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Abstract

This paper deals with the design and validation of accurate local absorbing boundary
conditions set on convex polygonal computational domains for the finite element solution of
high-frequency acoustic scattering problems. While high-order absorbing boundary condi-
tions (HABCs) are accurate for smooth fictitious boundaries, the precision of the solution
drops in the presence of corners if no specific treatment is applied. We present and analyze
two strategies to preserve the accuracy of Padé-type HABCs at corners: first by using com-
patibility relations (derived for right angle corners) and second by regularizing the boundary
at the corner. We show that the former strategy is well-adapted to right corners and effi-
cient for nearly-right corners, while the later is better for very obtuse corners. Numerical
results are proposed to analyze and compare the approaches for two- and three-dimensional
problems.

1 Introduction

Large-scale high-frequency scattering problems need to be solved in many application areas,
such as seismic and medical imaging, aeroacoustics, seismic risk assessment and electromagnetic
compatibility. When specific frequencies of interest are identified, time-harmonic solvers are
conveniently considered. Unfortunately, because of the highly oscillatory nature of the wave
fields, these solvers lead to discretizations with a large number of unknowns and require the
solution of large poorly-conditioned linear systems. Research on accurate and computationally
efficient methods is very active: we can mention for instance recent works on high-frequency
boundary element methods [7, 21, 22], high-order finite element methods [14, 16, 51, 60] and
domain decomposition methods [9, 10, 33, 67].

Finite element methods are suited to realistic settings and complicated geometries, thanks
to unstructured meshes and robust formulations. For solving scattering problems, they must be
coupled with domain truncation techniques, which simulate the outward propagation of waves at
the boundary of the computational domain. Thereby, couplings have been proposed with exact
non-local boundary conditions [49], local absorbing boundary conditions (e.g. [48, 61–63]) and
perfectly marched layers (e.g. [17, 46, 59, 64]). In particular, high-order absorbing boundary
conditions (HABCs) and perfectly matched layers (PMLs) provide high-fidelity solutions for
limited computational costs, which makes them attractive techniques for large-scale simulations.
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Mostly because PMLs are easier to use, they have received much more attention than HABCs.
Nevertheless, the parameter selection of PMLs remains tricky and critically depends on the
discretization scheme [17, 45, 58]. By contrast, a priori analyses allow for a better control of
the error, and make the parameter selection of HABCs easier [15, 42, 44].

In the present paper, we are interested in applying Padé-type HABCs to computational
domains with non-regular boundaries. Such HABCs have proved to be very efficient for planar
boundaries [31] and regular curved boundaries [4, 8, 48]. However, difficulties arise when they
are prescribed on non-regular boundaries with corners, such as the boundaries of polygonal
and polyhedral domains. Specific corner treatments have been proposed for classical low-order
absorbing boundary conditions [13, 47] and some HABCs [23, 41, 65] in settings with only right
angles. These treatments rely on compatibility relations and involve, in some cases, auxiliary
unknowns defined at the corners. Dealing with non-right angles and general-shaped non-regular
boundaries is much more challenging, whatever boundary truncation technique is considered.
Few corner treatments have been tested for specific boundary truncation techniques [27, 38]
and, to the best of our knowledge, only in two dimensions with polygonal domains.

Here, we derive and analyze two approaches for applying Padé-type HABCs to Helmholtz
problems with computational domains having right and non-right angles in two and three di-
mensions. These approaches are based on compatibility relations and a regularization of the
boundary, respectively. They can offer geometric flexibility when choosing the computational
domain in application contexts, eventually leading to more appropriate shapes and smaller
computational costs. Let us mentional that the Padé-type HABCs are also used in acceleration
techniques for boundary integral solvers [6, 21, 26] and domain decomposition methods [18].
The analysis proposed here could also improve these acceleration techniques, which is currently
investigated.

The article is structured as follows. The Padé-type HABC for planar boundaries is derived
in Section 2. Section 3 is dedicated to corner and edge treatments for settings with right angles.
These treatments are based on compatibility relations, which are derived for two and three
dimensions. The parameter selection is discussed and the effectiveness of the compatibility
relations is asserted with finite element results. In section 4, we present two families of approx-
imate approaches to deal with corners and edges with non-right angles. These approaches are
evaluated and compared thanks to numerical results in two and three dimensions. A conclusion
and some perspectives are proposed in section 5.

2 Padé-type HABC for planar boundary

In this section, we derive a family of high-order absorbing boundary conditions (HABCs) for
planar boundaries. For the derivation, we consider the Helmholtz problem

∆v + κ2v = f, in R3, (1)

with the wavenumber κ(x, y, z) and the source term f(x, y, z). The unbounded domain R3

is decomposed into the interior region Ω = {(x, y, z) ∈ R3 : x < 0} and the exterior region
Ωext = {(x, y, z) ∈ R3 : x > 0} separated by the plane interface Γ with the equation {x = 0}.
The exterior medium is assumed to be homogeneous (κ is constant in Ωext) and free of source
(the support of f is compact on Ω). We seek to prescribe a boundary condition on Γ to represent
the outward propagation of waves leaving Ω.

The exact nonreflecting boundary condition is classically obtained by solving the exterior
Helmholtz problem defined in Ωext for some Dirichlet data v̄(y, z) on Γ [31]. Applying the
multidimensional transverse Fourier transform Fyz in the y- and z-directions to the Helmholtz
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equation yields (
∂2
x + λ+λ−

)
Fyz[v](x, ξy, ξz) = 0, for x > 0, ξy ∈ R, ξz ∈ R, (2)

where ξy and ξz are the dual variables of y and z in the Fourier space, and the symbols λ+ and
λ− are defined as

λ±(ξy, ξz) ≡ ±ı
√
κ2 − ξ2

y − ξ2
z . (3)

The solution that contains only outgoing traveling modes and bounded evanescent modes reads

Fyz[v](x, ξy, ξz) = Fyz[v̄](ξy, ξz) e
xλ+(ξy ,ξz). (4)

Taking the derivative in x of this solution leads to

∂xFyz[v](x, ξy, ξz) = λ+(ξy, ξz) Fyz[v](x, ξy, ξz), (5)

and then, using the inverse Fourier transform F−1
yz ,

∂xv(x, y, z) = F−1
yz

[
λ+(ξy, ξz) Fyz[v](x, ξy, ξz)

]
. (6)

Taking the restriction on Γ gives the exact nonreflective boundary condition for the interior
problem,

∂xv|Γ = Bv|Γ, on Γ, (7)

where B is the pseudo-differential operator defined as

B ≡ F−1
yz [λ+(ξy, ξz) Fyz] = ıκ

√
1 + ∆Γ/k2, (8)

with the Laplace-Beltrami operator ∆Γ = ∆ − ∂xx. The operator B is the exact Dirichlet-to-
Neumann (DtN) operator for this problem. Unfortunately, because of the square root in the
symbol of B, the boundary condition is non-local. When using a finite element solver, it then
leads to a strong coupling of the unknowns defined onto the fictitious boundary, and then to a
dense block in the matrix of the linear system for the corresponding entries.

