. Standard approaches were based on stereoscopic vision, structured light, or Structure from Motion (SfM). However, these techniques often have limitations that depend on the environment (e.g. sun, texture) or that require several views of the scene. Thanks to easily generated Red Green Blue Depth (RGB-D) data, several approaches based on deep learning have been proposed in recent years, starting from [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF]. They exploit geometrical aspects of a scene from a single point of view (a single image) to estimate the 3D structure with the use of convolutional neural networks (CNNs) [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF][START_REF] Liu | Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields[END_REF][START_REF] Wang | Towards unified depth and semantic prediction from a single image[END_REF][START_REF] Chakrabarti | Depth from a single image by harmonizing overcomplete local network predictions[END_REF].

These networks usually optimize a regression on the reference depth map. The first main challenge faced by the aforementioned papers is defining an appropriate loss function for depth regression. L 2 has often been a popular choice for this task, but a custom loss [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] and, more recently, an adversarial loss [START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF] have also been adopted with success. The second challenge concerns the network architecture, which usually followed the advances proposed every year in this flourishing field: VGG16 [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF][START_REF] Liu | Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields[END_REF], fully convolutional encoderdecoders [START_REF] Ummenhofer | Demon: Depth and motion network for learning monocular stereo[END_REF], and recently Residual Networks (ResNet) [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF]. Thus, the relationship between networks and objective func-tions is intricate, and their respective influences are difficult to distinguish. In this paper, we investigate how particular choices of loss functions and experimental conditions affect depth prediction performances.

Concretely, we lead an in-depth study of the various losses adopted until now, also analyzing standard regression losses. We highlight the main contributions of this paper as follows:

• We show that on small training datasets, the simple L 1 loss usually performs better than previously proposed losses alongside with scale-invariant loss;

• We also show that with large training data, we can benefit from an adversarial loss to get even finer details in depth estimates, possibly because there is no mode collapse [START_REF] Mao | Least squares generative adversarial networks[END_REF] in such cases.

• We show that our approach, which consists of an encoder-decoder network with dense blocks and skip connections and an adversarial loss, is among the top ones of the state of the art on NYUv2 [START_REF] Kohli | Indoor segmentation and support inference from rgbd images[END_REF] while being simpler to train than previous works.

The paper is organized as follows. Section 2 summarizes last contributions to deep depth prediction field. The proposed method is presented in details in section 3 and section 4 presents our experiments and analysis of results.

RELATED WORK

Several machine learning techniques have been proposed to solve the problem of depth estimation on a single image. One of the first solutions was the Make3D approach of Saxena et al. [START_REF] Saxena | Learning Depth from Single Monocular Images[END_REF][START_REF] Saxena | Make3d: Learning 3d scene structure from a single still image[END_REF], which formulates the problem as the capture of properties of the image (e.g., planarity, co-linearity) combined with regression on the true depth using a Markov Random Field (MRF). Recently, most new methods are based on deep convolutional neural networks (DCNN). This was made possible by the release of a large-scale RGB-D dataset: NYUv2 [START_REF] Kohli | Indoor segmentation and support inference from rgbd images[END_REF]. The first network architecture was proposed by Eigen et al. [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] who adopted a multi-scale DCNN. They carefully designed a scale-invariant loss (cf. L eigen in Table 1) to encourage neighbor pixels to have similar depth values. Wang et al. [START_REF] Wang | Towards unified depth and semantic prediction from a single image[END_REF] extended this work by exploring joint depth

Loss Equation Mean absolute L 1 1 N N i |l i | Mean square L 2 1 N N i (l i ) 2 Scale-invariant loss [1] L eigen 1 N N i d 2 i -λ N 2 ( N i d i ) 2
Scale-invariant loss with gradients [2]

L eigengrad 1 N N i d 2 i - λ 2N 2 ( N i d i ) 2 + 1 N N i [(∇ x di) 2 + (∇ y di) 2 ]
BerHu [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF] L berhu

   L 1 (l i ) L 1 (l i ) c, L 2 (l i )+c 2 2c else.
Huber [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF] L huber

   L 1 (l i ) L 1 (l i ) c, L 2 (l i )+c 2 2c else.
Least Squared Adversarial [START_REF] Mao | Least squares generative adversarial networks[END_REF][START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] L gan 1 2 E x,y∼p data (x,y) [(D(x, y) -

1) 2 ]+ 1 2 E x∼p data (x) [(D(x, G(x))- C) 2 ] + λL L1 (G(x)))
Table 1: List of common losses for regression. Let y i and ŷi be the ground truth and the estimated distance in meters,

l i = y i -ŷi , d i = log(y i )-log(ŷ i ),
G, the generator network, D, the discriminator network and x, the input image.

