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A new approach is proposed for the systematic detection and refinement of natural connections between the libration points

EML| » of the Earth-Moon system and semv, > of the Sun-(Earth+Moon) system. It is structured around the Quasi-Bicircular Problem,

a restricted coherent and periodic four-body dynamical model of the Sun-Earth-Moon system. The dynamics about the libration

points are described by high-order periodic semi-analytical expansions obtained via the parameterization method. In their domain of

convergence, such objects directly provide initial conditions at the departure point. They also allow to estimate the distance between

any trajectory and the set of staging orbits (center manifold) at the targeted point. The potential connections can then be located and

refined in the parameterization space. The transfer trajectories are finally successfully transposed in a higher-fidelity model based on

JPL ephemerides.
Key Words:
Nomenclature
" :  state in NCEM coordinates
" :  state in NcsEM coordinates
He :  Hamiltonian in NcEM coordinates
Hem :  Hamiltonian in NcseM coordinates
0 :  phase of the Sun-Earth-Moon (sem) system
T :  period of the sem system
Wy :  pulsation of the SEmM system
me . mass of the Earth
my, :  mass of the Moon
My : mass of the Sun
U :  Earth-Moon mass parameter
Y : distance between a libration point

and the smallest primary

A% expansion of the center manifold
W, expansion of the center-stable manifold
W, expansion of the center-unstable manifold
S reduced coordinates
Subscripts
0 :  initial
f :  final

1. Introduction

In recent decades, the integration of three-body dynamics in
mission analysis has broaden space players’ horizons, adding
new possibilities for nominal orbit design, and considerably
lowering the overall cost of specific transfers. Famous ap-
plications include SOHO'» and DSCOVR*® at the Sun-
(Earth-+Moon) libration point L; (seML;), as well as Gaia® at
SEML,. Moreover, several cislunar and translunar missions —
such as ARTEMIS'® — benefited from the Earth-Moon three-
body dynamics, in particular about the libration point L; (EML))
and L, (EML,).

Sun-Earth-Moon system, restricted four-body problem, libration point, invariant manifolds, natural transfers

These applications built upon a deeper understanding of
simple models of restricted three-body motions, starting with
the Circular Restricted Three-Body Problem®® (crtep). In the
latter, invariant tori and their associated stable, unstable, and
center manifolds play a pivotal role in the system dynamics.
Typically, the periodic orbits (one-dimensional tori) and quasi-
periodic orbits (two-dimensional tori) about the equilibrium
points yield staging orbit options while their hyperbolic invari-
ant manifold provide dynamical channels that can be used as
first guesses for efficient transfer options in higher-fidelity mod-
els.”

From such studies, more complex mission design has been
envisioned by approximating the Sun-Earth-Moon (sem) multi-
body system as two coupled three-body systems, in what can
be seen as an extension of the patched conic approximation to
three-body dynamics.?® In this approach, the invariant mani-
folds of the Sun-(Earth+Moon) and Earth-Moon problems can
be suitably combined to produce efficient transfers. This so-
called coupled cr1BP approximation paved the way for other
combinations of invariant manifolds, for instance in the jovian
system.!!® Since then, the coupled approximation has been
also used to perform Earth-to-emL,*"3” and SEML; »-to-EML,
transfers.”??  All these applications uncovered a low-energy
network that interconnects the Moon, the EML;, and SEML)»
points, and the Earth (see Figure 1 for a simplified representa-
tion). This network is articulated around the natural interfaces
between the libration regions of semL;» and EmL .29 Hence,
a deeper and more comprehensive analysis of such connections
may serve as a foundation for the understanding and practical
use of the network dynamics.

In that perspective, this paper intends to provide a systema-
tic tool for the detection and refinement of SEML; 2-EML; > con-
nections. It is mainly focused on the SEmL,-EML, case, but
the fundamental concepts are easily adaptable to the other in-
stances.



Fig. 1.: A representation of the Sun-Earth-Moon low-energy
network. On each branch, a non-exhaustive list references that
address the associated transfer problem are displayed.