Local boundary conditions can be derived by approximating the square root in the symbol
of the DtN operator. In their seminal paper, Engquist and Majda [31] derived a family of local
boundary conditions by using a Padé approximation of the square root. The (2N + 1)th-order
Padé approximation of the square root f(X) =

√
1 +X is classically written as the rational

function [12, 37]

fN (X) = 1 +
2

M

N∑
i=1

aiX

1 + biX
, (9)

which we rewrite as

fN (X) = 1 +
2

M

N∑
i=1

ci

(
1− ci + 1

ci + 1 +X

)
, (10)

with ai = sin2(iπ/M), bi = cos2(iπ/M), ci = tan2(iπ/M) and M = 2N + 1. Unfortunately,
Padé approximations lead to boundary conditions that are inappropriate for evanescent modes
and inaccurate for grazing waves. For parabolic wave equations, Milinazzo et al. [55] proposed
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the following modified approximation with a change of variable to rotate the branch cut of the
square root by some angle φ, which leads to

fφN (X) = eıφ/2 fN (e−ıφ(1 +X)− 1) = eıφ/2

[
1 +

2

M

N∑
i=1

ci

(
1− eıφ(ci + 1)

(eıφci + 1) +X

)]
. (11)

The obtained approximation highly improves the accuracy of the HABC for evanescent modes
[8], while it slightly increases the reflection of traveling modes. The effect is more important
as the rotating angle φ grows. Using this approximation in the pseudo-differential operator (8)
leads to the approximate boundary condition

∂xu|Γ = Ru|Γ, on Γ, (12)

where R is the pseudo-differential operator defined as

R ≡ ıκeıφ/2
[

1 +
2

M

N∑
i=1

ci

(
1− eıφ(ci + 1)

(eıφci + 1) + ∆Γ/κ2

)]
. (13)

The field u(x, y, z) denotes the solution of the truncated problem defined on Ω, with the ap-
proximate condition on Γ. This solution is an approximation of the exact free-space solution
v(x, y, z), with spurious reflections generated at the boundary.

Following a strategy used by Lindman [52] and next by Collino [24, 25], high-order absorbing
boundary conditions can be written with differential equations by introducing auxiliary surface
fields and additional equations on the boundary. Here, we define N auxiliary fields ϕi, with
i = 1 . . . N , governed by

Niϕi = u, for i = 1 . . . N, on Γ, (14)

where Ni is the differential operator given by

Ni ≡ −
(eıφci + 1) + ∆Γ/κ

2

eıφ(ci + 1)
. (15)

Using these auxiliary fields, the boundary condition (12) can be rewritten as

∂xu|Γ = L(u|Γ, ϕ1, . . . , ϕN ), on Γ, (16)

where L is the linear algebraic operator defined as

L(g, g1, . . . , gN ) ≡ ıκeıφ/2
[
g +

2

M

N∑
i=1

ci (g + gi)

]
. (17)

This boundary condition and the auxiliary equations (14) are local equations. Writing explicitly
these relations finally gives the HABC

∂xu|Γ = ıκeıφ/2

[
u|Γ +

2

M

N∑
i=1

ci (u|Γ + ϕi)

]
, on Γ, (18)

and the auxiliary equations

∆Γϕi + κ2
(
(eıφci + 1)ϕi + eıφ(ci + 1)u|Γ

)
= 0, for i = 1 . . . N, on Γ. (19)
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When using this boundary condition, two parameters must be chosen: the angle φ and the
number of auxiliary fields N , which are related to the approximation of the square root.

Different HABCs have been proposed in the literature by using other rational approximations
of the square root and other definitions for the auxiliary fields in both time-dependent and time-
harmonic cases. We can mention for instance the Higdon-type boundary conditions [35, 36, 40,
41, 66], the continued-fraction absorbing boundary conditions [38, 39], the complete radiation
boundary conditions [42, 43] and, for specific finite difference discretizations, the nearly-optimal
perfectly matched layers [11, 28]. In most of these works, the rational approximation is written
with a continued fraction, and the HABCs are expressed with recursive auxiliary relations. The
approximated square root in equation (11) can be rewritten as a continued fraction that is a
particular case of the general continued fractions proposed in the mentioned works.

3 Exact treatment for settings with right angles

When using the HABC on the faces of polygonal or polyhedral domains, the corners and the
edges of these domains require a specific treatment. To illustrate this, let us consider the two-
dimensional Helmholtz problem defined on the quarter space Ω = {(x, y) ∈ R2 : x < 0, y < 0}.
On both edges of Ω, we prescribe a HABC, i.e.

∂xu|Γx = ıκeıφ/2

[
u|Γx +

2

M

N∑
i=1

ci (u|Γx + ϕxi )

]
, on Γx, (20)

∂yu|Γy = ıκeıφ/2

u|Γy +
2

M

N∑
j=1

cj

(
u|Γy + ϕyj

) , on Γy, (21)

with auxiliary fields governed by

∂yyϕ
x
i + κ2

(
(eıφci + 1)ϕxi + eıφ(ci + 1)u|Γx

)
= 0, for i = 1 . . . N, on Γx, (22)

∂xxϕ
y
j + κ2

(
(eıφcj + 1)ϕyj + eıφ(cj + 1)u|Γy

)
= 0, for j = 1 . . . N, on Γy, (23)

where Γx = {(x, y) ∈ R2 : x = 0, y < 0} and Γy = {(x, y) ∈ R2 : x < 0, y = 0}. From a
mathematical point of view, boundary conditions must be prescribed on these auxiliary fields
at the boundary of each edge (i.e. at the corner P xy = (0, 0)) because of the second-order
spatial derivative arising in equations (22)-(23). From a modeling point of view, these conditions
provide additional information about the exterior problem. Indeed, if we seek the solution of the
free-space problem, the corner treatment should accurately represents the outward propagation
of waves at the corner. A similar reasoning can be made in three dimensions.