and semantic prediction with a hierarchical Conditional Random Field (HCRF) and, in [START_REF] Eigen | Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture[END_REF], Eigen et al. included first order gradients in the loss (L eigengrad ) to enforce close local structure on depth prediction. However, most subsequent works which base training on pixel-wise regression, simply used standard regression losses like mean absolute (L 1 ) and mean square (L 2 ) to train their networks [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF][START_REF] Xu | Multi-scale continuous crfs as sequential deep networks for monocular depth estimation[END_REF][START_REF] Ma | Sparse-to-dense: Depth prediction from sparse depth samples and a single image[END_REF]. Most contributions lie in the network architectures and the use of Condition Random Fields (CRF). Laina et al. [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF] claim empirical improvements due to the loss design using the L berhu , instead of L 2 alone, but their method also includes a new network and a new component, the upprojection blocks. Comparison between losses is performed only between L berhu and L 2 . This work was extended in [START_REF] Ma | Sparse-to-dense: Depth prediction from sparse depth samples and a single image[END_REF] with adoption of an L 1 loss.

A recent method for regression is performed by Generative Adversarial Networks (GANs). They were first introduced by Goodfellow et al. [START_REF] Goodfellow | Generative adversarial nets[END_REF] to produce realistic images from noise vectors and extended in [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] to condition the generated outputs to an input image (cGAN). They work by defining an adversarial loss which is modeled by a network that classifies the likeliness of the output, often regularized with a L 1 term. Jung et al. [START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF] successfully used this idea of the adversarial loss to perform depth prediction with a two-phase training strategy: network is first trained with a L 1 and posteriorly fine-tuned with the adversarial loss.

Finally, Kendall and Gal [START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision?[END_REF] proposed a Bayesian network based on [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF][START_REF] Huang | Densely connected convolutional networks[END_REF][START_REF] Jégou | The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation[END_REF] combined to a novel regression function that captures the uncertainty of the data (noisy observations) to improve learning. All the aforementioned works made use of the latest state of the art networks to improve performance while adopting new losses. However, none of them performed a complete comparison between all the already proposed cost functions. In this we conduct a comparison of standard and custom losses including the long-discarded L eigen . Also, we bring a new insight to the use of the adversarial loss which requires a large amount of data to be effective. The network, which eventually get close to best performances on NYUv2, is also much simpler to train with respect to [START_REF] Xu | Multi-scale continuous crfs as sequential deep networks for monocular depth estimation[END_REF][START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF] as it can be performed end-to-end.

DEEP DEPTH PREDICTION NETWORK

D3-Net architecture. To conduct the experiments, we propose an encoder-decoder architecture, referred to as D3-Net, illustrated in Figure 1, which is based on DenseNet-121 [START_REF] Huang | Densely connected convolutional networks[END_REF] for the contractive part, where we replaced a max-pooling by a 4x4 convolution with stride=2 (yellow block). Here, dense blocks, DBxs, x ∈ [1, 2, 3, 4], contain 6, 12, 24 and 16 convolutions respectively. The decoder comprises blocks of 4x4 transposed convolutions with stride 2 and 3x3 convolutions with stride 1 to upsample feature maps to a higher resolution. The encoder and decoder parts are connected through skip connections like proposed by [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] to improve context-aware learning. In contrast to precedent architectures [START_REF] Xu | Multi-scale continuous crfs as sequential deep networks for monocular depth estimation[END_REF][START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF], our network can be trained in a single phase and does not require any additional analytical model like CRFs [START_REF] Wang | Towards unified depth and semantic prediction from a single image[END_REF][START_REF] Xu | Multi-scale continuous crfs as sequential deep networks for monocular depth estimation[END_REF].

Patch-GAN. We modify the conditional patch GAN previously proposed in [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] to the task of depth estimation. The discriminator network is designed to measure and classify if an input depth map is true or false. True maps correspond to the ground truth depths and false maps correspond to generated depths. This network is trained to replace handcrafted loss functions as it tries to find a implicit definition of the loss function by learning a metric in the image space. However, to smooth GAN predictions and guide training, we add an L 1 term to the output of D3-Net. The patch structure allows the discriminator to penalize the predictions per patches instead of penalizing the whole image, which leads to results with finer details. The output of the patch-discriminator is 78x62 for an input image of 320x256.

EXPERIMENTS

To compare the performances on depth estimation, we adopt standard error measurements proposed in [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF][START_REF] Liu | Deep Convolutional Neural Fields for Depth Estimation from a Single Image[END_REF] and also a standard benchmark dataset for deep depth prediction: NYUv2. NYU-Depth V2 (NYUv2) dataset [START_REF] Kohli | Indoor segmentation and support inference from rgbd images[END_REF] In the first experiment, we observe, for all regression losses in Table 1, the RMS error and accuracy variation according to different loads from the original dataset. We also study the convergence speed of the network to improve results. Note that to conduct direct comparisons, we carefully perform all training processes keeping network parameters without any change. Finally, to generalize our conclusions, we guide a second experiment where the front-end network of D3-Net, originally DenseNet-121, is replaced by ResNet-50, already adopted in [START_REF] Laina | Deeper depth prediction with fully convolutional residual networks[END_REF][START_REF] Xu | Multi-scale continuous crfs as sequential deep networks for monocular depth estimation[END_REF][START_REF] Ma | Sparse-to-dense: Depth prediction from sparse depth samples and a single image[END_REF]. We then study variations of three error metrics for the different losses when changing the architecture.