Contrary to previous efforts based on the patched crrsp ap-
proach, this tool is structured around a single dynamical model
called the Quasi-Bicircular Problem (gBcp), which is a coher-
ent periodic four-body model of the sem system.” Using the
QBCP, a compact description of the dynamics about each libra-
tion point is obtained in the form of high-order, periodic, semi-
analytical parameterizations of its invariant manifolds (center,
center-stable and center-unstable). A brief analysis of the dy-
namics in the oBcp is presented in Section 2., along with key
results on the form and evaluation of the semi-analytical expan-
sions. Usually, the latter objects are used — within their do-
main of convergence — to compute initial conditions, whether
on staging orbits (center manifold) or low-energy transfer legs
(center-stable and center-unstable manifolds).>” Tn this paper,
it is shown that they can also be used to estimate the distance
between any six-dimensional state and a given center manifold.
Such feature considerably ease the search for connections, as
detailed in Section 4.. The results can be shaped into families of
possible connections that in turn can be refined into actual trans-
fers, taking again advantage of the semi-analytical description
at both ends. Such refinement procedure is described in Sec-
tion S.. Finally, the families are transposed into a multi-body
model based on the JPL ephemerides, in Section 6.. It is then
shown that the overall structure of the families are preserved in
their refined JPL counterparts. This is a first step towards an a
posteriori validation of the whole tool as a connection detector
in higher-fidelity models.

2. Modelling the Sun-Earth-Moon system

This sections aims to present the Quasi-Bicircular Problem
as a dynamical model of the sem system and how it affects
the invariant structures of the underlying Earth-Moon and Sun-
(Earth+Moon) cRTBPs.

2.1. The Quasi-Bicircular Problem (qBcpr)

The @Bcp is a restricted four-body problem in which the three
massive bodies — the Earth (m,), the Moon (m,,) and the Sun
(my) — are revolving in a coherent planar quasi-bicircular mo-
tion, the fourth mass — the spacecraft — being small and not
influencing the motion of the primaries. The result is a non-
autonomous Hamiltonian system that can be alternatively seen
as the Earth-Moon crtBp periodically-perturbed by the Sun, or

the Sun-Earth crrsp perturbed by the Moon.

The equations of the gBcp can be expressed in synodical sys-
tems of reference focused on two of the three primaries. In the
Earth-Moon case, the corresponding frame, denoted R,,, is a
rotating pulsating frame centered at the Earth-Moon barycenter
in such a way that the Earth and the Moon are located at fixed
points. As in the crTep, the system is made nondimensional by
the following choice of units: the unit of mass is taken to be
m,, + m,; the unit of length is chosen to be the time-dependent
separation between the centers of the Earth and the Moon; the
unit of time is chosen such that the orbital period of the Earth-
Moon motion is 27. A similar frame, denoted R,,,, can be de-
fined from the Sun-(Earth4+Moon) perspective, taking the Sun
and the Earth-Moon center of masse B,,, as primaries.

In this paper, however, the equations of the QBcp are ex-
pressed in systems of reference adapted to each libration point.
Indeed, synodical frames centered on libration points are fairly
standard and have already been used in the crRTBP context, in or-
der to guarantee good numerical properties.?*3? Taking again
the Earth-Moon example, these frames are defined from R,,,
with the following characteristics: (i) they are centered at the
associated libration point EML; 5, i.e. the geometrical position
of this point in the Earth-Moon crtep; (ii) the unit of dis-
tance is redefined as the distance y between EmL;, and the
Moon. They are denoted ‘Rém,i = 1,2, and may be referred to
as Normalized-Centered Earth-Moon (Ncem) Reference Frames.
Figure 2 presents an XY-view of the R,,, R',, and R?, frames.
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Fig. 2.: The Normalized-Centered Earth-Moon frames R, (in
green) and R2, (in red), along with the Earth-Moon Synodical
frame R,,,, viewed in the XY-plane.

Equivalent coordinates can be defined in the the case of
SEML| 2, and are denoted NcSEM coordinates.
2.2. Associated Hamiltonian

The NceM case is addressed, the Ncsem case being formally
equivalent. Let zz™ = (XemT pemT)T — (xem Y pim p;m pzm)T
be the position/momentum canonical state in NCEM coordinates.
Moreover, let C = {e, m, s} be the set of subscripts of the celes-
tial bodies involved: the Earth (e), the Moon (m) and the Sun
(). For example, x" = (x" y=" ") denotes the position vector
of the Earth. The Hamiltonian of the @Bcp in NcEM coordinates



takes the following form:

1
Hem(zem’ 9) = E QI(G) (p;n2 + p;mz + p;mZ)
+a3(0) Py — P x") - ag(O)x" = (@)™
a6(0) Z me
7 Ll — x|

ceC

ey

where m, is the mass of the primary ¢. Moreover, the position
vectors of the primaries are