In this section, we present and analyze a strategy to deal with the corners and the edges
of rectangular and cuboidal domains, which have only right angles. The strategy relies on
additional relations that give the missing boundary conditions, and supplementary auxiliary
fields defined on the corners and the edges. The approach is explained in section 3.1 in the
two-dimensional case, and extended in section 3.2 for the three-dimensional case. Numerical
results are proposed in section 3.3 to assert the efficiency of the corner treatment and to study
the parameters selection.

3.1 Compatibility relations in two dimensions

Let us remind that we seek an approximate solution of the free-space problem

∆v + κ2v = f, in R2, (24)
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where v(x, y) is the exact free-space solution verifying the Sommerfeld’s condition, the source
term f(x, y) has a compact support on the quarter space Ω, and the wavenumber κ(x, y) is
constant in R2\Ω. The exterior region R2\Ω contains the two half spaces Ωx = {(x, y) ∈
R2 : x > 0} and Ωy = {(x, y) ∈ R2 : y > 0}, which overlap on the exterior quarter space
Ωxy = {(x, y) ∈ R2 : x > 0, y > 0}. Following the procedure detailed in the previous section,
solving the exterior problems defined on the half spaces Ωx and Ωy leads to the exact relations

∂xv|x=0 = Bxv|x=0, for y ∈ R, (25)

∂yv|y=0 = Byv|y=0, for x ∈ R, (26)

with the DtN operators Bx and By formally defined as

Bx ≡ ıκ
√

1 + ∂yy/k2, (27)

By ≡ ıκ
√

1 + ∂xx/k2. (28)

In the truncated problem defined on Ω, these two operators are localized using a Padé-type
approximation of the square root, and the restriction of the obtained approximate boundary
conditions on Γx and Γy are used. It leads to equations (20) and (21) and the approximate
solution u(x, y).

In order to derive a suited corner treatment, let us consider the solutions of particular
exterior half-space problems defined on Ωx and Ωy. We are interested by fields ũx(x, y) and
ũy(x, y) that verify both the Helmholtz equation,

∆ũx + κ2ũx = 0, in Ωx, (29)

∆ũy + κ2ũy = 0, in Ωy, (30)

and some Dirichlet boundary condition on the interfaces x = 0 and y = 0,

ũx|x=0 = ūx, for y ∈ R, (31)

ũy|y=0 = ūy, for x ∈ R, (32)

with ūx(y) and ūy(x) given on the interfaces. We assume that these fields verify the approximate
versions of equations (25) and (26),

∂xũ
x = L

(
ũx, ϕ̃x1 , . . . , ϕ̃

x
N

)
, in Ωx, (33)

∂yũ
y = L

(
ũy, ϕ̃y1, . . . , ϕ̃

y
N

)
, in Ωy, (34)

where the auxiliary fields ϕ̃xi and ϕ̃yj , defined on Ωx and Ωy, respectively, are governed by

N x
i ϕ̃

x
i = ũx, for i = 1 . . . N, in Ωx, (35)

N y
j ϕ̃

y
j = ũy, for j = 1 . . . N, in Ωy, (36)

with the differential operators N x
i and N y

j

N x
i ≡ −

(eıφci + 1) + ∂yy/κ
2

eıφ(ci + 1)
, (37)

N y
j ≡ −

(eıφcj + 1) + ∂xx/κ
2

eıφ(cj + 1)
. (38)
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Since N x
i and N y

j are dissipative Helmholtz-type operators, they can be inverted. Therefore,
the auxiliary fields ϕ̃xi and ϕ̃yj are defined uniquely through (35)-(36), and we can write

ϕ̃xi = (N x
i )−1ũx, for i = 1 . . . N, in Ωx, (39)

ϕ̃yj = (N y
j )−1ũy, for j = 1 . . . N, in Ωy. (40)

Because of the spatial derivatives in equations (22)-(23), we seek for supplementary boundary
conditions giving the traces ∂yϕ

x
i |Pxy and ∂xϕ

y
j |Pxy at the corner. To do this, we first enforce

the approximate half-space fields ũx and ũy to be equal in the exterior quarter space, i.e.
ũx = ũy = ũ in Ωxy. Because we have a right angle between the interfaces, the normal
derivative of one face is the tangential derivative of the other face up to a sign. Therefore, seen
the linearity of L, applying (N y

j )−1 and (N x
i )−1 on equations (33) and (34), respectively, gives

∂xϕ̃
y
j = L

(
ϕ̃yj , ϕ̃

y
1j , . . . , ϕ̃

y
Nj

)
, for j = 1 . . . N, in Ωxy, (41)

∂yϕ̃
x
i = L

(
ϕ̃xi , ϕ̃

x
i1, . . . , ϕ̃

x
iN

)
, for i = 1 . . . N, in Ωxy, (42)

where we have introduced new surface fields

ϕ̃yij = (N y
j )−1ϕ̃xi , for i, j = 1 . . . N, in Ωxy, (43)

ϕ̃xij = (N x
i )−1ϕ̃yj , for i, j = 1 . . . N, in Ωxy. (44)

The restriction of equations (41) and (42) at the corner gives the missing boundary conditions.
However, they require the computation of the auxiliary fields ϕ̃xij and ϕ̃yij only at the corner,
while the governing equations (43)-(44) involve spatial derivatives of these fields. To overcome
this problem, we first note that ϕ̃xij = ϕ̃yij , for i, j = 1 . . . N . Indeed, since N x

i and N y
j commute,

N x
i N y

j =

[
(eıφci + 1) + ∂yy/κ

2

eıφ(ci + 1)