Quantitative performance comparison. Figure 2 shows the evolution of the network performance with different losses when trained with different sizes of dataset. We adopt three different splits with the 795 pairs from the small NYUv2 dataset, 12k pairs from equally spaced samples of the complete dataset and 230k pairs of images from the whole dataset.

one can expect, data leads to better results in all cases. However, losses evolves differently from one split to another. In general terms, L 1 and L eigen present the best performances for different sizes of the dataset. On the other hand, L gan becomes highly efficient when trained with a great amount of data. GANs have a well known instability (mode-collapse [START_REF] Mao | Least squares generative adversarial networks[END_REF]) that, in our case, can be circumvented with more data.

From Figure 3, L 1 and L eigen also appear to converge more effectively than the other losses and then obtain better predictions faster. This remains true for the two smaller splits, but when training the model with 230k, we can notice the GAN model and L eigen outperform other error functions.

Qualitative performance comparison. For better comparison between the models, we also provide visualization of predicted depth maps in Figure 4 for models trained on the complete NYUv2 dataset. In general, we notice that L huber and L 2 tend to smooth predictions. Even though L berhu benefits from L 1 for small errors, L 2 factor seems to degrade estimations as well. It is important to notice that standard L 2 encourages residuals where error is small, but L 1 can encourage sparse solutions where error is zero. L berhu proposes to take advantage of L 1 for very small errors and use L 2 otherwise. From the presented quantitative and qualitative experiments the squared term seems to favor smooth predictions when adopting L berhu as well as L huber and L 2 . On the other hand, L gan , L eigen and L 1 present nice visual predictions confirming previous quantitative results. The patch-GAN approach can lead the model to capture high-frequency details (e.g., contours, small objects). These characteristics can be clearly observed for example in the first row, where the contours of the different chairs in the back are well predicted when compared to L berhu and L huber , for example, that almost ignore them. Other very fine details can be seen in the L gan predictions of the second row for the shelves and the television.

Different front-end architectures. In order to general- ize our study, we evaluate the performances of the presented losses with another front-end architecture: ResNet. The main difference with DenseNet is that ResNet learns by optimizing the residual information and DenseNet learns by feeding later layers with feature maps from precedent ones and more importantly, this allows gradients flow directly to input signal diminishing cases of vanishing gradients. Figure 5 shows on the same graph performance of both front-end networks. We adopt the training split with 12k images to fasten training compared to the whole dataset. Our results show that L 1 and L eigen show better results for both architectures. Besides, DenseNet encoder presents globally better results than ResNet with the only exception of slightly poorer RMSE.

Comparison with state Finally, we show in Table 2 that the proposed D3-Net architecture combined with L gan and trained with NYUv2 230k reaches the top state of the art methods. Our method using adversarial loss can be trained end-to-end in a single phase, in contrast to [START_REF] Jung | Depth prediction from a single image with conditional adversarial networks[END_REF]. Compared to [START_REF] Kendall | Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[END_REF], it does not require the use of a Monte Carlo method to capture the uncertainty of the model and improve performance, like [START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision?[END_REF].

CONCLUSION

In this paper, we have presented a study of the influence of regression losses and experimental conditions on depth estimation using deep learning. Several losses from the literature as well as standard losses have been considered. Performance tests have been conducted on NYUV2 datasets with various sizes, and two different encoder-decoder architectures. We have shown that on small datasets, L 1 and L eigen losses produce the best performances and when the size of the dataset increases, the performance benefits from the use of adversarial loss. Finally, based on this study we have proposed a network combining a simple encoder-decoder architecture with dense blocks and skip connections and an adversarial loss. This network reaches the top ones results on the NYUv2 dataset while being simpler to train than previous works such as [START_REF] Xu | Multi-scale continuous crfs as sequential deep networks for monocular depth estimation[END_REF][START_REF] Kendall | What uncertainties do we need in bayesian deep learning for computer vision?[END_REF].
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 1 Fig. 1: D3-Net architecture. The encoder part corresponds to a modified version of DenseNet-121, where we replaced a max-pooling by a 4x4 convolution with stride=2 (yellow block).
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 2 Fig. 2: Performance evolution for different dataset sizes and different losses using D3-Net architecture.
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 45 Fig. 4: Qualitative result of D3-Net trained to minimize different regression losses from the literature of depth from monocular images.
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  Comparison of the convergence speed between the losses in Table 1 on test data.
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Table 2 :

 2 Performance metrics obtained by state of the art methods of deep depth estimation with NYUv2 dataset. Results extracted from original papers. Our best result consists on the D3-Net trained with L gan with 230k pairs of images.