T
x;"‘:(ﬂ 0 o), xp=(£1 0 O)T,
Y

x7(0) =

(# —lxy-ai() a6 O)T

Y

where p is the Earth-Moon mass ratio, and where the upper
(resp. lower) signs stands for the EmL; (resp. EML,) case. Fi-
nally, the functions a;(0),k € [[1, 10] are trigonometric func-
tions of the form:

() = ago + Z ajcos(jO), for k = 1,3,4,6,7,9

=1

a(6) = + Z a; sin(jo),

7>l

fork=2,5,8,10

where @ is the phase of the Sun-Earth-Moon system, used to
parameterize the time-dependency of the dynamics. In NCEM
coordinates, 6 is the phase of the Sun with respect to the Earth-
Moon line. The first ay; coefficients are available in" (resp.?®)
in the EM (resp. SEm) case.

The angle 6 is directly proportional to the time 1: 6 = wjt,
where w; is the pulsation of the sem system which, in NcEm co-
ordinates, corresponds the pulsation of the Sun with respect to
the Earth-Moon binary motion. The Hamiltonian H*" is 27-
periodic in 8 and T-periodic in time, where T = 27/wy is the
period of the Sun-Earth-Moon system.

Finally, a similar Hamiltonian H*"(z*",6) can be derived
from the Sun-(Earth+Moon) perspective, in NcseM coordinates.
Since all the qualitative results hold in both cases, the super-
scripts “* and *™ are discarded whenever the context is clear.
2.3. Corresponding equations of motion.

The equations of motion are immediately derived from the
Hamiltonian, using the following relation:

H
i=10.0)=0,H@.0 =I5 @0 ©)
where J is the following symplectic matrix:
[0 Iz
() @

and I is the 3 X 3 identity matrix.

2.4. Dynamics about a libration point in the qBcp

In the QBcp, ought to the presence of a periodic perturbation,
the libration points are no longer fixed points but are replaced
by planar 2x-periodic orbits in the variable 6, referred to as the
dynamical equivalents of the libration points.® ¥ Nevertheless,
the perturbation is small enough to preserve the global struc-
tures of the dynamics inherited from the crrep.”? Namely, the
linearized motion about the libration orbits are still the products
of two centers and one saddle, and we can again define a cen-
ter, a center-stable, and a center-unstable manifolds, all these
objects being carried over to the full nonlinear problem.

More explicitly, using Floquet theory of periodic systems, we
can show that there exists a symplectic change of coordinates of
the form

" =P(O)Cz + V(0), (5)

so that, in the new complex variable 2 = &' p/)! =
(% 2 px Py P-)", the Hamiltonian of the system takes the form

A(2,0) = i\ &, + wfip, + iwszp: + Y Hi(2,6)  (6)
k=3
where w; € R,i = 1,2, 3, and where ﬁk(i, 0) are homogeneous
Fourier-Taylor polynomials, i.e. homogeneous polynomials of
degree k in Z, with Fourier series in the variable 6 as coefficients.
From Equation (6), one can see that the linearized motion is of
type center X saddle X center, as in the crrep case.'”

The derivation of the change of coordinates (5) has been per-
formed in previous references — at least in the Emi, 3 4 case.!1®
The reader is kindly referred to these articles for technical de-
tails. It is only briefly recalled that Equation (5) is the compo-
sition of three operations:

e A translation vector V(), which is a 6 X 1, 2r-periodic,
real vector of the form V(0) = (v v; 0vs 05 0)7, where
each coefficient v;(6) is a Fourier series in 6. It corresponds
to the Fourier transform of the trajectory associated with
the dynamical equivalents of the libration point. With this
translation, the origin becomes a fixed point.

e A rotation matrix P(0), which is a 6 X 6, 27-periodic, real
matrix whose components p;;(#) are Fourier series in 6.

e Finally, C is a constant 6 X 6 complex matrix and corres-
ponds to a complexification of the variables associated to
the two centers.

Note that the variable Z and the Hamiltonian A are both com-
plex, although the original dynamics are real. All the subse-
quent semi-analytical procedures are performed using the vari-
able 7, hence in complex form. However, it is always possible
to go back to the real Nc coordinates by applying Equation (5).