] [
(eıφcj + 1) + ∂xx/κ

2

eıφ(cj + 1)

]
(45)

=

[
(eıφcj + 1) + ∂xx/κ

2

eıφ(cj + 1)

] [
(eıφci + 1) + ∂yy/κ

2

eıφ(ci + 1)

]
= N y

j N x
i , (46)

and can be inverted, we have

ϕ̃xyij ≡ ϕ̃xij = (N y
j )−1(N x

i )−1ũ = (N x
i )−1(N y

j )−1ũ = ϕ̃yij , for i, j = 1 . . . N, in Ωxy. (47)

We can then explicitly write equations (43) and (44) as

∂yyϕ̃
xy
ij + κ2

(
(eıφci + 1)ϕ̃xyij + eıφ(ci + 1)ϕ̃yj

)
= 0, for i, j = 1 . . . N, in Ωxy, (48)

∂xxϕ̃
xy
ij + κ2

(
(eıφcj + 1)ϕ̃xyij + eıφ(cj + 1)ϕ̃xi

)
= 0, for i, j = 1 . . . N, in Ωxy. (49)

Since the Helmholtz operator commutes with N y
j and N x

i , the auxiliary fields also verify the
Helmholtz equation,

∆ϕ̃xyij + κ2ϕ̃xyij = 0, for i, j = 1 . . . N, in Ωxy. (50)

Canceling the spatial derivatives by combining the three previous equations gives the algebraic
relations

(eıφci + eıφcj + 1)ϕ̃xyij + eıφ(ci + 1)ϕ̃yj + eıφ(cj + 1)ϕ̃xi = 0, for i, j = 1 . . . N, in Ωxy. (51)
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Finally, taking the restriction of equations (41), (42) and (51) at the corner gives the missing
boundary conditions for the truncated problem,

∂xϕ
y
j

∣∣∣
Pxy

= ıκeıφ/2

[
ϕyj |Pxy +

2

M

N∑
i=1

ci

(
ϕyj |Pxy + ϕxyij

)]
, for j = 1 . . . N, at P xy, (52)

∂yϕ
x
i |Pxy = ıκeıφ/2

ϕxi |Pxy +
2

M

N∑
j=1

cj

(
ϕxi |Pxy + ϕxyij

) , for i = 1 . . . N, at P xy, (53)

with N2 auxiliary fields defined at the corner and given by

ϕxyij = −
(cj + 1) ϕxi |Pxy + (ci + 1) ϕyj

∣∣∣
Pxy

ci + cj + e−ıφ
, for i, j = 1 . . . N, at P xy. (54)

In a nutshell, the corner treatment consists in applying the HABC on the 2N auxiliary fields
belonging to the edges, and they are coupled through N2 supplementary auxiliary fields defined
only at the corner.

3.2 Compatibility relations in three dimensions

Our approach can be applied in three dimensions. When using the HABC on all the faces of a
cuboidal domain to represent wave propagation in the free space R3, additional relations must
be prescribed at the edges and the corners of the cuboid. To state the equations, we consider
the three-dimensional version of the Helmholtz problem (24) and a truncated domain that is
the eighth of space Ω = {(x, y, z) ∈ R3 : x < 0, y < 0, z < 0}. The faces of Ω belonging to the
planes x = 0, y = 0 and z = 0 are denoted Γx, Γy and Γz, respectively. The edges are given by
Υxy = Γx∩Γy, Υxz = Γx∩Γz and Υyz = Γy ∩Γz. The corner is defined as P xyz = Γx∩Γy ∩Γz.

On the faces Γx, Γy and Γz, the boundary conditions for the approximate solution u(x, y, z)
read

∂xu|Γx
= L(u|Γx , ϕ

x
1 , . . . , ϕ

x
N ), on Γx, (55)

∂yu|Γy
= L(u|Γy , ϕ

y
1, . . . , ϕ

y
N ), on Γy, (56)

∂zu|Γz
= L(u|Γz , ϕ

z
1, . . . , ϕ

z
N ), on Γz, (57)

with N auxiliary fields defined on each face and governed by

(∂yy + ∂zz)ϕ
x
i + κ2eıφ

(
(ci + e−ıφ)ϕxi + (ci + 1)u|Γx

)
= 0, ∀i, on Γx, (58)

(∂xx + ∂zz)ϕ
y
j + κ2eıφ

(
(cj + e−ıφ)ϕyj + (cj + 1)u|Γy

)
= 0, ∀j, on Γy, (59)

(∂xx + ∂yy)ϕ
z
k + κ2eıφ

(
(ck + e−ıφ)ϕzk + (ck + 1)u|Γz

)
= 0, ∀k, on Γz. (60)

For the sake of conciseness, we do no write that the values of the indices i, j and k are between
1 and N . Because of the spatial derivative in their governing equations, the auxiliary fields
defined on the faces require boundary conditions on the edges. By extending the approach of
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the previous section, we obtain

∂yϕ
x
i |Υxy = L(ϕxi |Υxy , ϕxyi1 , . . . , ϕ

xy
iN ), ∀i, on Υxy, (61)

∂zϕ
x
i |Υxz = L(ϕxi |Υxz , ϕxzi1 , . . . , ϕ

xz
iN ), ∀i, on Υxz, (62)

∂xϕ
y
j

∣∣∣
Υxy

= L(ϕyj |Υxy , ϕxy1j , . . . , ϕ
xy
Nj), ∀j, on Υxy, (63)

∂zϕ
y
j

∣∣∣
Υyz

= L(ϕyj |Υyz , ϕyzj1 , . . . , ϕ
yz
jN ), ∀j, on Υyz, (64)

∂xϕ
z
k|Υxz = L(ϕzk|Υxz , ϕxz1k, . . . , ϕ

xz
Nk), ∀k, on Υxz, (65)

∂yϕ
z
k|Υyz = L(ϕzk|Υyz , ϕyz1k, . . . , ϕ

yz
Nk), ∀k, on Υyz, (66)

with N2 auxiliary fields defined on each edge and governed by

∂zzϕ
xy
ij + κ2eıφ

(
(ci + cj + e−ıφ)ϕxyij + (ci + 1)ϕxj |Υxy + (cj + 1)ϕxi |Υxy

)
= 0, ∀i, j, on Υxy,

(67)

∂yyϕ
xz
ik + κ2eıφ

(
(ci + ck + e−ıφ)ϕxzik + (ci + 1)ϕxk|Υxz + (ck + 1)ϕxi |Υxz

)
= 0, ∀i, k, on Υxz,

(68)

∂xxϕ
yz
jk + κ2eıφ

(
(cj + ck + e−ıφ)ϕyzjk + (cj + 1)ϕxk|Υyz + (ck + 1)ϕxj |Υyz

)
= 0, ∀j, k, on Υyz.