The linearization and the change of coordinates (5) showed
that the motion about each libration point has the same struc-
ture as in the crrep, with an additional frequency. In particular,
the center manifold — product of the two centers — is again a
normally hyperbolic invariant manifold (NHIM), associated to a
stable and an unstable manifolds. In a small neighborhood of
the libration points, these results can be extended to the nonlin-
ear dynamics since NHMs persist under small perturbations.'"

The next subsection presents a semi-analytical description
of these time-dependent invariant manifolds about the libration
points, obtained via the parameterization method.



3. The parameterization of invariant manifolds in the gBcp

This section introduces the form of the semi-analytical ex-
pansions of the invariant manifolds — the center, center-stable
and center-unstable — about the libration points EML;, and
SEML;» in the QBcp. Such description has been obtained via a
custom extension of the parameterization method (pm)>2" to
the invariant manifolds about periodically-perturbed equilibri-
ums.”® The sequel focuses only on results and does not provide
any substantial description of the underlying semi-analytical al-
gorithm. Please refer to®® for details on the current implemen-
tation.

3.1. The case of the center manifold

Applying the parameterization method to the center manifold
and the change of coordinates (5), it is possible to find a func-
tion

W : R'xR -  R® @
(5,0) > W(,0),

that parameterizes the center manifold in a given neighbor-
hood about the origin, in Nc coordinates. Moreover, using the
graph style, a simple form can be obtained — see?” for a de-
tailed explanation of the possible styles of the parameterization
method, and again®® for the current implementation. Denoting
W = (W, Wr Wi Wy Ws We)T, the following equalities hold:

W P11 —Pi4 P12 Pis
W, pu —pal(s3) | P2 pas|f §(s,0)
= + 2z , (8
Wa| = par —pas|\si D42 pas |\Dy(s,0) ®
Ws P51 —Ds4 D52 Dss
order 1ins order k>2

and, for the vertical motion:

W3 P33 —D36| (4
= R 9
(Wé) “3 (1763 —Pes | \ 52 ©
where the dependence in 6 of the components p;; of P has been
omitted in both equations. Moreover, §(s, 6) and p, (s, 6) are full

Fourier-Taylor series of order (N, J), starting at order k = 2.
More explicitly, taking the example of i:

N

N
§s,0) = D GO =Y > w®s,  (10)
k=2

k=2 reRk

where R = {r eENYrj=r+-+ry = k}, st = 5| sysy s,
and the coeflicients w,(8) are Fourier series of the form:

J
we(0) = Z wr,je"ﬂ’.

j=—
An equivalent form exists for p,(s, 6).

Practical use. The parameterization method is generically a
divergent process, due to the crossing of resonances.?” In par-
ticular, if we stop the expansion to a given order N, the remain-
der behaves like O(RM*1), where R denotes the distance to the
origin.?¥ Hence, there exists a practical domain of convergence
D, about the origin that can be estimated numerically . Both the
practical radius of convergence and the optimal value for N have
been estimated a posteriori, using extended error testing cam-
paigns about each libration point.?”-?® It has been found that

N = 20 1is a good compromise as a common order for the four
center manifolds that have been studied, at EML; , and SEML) 5.
Furthermore, each Fourier series w,(0) is truncated to a certain
order J (j < J), J = 30 being far enough to include any relevant
term in practice.

Once N and J have been fixed, for any vector of reduced co-
ordinates s = (s; 52 53 s2)7 in D, z = W(s, ) yields initial
conditions in the center manifold, in Nc coordinates. Note that
the parameterization W takes into account the explicit and pe-
riodic time-dependency of the dynamics via the variable 6.

Planar motion. An immediate conclusion from Equation (9)
is that the vertical motion is linear and depends only on the
components s, and s4. Hence, imposing s, = s4 = 0 guarantees
that the description of the manifolds — and more generally the
dynamics — are enclosed in the xy-plane. However, whenever
s7 and s4 are non null, they influence the dynamics in all direc-
tions, since these components appear in the expansions (s, 6)
and p,(s, ).
3.2. The projection method inside the center manifold
Given an Nc state z(7) inside the center manifold, it is possible
to find its reduced coordinates s € R* so that z() = W,(s, w,?),
as long as the graph style is used. In practice, given a time ¢ and
a state z(¢) assumed inside the center manifold, s is obtained via
the following inverse function:

s = W' (z.1) = QP™(6) [z(r) - V(O)], (11)
where 6 = w,t, and
000 - 0 o0
0 0o 0o 0 0 -L
=11 00 00 0
00 & 0 0 0