(69)

Again, boundary conditions must be prescribed at the corner on the auxiliary fields belonging to
the edges because of the spatial derivative in the governing equations. We obtain the boundary
conditions

∂zϕ
xy
ij

∣∣∣
Pxyz

= L(ϕxyij |Pxyz , ϕxyzij1 , . . . , ϕ
xyz
ijN ), ∀i, j, on P xyz, (70)

∂yϕ
xz
ik |Pxyz = L(ϕxzik |Pxyz , ϕxyzi1k , . . . , ϕ

xyz
iNk), ∀i, k, on P xyz, (71)

∂xϕ
yz
jk

∣∣∣
Pxyz

= L(ϕyzjk |Pxyz , ϕxyz1jk , . . . , ϕ
xyz
Njk), ∀j, k, on P xyz, (72)

with N3 auxiliary fields given by

ϕxyzijk = −
(ci + 1)ϕyzjk |Pxyz + (cj + 1)ϕxzik |Pxyz + (ck + 1)ϕxyij |Pxyz

ci + cj + ck + e−ıφ
, ∀i, j, k, on P xyz. (73)

Therefore, for using this approach with a cuboidal domain, we must define two-dimensional
auxiliary fields on the faces (N per face), one-dimensional auxiliary fields on the edges (N2 per
edge) and additional scalar unknowns at the corners (N3 per corner). Auxiliary differential
equations similar to the two-dimensional and one-dimensional versions of the Helmholtz equa-
tion must be solved on the faces and the edges, respectively. When solving these equations
with a finite element scheme, we straightforwardly adapt the bilinear form of the Helmholtz
equation.

3.3 Numerical verification and parameter analysis

In this section, the accuracy of the HABC with the compatibility relations at corners and
edges is asserted by considering two reference benchmarks: the scattering of a plane wave by a
circular cylinder and by a sphere. The influence of the parameters φ and N is analyzed in two
dimensions. The numerical results have been obtained with the mesh generator Gmsh [34] and
the finite element solver GetDP [29].
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(a) Reference solution (b) Error with φ = 0 (c) Error with φ = π/3

Figure 1: Scattering by a sound-hard circular cylinder: real part of the reference solution <e{uref}
(Figure 1a) and real part of the error <e{unum − uref} when using the HABC with the exact corner
treatment, N = 4 and either φ = 0 (Figure 1b) or φ = π/3 (Figure 1c). The mesh is made of 7,156
elements and 29,832 second-order nodes, which corresponds to nλ ≈ 10.

Numerical verification in two dimensions

The scattering of the plane wave solution uinc(x) = eıκx with the propagation direction κ̂ = [1, 0]
by the sound-hard circular cylinder of radius R centered at the origin generates the scattered
field

uref(r, θ) = −
∞∑
m=0

εmi
m Jm

′(κR)

H
(1)
m

′
(κR)

H(1)
m (κr) cos(mθ), r ≥ R, (74)

where (r, θ) are the polar coordinates, Jm is the mth-order Bessel’s function, H
(1)
m is the mth-

order first-kind Hankel function, and εn is the Neumann function which is equal to 1 for m = 0
and 2 otherwise.

We consider a two-dimensional setting where a disk of radius R = 1 is placed in the middle of
the squared domain [−1.1, 1.1]2. The Neumann boundary condition ∂nu|∂Ωdisk = −∂nuinc|∂Ωdisk

is prescribed on the boundary of the disk, HABCs are set on all the edges of the square, and
the compatibility relations are used at the corners. The scattered field solution is computed for
the wavenumber κ = 25 on meshes made of second-order curvilinear triangular elements with
second-order nodal basis functions. The real part of the reference solution is shown in Figure
1a for this setting.

Figures 1b and 1c show the error on the numerical solutions computed with N = 4 auxiliary
fields and either φ = 0 or φ = π/3, respectively. In the first case, the error is dominated
by surface waves propagating along the upper and lower artificial boundaries. These spurious
waves are canceled when rotating the branch cut of by a π/3 angle in the Padé approximation,
and the standard dispersive numerical error dominates the global error.

To quantify the accuracy of the HABC with the corner compatibility relations, we study
the global error between the numerical solution unum and the reference solution uref on the
computational domain Ω. This error takes into account both modeling errors due to the ap-
proximate boundary treatment and numerical errors due to the numerical approximations. If
the boundary treatment is sufficiently accurate, the global error will be dominated by numerical
errors, and the third-order convergence rate of the numerical scheme should be recovered.

In Figure 2, we show the relative L2-error as a function of the mesh density for five meshes
in different settings: the number of auxiliary fields N = 0, 1, 2, 3, 4 and 5 and the angles φ = 0

10



(a) HABC with φ = 0
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(b) HABC with φ = π/3

102 103

Mesh density
√

#nodes

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
L

2
-e

rr
or

1

3

N = 0

N = 1

N = 2

N = 3

N = 4

N = 5

Figure 2: Scattering by a sound-hard circular cylinder: convergence of the numerical solution. The
relative L2-error takes into account both modeling errors due to the HABC and numerical errors due to
the scheme. In both figures, the black line corresponds to the relative projection L2-error.

and π/3. The ratio of the characteristic size of a mesh cell to the wavelength is nλ ≈ 2.5, 5, 10,
20, 40 for the five meshes. The relative L2-error is defined as

‖unum − uref‖L2(Ω)

‖uref‖L2(Ω)
, (75)

and the mesh density is evaluated with the formula
√

#nodes, where #nodes is the total number
of nodes in the mesh (i.e. with 6 nodes per triangle). In addition, we also show the relative
L2-error between the reference solution and its L2-projection onto the finite element space,

‖Puref − uref‖L2(Ω)

‖uref‖L2(Ω)
. (76)

Seen Céa’s lemma, this error corresponds to the best numerical solution that can be done on
each mesh, whatever the boundary treatment.