Such inversion is possible providing that P(6) is invertible,
which is always the case in practice.
3.3. The case of the center-(un)stable manifold

Using the parameterization method, it is also possible to
compute the semi-analytical descriptions of the center-stable
(W;) and center-unstable (W,) manifolds about each libration
point.?" Both cases yield very similar results that differ only by
a few symmetries. In the case of the center-unstable manifold,
the result of the pM is a vector of Fourier-Taylor series W, (s, 6)
of the form

W, : ROXR — RS

5.0 > W.(s.0) (12)

The fifth component s5 parameterizes the hyperbolic unstable
direction. When s5 = 0, the center manifold is retrieved. More-
over, the vertical components in W, do not depend on s5 and
are actually equal to their center counterparts. In particular, the
motion can still be made planar by imposing s, = s4 = 0.

4. Finding EmML,-SEML; » connections

We know from previous works — notably®!%37 — that there
exist natural planar and three-dimensional connections be-
tween the center or center-hyperbolic manifolds about EmL, and
SEML;». In this section, we are interested in producing ballis-
tic transfers between the center-unstable manifold about EmL,



and the center-stable manifolds about seML; and SEML,, in a sys-
tematic fashion. The numerical tool developed to detect such
connections is heavily based on the semi-analytical description
presented in Section 3..

4.1. A Two-Point Boundary Value Problem

The problem of finding natural transfers between the center-
unstable manifold about EmL, and the center-stable manifolds
about semL; and semr, falls into the category of Two-Point
Boundary Value Problems (tpvp). We denote ‘W, the center-
unstable manifold about EML, and ‘W, the center-stable mani-
fold about either semML; or seML;. Moreover, we suppose that
the state z is here given in Ncsem coordinates, and so is the vec-
tor field f(z, 7). In practice, the Ncsem coordinates have proven
to be the ideal coordinate system for such problem. Indeed, in
this framework, the unit of length is the distance between B,,,
and seML) 5, which roughly corresponds to the size of an EmL;-
SEML| » connection.

The problem of finding natural connections between ‘W, at
time ¢ = fp and ‘W, at time ¢ = ¢ can be written as follows:

7z =1(z,1), z(ty) € W, (ty) € W, (13)

where the vector field f is formally given in Equation (3).

The main difficulty here lies in the derivation of a closed form
for the boundary conditions. This is where the semi-analytical
expansions come into play. Within their respective domain of
practical convergence, W, (s, ) and W(q, ), the parameteriza-
tions of ‘W, and ‘W, can be used to explicitly parameterize the
starting and arrival sets. Using this idea, the previous problem
can be formulated again as follows:

z="1(z,1, 3speR’, z(ty) = C: o W,(so, witp),

S ~ 14
dq; e R, z(ty) = W(qy, wyty),

where C; is the change of coordinates between the Ncem and
NcseM frameworks. Denoting z** the state in NCEM coordinates,
the function C3(z™) takes the form:

Ci(z™) = Ri(0) " + B3(0), (15)

where RS(6) is a 6, X6 2m-periodic matrix, and B{(#) isa 6 X 1,
2n-periodic vector that are not explicitly given here.

In the TpBVP (14), the adjustment variables are not z(zy) and
z(ty) anymore but their reduced counterparts, i.e. sy and qy.
Note that we have favored the notation q instead of s, for the
reduced coordinates at semL; », essentially to avoid any confu-
sion between the invariant manifolds at EML, and SEML 5.

Although appealing, this formulation does not impose any
constraint on the initial state sy nor the targeted state qy, for
which it could be very difficult to formulate a first guess. To
address this problem, a rough grid search is performed on the
initial state sy, coupled with a projection method, based on the
results of Section 3.2., and detailed hereafter.

4.2. The projection-based research procedure

Written in the following generic form, the procedure is per-
fectly applicable to three-dimensional connections, although we
will focus on the planar problem on the numerical applications.

First, the initial time #, is fixed to a given value in [0, T],
which corresponds to a certain phase 6y = wfy of the Sun-
Earth-Moon system. Since we are looking for natural transfers,

it is necessary to start along the unstable direction at EML,, and
therefore s5 must be non null in sy. However, there is no need
to make it a free variable since it does not parameterize the mo-
tion inside the center manifold. For this reason, the unstable
component is set to a fixed small value s5 = €.