For the coarsest meshes, the smallest numerical error is reached with a small number of
auxiliary fields N , both for φ = 0 and φ = π/3, but this error is significantly higher than the
projection error. When refining the mesh, the numerical error decreases until a plateau in all
the cases. This plateau corresponds to the modeling error due to the approximate treatment
at the boundary. Increasing N decreases the level of the plateau, and taking φ = π/3 instead
of φ = 0 accelerates this decrease. For N = 5 and φ = π/3, we observe that the numerical
error reaches the projection error for the finest meshes. The numerical solutions obtained with
the HABC then are very close to the best approximations possible with these meshes, and the
modeling error is negligible.

Parameter analysis in two dimensions

To understand the role of the angle φ, and then to guide the parameter selection, we analyse
the error for each mode of the solution. The incident wave can be decomposed into the modes
uinc
m (r, θ) = Jm(κr)eımθ, where m ∈ Z is the mode number. For each mode, the scattered field

is then given by

uref
m (r, θ) =

Jm
′(κR)

H
(1)
m

′
(κR)

H(1)
m (κr)eımθ, r ≥ R, m ∈ Z. (77)
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m = 15 m = 25 m = 35

Figure 3: Scattering by a sound-hard circular cylinder: real part of the reference scattered field for a
traveling mode (m = 15), a grazing mode (m = 25) and an evanescent mode (m = 35). The radius of
the cylinder is R = 1 and the wavenumber is κ = 25.

(a) HABC with φ = 0
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(b) HABC with φ = π/3
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Figure 4: Scattering by a sound-hard circular cylinder: mode-by-mode error for the wave number κ = 25
and the mesh with nλ = 10, which is the third mesh used in the figure 2. In both Figures, the black line
corresponds to the relative projection L2-error.

This solution corresponds to a traveling wave (m < k) or an evanescent wave (m > k). The
intermediate region (m ≈ k) corresponds to grazing waves. The three kinds of waves are
represented in Figure 3 for R = 1 and κ = 25.

In Figure 4, we represent the relative L2-error on the numerical solution and the relative
projection L2-error as a function of the mode number m for a mesh corresponding to nλ = 10.
Let us note that the relative projection error rises with the mode number in the region of the
evanescent modes. As the characteristic length of the oscillations along the cylinder decreases,
the mesh is too coarse to accurately represents these oscillations. Nevertheless, in the complete
plane-wave solution, the coefficients corresponding to the evanescent modes get smaller, and
they do not contribute too much to the global error (see e.g. [50])

We observe on Figure 4 that the error corresponding to the evanescent modes does not
decrease as much when increasing N for φ = 0. It is indeed well-known that the Padé-type
HABC is not suited for these modes. Taking φ = π/3 instead of φ = 0 decreases the error for
these modes, but the error corresponding to the traveling modes rises.
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Numerical verification in three dimensions

In order to check our approach in three dimensions, we consider the scattering of a plane wave
uinc(x) = eıκ·x by a sound-hard sphere of radius R centered at the origin. The generated
scattered field reads

uref(x) = −
∞∑
m=0

im(2m+ 1)
jm
′(κR)

h
(1)
m

′
(κR)

h(1)
m (κr) Pm(κ̂ · x̂), r ≥ R, (78)

where κ = ‖κ‖, r = ‖x‖, κ̂ = κ/‖κ‖, x̂ = x/‖x‖, jm is the mth-order spherical Bessel function,

h
(1)
m is the mth-order first-kind spherical Hankel function, and Pm is the mth-order Legendre

polynomial.
Numerical simulations are performed on the cubic computational domain Ω = [−1.41, 1.41]3

with a scattering sphere of radius R = 1. The HABC is prescribed on all the faces of the cube,
and the compatibility relations are used on all the edges and all the corners. The simulation
parameters are κ = 10 and κ̂ = [1/

√
2, 1/
√

2, 0]. With this setting, the incident plane wave
enters in the computational domain first by hitting an edge of the cube. The mesh is made of
second-order curvilinear tetrahedral elements, second-order basis functions are used, and the
ratio of the characteristic size of a mesh cell to the wavelength is nλ ≈ 10. A snapshot of the
reference scattered field is shown on Figure 5a.

The relative L2-error between the numerical solution and the reference analytic solution is
given for different values of the parameters N and φ in Table 1. The values N = 2 and φ = π/4
are nearly optimal since, with only two auxiliary fields per face, the relative error (2.19 10−3)
is very close to the one obtained with larger numbers of auxiliary fields (2.18 10−3). These
relative errors have the same order of magnitude as the relative projection error (76) for this
benchmark, which is 1.38 10−3.

Snapshots of the error on the numerical solutions obtained with N = 2 auxiliary fields and
the rotating angle φ equal to 0 and π/4 are shown on Figures 5b and 5c, respectively. The error
is dominated by the dispersion numerical error in the former case, with φ = π/4. Similarly
to the two-dimensional case, the error with φ = 0 exhibits spurious surface waves propagating
along artificial boundaries, in addition to the dispersion numerical error. Note that we observe
spurious surface waves also in the φ = π/4 case, close to the corners on the right of figure 5c.

(a) Reference solution (b) Error with φ = 0 (c) Error with φ = π/4

Figure 5: Scattering by a sound-hard sphere: real part of the reference solution <e{uref} (Figure 5a) and
real part of the error <e{unum − uref} when using the HABC with the exact corner treatment, N = 3
and either φ = 0 (Figure 5b) or φ = π/4 (figure 5c). The mesh is made of 347,592 elements and 501,836
second-order nodes, which corresponds to nλ ≈ 10.
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Table 1: Scattering by a sound-hard sphere: relative L2-error between the numerical solution and the
reference analytic solution (78) for different number N of auxiliary fields and different rotating angles φ.
The relative projection L2-error is 1.38 10−3.

φ = 0 φ = π/8 φ = π/4 φ = π/3 φ = π/2

N = 1 15.15 10−3 8.91 10−3 8.46 10−3 16.35 10−3 60.75 10−3

N = 2 3.81 10−3 2.33 10−3 2.19 10−3 2.37 10−3 9.22 10−3

N = 3 2.58 10−3 2.21 10−3 2.18 10−3 2.18 10−3 2.57 10−3

N = 4 2.21 10−3 2.18 10−3 2.18 10−3 2.18 10−3 2.19 10−3

Nevertheless, the amplitude of these waves is small in comparison with the dispersion error,
and they disappear when increasing the number of auxiliary fields N from 2 to 3 (results not
shown here).

These results confirm the effectiveness of both the HABC and the compatibility relations
for dealing with the edges and the corners of computational domains with right angles. The
strategy with the rotating parameter φ is very attractive since it improves the quality of the
solution at no additional computational cost.

4 Approximate treatments for settings with non-right angles

In order to deal with generally-shaped convex computational domains, corner and edge treat-
ments must be proposed for settings with non-right angles. Unfortunately, the compatibility
relations derived in the previous section cannot be straightforwardly extended to more general
settings. Indeed, when deriving these relations, we use the fact that the normal derivative for
one border is a tangential derivative for the others (see Section 3.1), which does not hold in the
general case.

In this section, we propose alternative strategies based on approximate conditions (Section
4.1) and regularization techniques (Section 4.2). The effectiveness and the accuracy of these
approaches is analyzed in numerical comparisons (Section 4.3). In contrast with the right-angle
compatibility relations of the previous section, which do not involve any additional approxima-
tion, the strategies proposed hereafter are approximate treatments, which generate additional
modeling error at corners and edges.

4.1 Approximate conditions at corners and edges

To describe the corner treatments, we consider the two-dimensional problem defined on the
infinite wedge domain Ω = {(x, y) ∈ R2 : xa < 0 and yb < 0}, where (xa, ya) and (xb, yb) are
Cartesian coordinate systems associated with the edges Γa and Γb, respectively, such as xa and
yb are varying along the outward unit normals to the edges, as shown on Figure 6. The angle
between both edges is denoted α. The HABCs prescribed on both edges can then be written as

∂xau|Γa = ıκeıφ/2

[
u|Γa +

2

M

N∑
i=1

ci (u|Γa + ϕai )

]
, on Γa, (79)

∂ybu
∣∣
Γb = ıκeıφ/2

u|Γb +
2

M

N∑
j=1

cj

(
u|Γb + ϕbj

) , on Γb, (80)
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Figure 6: Infinite wedge domain with the coordinate systems.

where auxiliary fields ϕai and ϕbj , defined respectively on Γa and Γb, are governed by

∂2
yayaϕ

a
i + κ2eıφ

(
(ci + e−ıφ) ϕai + (ci + 1) u|Γa

)
= 0, ∀i, on Γa, (81)

∂2
xbxbϕ

b
j + κ2eıφ

(
(cj + e−ıφ) ϕbj + (cj + 1) u|Γb

)
= 0, ∀j, on Γb. (82)

We seek a treatment to prescribe at the corner P = (0, 0) for any angle α ∈ ]0, π].
Because of the spatial derivatives in equations (81)-(82), boundary conditions should be

prescribed on the auxiliary fields at the corner. Deriving compatibility relations for any angle
α, as it was done in the previous section for α = π/2, would be the ideal solution. However,
because we took advantage of the isotropy of the Laplace operator in Cartesian coordinates when
deriving the relations for α = π/2 (the normal derivative for one border is a tangential derivative
for the others), this procedure cannot be straightforwardly applied for non-right corners. To the
best of our knowledge, compatibility relations have never been explicitly obtained for α 6= π/2.
Nevertheless, the relations corresponding to α = π/2 can be tested in settings with non-right
angles. The solution should be still accurate if the angles are nearly right (i.e. α ≈ π/2).

As an alternative corner condition, we also propose to prescribe the Sommerfeld boundary
condition on the auxiliary fields at the corner,

∂yaϕ
a
i |P = ıκϕai |P , ∀i, at P, (83)

∂xbϕ
b
j

∣∣∣
P

= ıκϕbj |P , ∀j, at P. (84)

Using such a low-order ABC makes sense since the exact compatibility treatment for α = π/2
finally corresponds to using the HABC directly on the auxiliary fields at the corner (see Section
3.1). This treatment is an approximation, even for α = π/2, but the computational cost is
smaller than with the compatibility relations since the auxiliary fields are not longer coupled.

In three dimensions, when using the HABC on the faces of polyhedral domains, supplemen-
tary boundary conditions must be prescribed at the edges for the auxiliary fields belonging to
the faces. Similarly to the two-dimensional case, several approximate conditions are tested for
settings with non-right angles. Considering two faces Γa and Γb and the edge Υab = Γa ∩ Γb,
we propose:

1. using the Sommerfeld boundary condition on the auxiliary fields at the edge,

∂yaϕ
a
i |Υab = ıκϕai |Υab , ∀i, at Υab, (85)

∂xbϕ
b
j |Υab = ıκϕbj |Υab , ∀j, at Υab, (86)

where the auxiliary fields ϕai and ϕbj are defined on Γa and Γb, respectively, and the

coordinates ya and xb are varying along the outward unit normal to the boundary of these
faces, on the edge Υab;
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2. using the two-dimensional right-angle compatibility relation,

∂yaϕ
a
i |Υab = L(ϕai |Υab , ϕabi1 , . . . , ϕ

ab
iN ), ∀i, at Υab, (87)

∂xbϕ
b
j |Υab = L(ϕbj |Υab , ϕab1j , . . . , ϕ

ab
Nj), ∀j, at Υab, (88)

with auxiliary fields defined on Υab and given by

ϕabij = −
(cj + 1)ϕai |Υab + (ci + 1)ϕbj |Υab

ci + cj + e−ıφ
, ∀i, j, at Υab; (89)

3. using the three-dimensional right-angle compatibility relation, which leads to equations
(87)-(88), with auxiliary fields on Υab governed by

∂zzϕ
ab
ij + κ2eıφ

(
(ci + cj + e−ıφ)ϕabij + (cj + 1)ϕai |Υab + (ci + 1)ϕbj |Υab

)
= 0, ∀i, j, on Υab,

(90)

where the coordinate z is varying along Υab.