Then, a discrete set ¥, of initial conditions Sy is taken inside
the domain of practical convergence of W,(s,6) at EmL,. In
practice, in the planar case, this corresponds to initial conditions
of the form sy = (51,0, 53,0, €)7, with (s, s3) € [-35,35]%.

For all initial conditions (s € ¥, 1), the initial state zy =
C: o W,(so, 6p) is evaluated and numerically integrated on an
arbitrarily long time span [fo, t7]. The result of each integration
is stored on a time grid 7. = [fo,#1,..., 1,1, = t7], withn €
N. We denote z(so, fy) the resulting state at time ¢;, j € [1, n]].

Each state z(s, o) is projected on the center manifold W, at
SEML) 7, using the following procedure: if we assume that z(¢) €
‘W, and is close enough to the libration point, then there exists
a reduced state q, € D. C R* such that z(r) = W.(qp, w;t),
where W, is the parameterization of ‘W, and D, is its domain
of practical convergence. An estimate of q, can then be directly
computed by using Equation (11). It can be checked a posteri-
ori that q, is in fact inside D.. We assume that it is the case in
the sequel.

Let apply again W, and define z,(f) := W.(q,,wt). Of
course, in practice, z ¢ ‘W, and z,, is different from z, and z,
is denoted the projection of z on “W,.. We can evaluate the dis-
crepancy between zo and z,,, using the distance d,(z, t) defined
by

dp(z,1) = |z - 2,0 = ||z - We(qp. 00)|.  (16)

The function d,(z, t) provides a measure of the distance to the
center manifold: the closer z to W, at time ¢, the smaller d,(z, 1).
Note that, once the parameterization W, has been fixed, d,, only
depends on the current state z and the time 7.

For any initial condition (sy € ¥, %), the projection distance
dp(z;,t;) can be computed for all j € [1,n]] and the minimum
among these values can be selected:

d"(so,t9) = min d,(z;,t)). 17
p( 0 0) jelllal p( j j) ( )
Denoting j,, = ayeglll}miil dy(z}, 1)), the projection g} that is asso-
J W
ciated with this minimum is given by
-1
q;, (0. 70) = W (), 1;,). (18)

Note that, since all z; are functions of (sp,?), the minimum
distance d}} and the associated projection j, only depend on
(80, to), providing that the time grid 7 has been fixed.

The minimum distance dp’" (s0, tp) can be computed for all ini-
tial conditions (sg € F, tp). If there exist a value of s, for which
d} is small enough — in practice, below a given threshold — we
can consider that we have found a good estimate of a solution
for the TpBVP (14), wWith

_ (9
v (0 ’ (19)
tf = tjm’
i.e. the hyperbolic component gs approximated by zero. A

schematic illustration of the projection procedure up to Equa-
tion (16) is given on Figure 3.
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Fig. 3.: Schematic illustration of the projection-based research
procedure. See text for details, in particular for the definition of
the vector (.
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(a) As a function of (sy, s3). (b) As a function of (x*™, y*™).
Fig. 4.: The minimum distance of projection dy; for fy = 0.997,
where T is the period of the Sun-Earth-Moon system. Only the
points for which d}} < 1072 are plotted. The symbol @ locates
EML; on the two plots.

4.3. Example of planar results

The planar condition can be ensured simply by imposing
s» = s4 = 0 1in all initial conditions (Sy € F.,%). Therefore,
for a fixed initial time #(, the minimum distance d;,”(so, tp) only
depends on two variables, namely (sy, 53).

Figure 4a provides an example of the map (s;,s3) =
dZ’ (s1, 53,%p) in the case of an EML,-SEML, transfer, and for
to = 0.99T (arbitrary choice). Figure 4b displays the same re-
sults as a function of (x*", y"), in NcEm coordinates. What we
see appear are blue “valleys” of solutions of the TpBVP, corre-
sponding to small values of d(s1, 53, o). The same structures
are visible on both plots.

Since the initial time has been fixed to 7o = 0.997, Figure 4
represents a snapshot of all the (relatively) good initial condi-
tions that produce planar EML,-SEML; connections. However, we
are naturally limited by the scope of the domains of practical
convergence at both ends. This domain is directly visible for
EML;, it corresponds to the size of the cartesian box displayed on
Figure 4a. The domain D, about semL, is also partially visible:
indeed, the procedure previously described includes a check on
whether the projection g} is found in D,. If it is not the case,
the corresponding distance d) is considered virtually infinite
and is not displayed on the maps, which can create numerical
artifacts. For instance, the clean round shape visible on both
plots corresponds to the boundaries of D, around SEML; as seen
from this particular region about EmML;.

Equivalent maps can be produced for any initial time 7y €
[0, T'], hence providing a complete overview of the families of
approximated planar connections from the EmL, point of view.

However, the precision with which such solutions are obtained
greatly depends on the resolution of the discretized set ¥, at
EML;. Moreover, such maps provide little information on the
targeted orbits at semL;». In order to tackle both issues, a re-
finement process based on a multiple shooting scheme has been
implemented, as described hereafter.

5. Refinement of EML,-SEML| , connections

5.1. The multiple shooting procedure

Given an initial guess (So,o,qy,?s) from the projection
method, the idea is to use a multiple shooting method similar
to the one usually used for the numerical solution of boundary-
value problems.? As in the standard procedure, we first split
the total time span [f,?¢] into a number of shorter subinter-
vals selecting m + 1 equally spaced points fy, t1,...,t, = t;.
Moreover, for this particular implementation, all the epochs
tj, j=0,...,m,are considered fixed. We define z; := z(¢)), j =
1,...,m—1, the state at the patch point j, obtained from the nu-
merical integration in NcsEM coordinates of the solution of the
Cauchy problem

z=1(z,1), z(t) =C; o W,(So, w;tp). 20)
Furthermore, the initial and final points zy and z,, include the
semi-analytical description of the initial and final sets:
Zo(So, fo) = Ci o W, (8o, wsto), Zm(‘lf’ tm) = Ws(qf’ Witm).
(21)
Let ¢(tjs1,1;;2;) be the image of the point z; from ¢; to #;,;
under the flow associated to the equations of motion (20). Since
all epochs are fixed, all time spans are equal: At :=t;; —t; =
t; — to. We then choose to discard the time dependency in the
flow and denote ¢(z;) := é(¢;1+1,t;;2;). Finally, the following
vector of free variables is defined:

m

a;:(sg N A q;)T. (22)

Then, finding a continuous solution of the Tpevp (14) is equiva-
lent to finding a zero of the following function G(a):

& (2o(S0, 10)) A
&(z)) 7
G(a) = : - : 23)
¢(Z;r1—1) Zm(q.fs tm)

In the general three-dimensional case, G has 6m + 3 variables
and 6m components, hence, contrary to the standard multiple
shooting method, the associated system is not square. This
is ought to the fact that there is no additional constraints on
the initial and final states; instead, the latter are provided by
the functions zy (s, to) and z,,(qy, t,,) that inherently contain the
boundary conditions. This trick — and the semi-numerical pro-
cedures that underlies it — is what make the entire refinement
procedure possible.

Given an initial guess a° provided by the search algorithm,
we can find the nearby zero a* of G via a classic Newton-
Raphson (NrR) procedure. In our case, we also constantly check
that the sp and q stay in their respective domain of practical
convergence.
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5.1.1. Example of planar results

In order to apply the refinement procedure to planar con-
nections, initial conditions a, are taken in some families dis-
played on Figure 4. Each first guess is then refined using the
multiple shooting method, yielding a final solution a*. The re-
sulting orbits at both ends can then computed on an arbitrary
time span — here equal to 107".

The corresponding results are displayed on Figure 5 in NcSEM
coordinates, and on Figure 6 in NcEm coordinates, focused on
the lunar region. Several types of connection appear among
these solutions, with distinctive features such as the number of
Earth flybys, or the number of visits of each libration regions.
The solution on the upper left plot belongs to what is called here
the primary family, which consists of direct transfers without
any flyby or twist of the trajectory. Note that, given its unique
simple structure, it is not difficult to isolate the primary family
both in the projection and refinement procedures.

5.2. The continuation procedure in the planar case

The multiple shooting procedure allows to refine single EML;-
SEML]» connections. As it has been seen on Figures 4 and 5,
these connections are grouped in distinct one-parameter fami-
lies — at least in the planar case and for a fixed initial time. From
this observation, a continuation procedure based on ideas from
the predictor-corrector methods” has been implemented. The
result is a sequence of solutions aj,, p € N, from which we can
extract the initial conditions xf)f';* and yg"’;’* at EML,.

Each solution of Figure 5 has been continued using such al-
gorithm. The results are visible on Figure 7. On the bottom
center plot of this Figure are represented the starting points
(xgt’;;*, ygf';’*) at EML, of all the resulting transfers, superimposed
with the results of Figures 4 and 5. One can see that, in all cases,
the continued families match the valleys of solutions already de-
tected via the projection map of Figure 4a, which validates the
use of such maps as a preliminary detection tool. Moreover,
as visible on Figure 7, it is possible to continue the family be-
yond the original scope of the projection map without any break
down of the semi-analytical expansions, which is promising for
the extension of such tool to bigger orbits.

All the procedures presented so far can be easily transposed
to the EML,-SEML; case, yielding quite similar results, with a
quasi-symmetry with respect to the plane z, = 0.5T.

Moreover, they can be extended to the three-dimensional case
by imposing constant non null values of the s, and s4 compo-
nents in the departure point at EML,. With this choice, families
of connections with a constant vertical extension at EmL, are
obtained. The resulting trajectories will be presented in a forth-
coming paper, along with a more comprehensive work on the
planar case.

6. Refinement of the primary family to JPL ephemerides

Enclosing the most direct natural transfers, the primary fa-
mily is of fundamental importance for the understanding of the
coupling between the libration regions of the sem system. In
order to test the relevance of the primary trajectories found in
the QBcp, a refinement procedure to a higher-fidelity model is
implemented, with the following key features:

e The non-relativistic gravitational influence of the Sun, the
eight planets, the Moon and Pluto is taken into account
in the higher-fidelity model. The position and velocity
of the primaries involved are computed using the DE430
ephemerides from JPL.'?

o A refined EML| »-SEML; » QBCP connection is taken as initial
guess, which provides initial conditions (s;, ;) inside W,
at EML{ , as well as final conditions (q, ;) inside Wy at
SEML|». A complete three-legged connection trajectory is
computed. It is composed of the transfer leg as well as the
orbits at both ends, numerically integrated for a given num-
ber of periods of the sem system. The resulting trajectory
is discretized in patch points.

e A time correspondence is established with the higher-
fidelity model by looking for the best fit between the Sun-
Earth-Moon relative configuration at ¢+ = ¢; in the QBcp
and the real positions of the primaries in the ephemerides.
Once this correspondance is obtained, the patched point
are transposed into an Earth-centered inertial frame asso-
ciated to the ephemerides.

e To ensure the continuity of the trajectory, a multiple shoot-
ing procedure is implemented with free boundary condi-
tions.2?

A discrete set of trajectories has been selected within the pri-
mary family at #p = 0.995T and successfully refined using this
method. Figure 8 presents the results for four different primary
solutions. Looking at Figure 8d, one can see that the sizes of
the EML, orbits are mainly preserved after the refinement pro-
cess, this assertion being however less and less true as the orbits
grow. The same remark can be made on the semL; final orbits
on Figure 8a. Such trend is quite encouraging although it must
be validated on other families.

7. Conclusion

A new approach is proposed for the systematic detection
and refinement of SEML;-EML;, connections, based on a sin-
gle dynamical model for the Sun-Earth-Moon (sem) system: the
Quasi-Bicircular Problem (qBcp), which is a periodic coherent
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Fig. 5.: Some examples of planar EML,-SEML, connections, refined from first guesses selected on Figure 4b, the latter being displayed
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approximation of the seM motion. Although the gravitational in-
fluence of the three primaries is taken into account at all times,
the perturbation associated to the third primary is small enough
to preserve the key structures inherited from the separated dy-
namics of the Earth-Moon and Sun-(Earth+Moon) Circular Re-
stricted Three-Body Problems (crTBP).

Using an extension of the parameterization method, a semi-
analytical description of the dynamics in the neighborhood of
all four libration points has been obtained, including their cen-
ter, center-stable and center-unstable manifolds. It has been
shown that such objects can be used not only to compute ini-
tial conditions about a libration point but also to estimate the
distance between any trajectory and the center manifold asso-
ciated to another libration point — i.e. the set of all the staging
orbits in its immediate vicinity. If this distance is close to zero, a
connection between that trajectory and the targeted center man-
ifold is expected to exist nearby. Using the semi-analytical pa-
rameterizations at both ends then allows to easily draw maps of
possible connections — especially in the planar case for which
the problem has been reduced to two-dimensional maps.

The refinement of the possible connections — first in the QBcp
and then in a higher-fidelity model — validates the detection
tool as an important step towards the systematic analysis of the
dynamical couplings between the libration regions of the Earth-
Moon and Sun-Earth systems.
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