In the latter case, boundary conditions are required at the corners for the auxiliary fields living
on the edges and governed by equation (90). We propose using the Sommerfeld condition or,
if only three edges meet at the corner, using the three-dimensional right-angle compatibility
relation. Therefore, we finally have four strategies with different computational costs. The first
strategy is the cheapest one, while using compatibility relations on both edges and corners is
the most expensive one.

4.2 Treatment by regularization of boundary

Another approach for dealing with domains having corners and edges consists in defining the
HABC on a regularized boundary: the sharp corners are replaced with rounded corners (see
illustration on Figure 7), avoiding the need for auxiliary conditions. Then, a HABC for curved
boundaries is used as is for computing the numerical solution on the original mesh with the
sharp corners, which obviously constitutes an approximation. The numerical curvature effect
should reproduce in a heuristic way the wave propagation at the corner.

HABC for regular curved boundaries

The Padé-type HABC derived in Section 2 is suited only for planar boundaries, since it ap-
proximates the non-local boundary condition with the DtN operator (8) which is exact only for
planar boundaries. Deriving such a DtN operator for curved boundaries is challenging. In [5],
Antoine, Barucq and Bendali have derived the first terms of an expansion of the symbol of the
DtN operator for regular curved surfaces. The first term of the expansion corresponds to the
total symbol in the planar case (with the square root), while the curvature appears in the other
terms. This expansion has been used to propose families of local ABCs for curved surfaces [3, 5],
which have been applied to finite element simulations [62]. Unfortunately, these ABCs cannot
model evanescent waves, because the square root in the first term has been approximated using
a low-order Taylor expansion [8]. To improve the accuracy of the solution, Kechroud, Antoine
and Soulaimani [48] have combined the Padé-type approximation for the square root (equation
(11)) and using few additional terms of the expansion to take curvature effects into account.
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Figure 7: Infinite wedge domain and illustration of the regularization approach.

In two dimensions, the modified HABC for a regular planar curve Γ ⊂ R2 obtained in [48]
reads

∂nu|Γ = ıκeıφ/2

[
u|Γ +

2

M

N∑
i=1

ci (u|Γ + ϕi)

]
− γ

2
u|Γ +

γ2

8(γ − ıκ)
u|Γ − ∂τ

( γ

2k2
∂τu|Γ

)
, on Γ,

(91)

with the auxiliary fields ϕi defined on Γ and governed by

∂2
ττϕi + κ2

εe
ıφ
(
(ci + e−ıφ)ϕi + (ci + 1)u|Γ

)
= 0, ∀i, on Γ, (92)

where n and τ are the coordinates in the normal and tangent directions on Γ (see Figure 7),
∂n and ∂τ are the normal and tangential derivatives, γ(τ) is the curvature, and κε = κ + ıε
is a modified wavenumber. Using the same strategy for a regular surface Γ ⊂ R3 in three
dimensions, we have the HABC

∂nu|Γ = ıκeıφ/2

[
u|Γ +

2

M

N∑
i=1

ci (u|Γ + ϕi)

]
−Hu|Γ − divΓ

( H
2k2
∇Γu

)
, on Γ, (93)

with auxiliary fields ϕi governed by

∆Γϕi + κ2
εe
ıφ
(
(ci + e−ıφ)ϕi + (ci + 1)u|Γ

)
= 0, ∀i, on Γ, (94)

where H is the mean curvature of Γ. These boundary conditions are easily incorporated in the
finite element scheme using the variational formulation described in [48] for the two-dimensional
case.

In comparison with the planar HABC, additional terms have been added in equations (91)
and (93), and an imaginary part has been added to the wavenumber in the auxiliary equations
(92) and (94). Using a complex wavenumber significantly improves the accuracy of the solution
[8], which is a very attractive strategy since there is nearly no additional cost. Optimized choices
of the imaginary damping part ε stated in [8, 30] are ε ≈ 0.4 κ1/3γ2/3 (in two dimensions) and
ε ≈ 0.4 κ1/3H2/3 (in three dimensions).

In particular cases where the boundary is straight, the curvature (or the main curvature in
three dimensions) is zero, and the HABC for straight boundaries is recovered. Let us emphasize
that, in equation (91), there is only one set of auxiliary fields, which are continuous at the
corner. By contrast, in equations (79) and (80), the auxiliary fields constitute two sets of fields,
each of them corresponding to one edge.

In the remainder, using the HABC for straight boundaries with continuous auxiliary fields at
a corner is called hard regularization of the boundary, while using the HABC with a numerical
curvature is called soft regularization of the boundary.
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Numerical curvature and numerical mean curvature

Selecting a numerical curvature γnum or a numerical mean curvature Hnum is a tricky step,
which directly impacts the accuracy of the solution. In this work, they are obtained by solving
auxiliary problems on the boundary with a finite element method, as a pre-processing operation.

In two dimensions, the curvature verifies the Frenet formula ∂τn = γt, where n(τ) and
t(τ) are the outward unit normal and the unit tangent associated with τ . First, we compute
the L2-projection of n onto (XN )2, where XN is a scalar finite element space defined on the
border of the mesh. While n is discontinuous at the corner, its L2-projection nproj is continuous.
Then, the numerical curvature is computed by solving the following variational problem: Find
γnum ∈ XN such that ∫

Γ
(γnum − t · ∂τnproj)ψ = 0, ∀ψ ∈ XN . (95)

In three dimensions, the main curvature is computed by solving weakly the formula 2H = −∇·ñ,
where ñ is an extension of the normal in a neighborhood of the surface [32]. Similarly to the
two-dimensional case, we use the following variational problem: Find Hnum ∈ XN such that∫

Γ
(2Hnum + t1 · ∂τ1nproj + t2 · ∂τ2nproj)ψ = 0, ∀ψ ∈ XN , (96)

where t1 and t2 are two perpendicular unit tangents, and τ1 and τ2 are the associated coordi-
nates. In practice, nproj, γnum and Hnum are computed by using linear basis functions on the
boundary of the mesh generated for solving the Helmholtz problem.

The numerical evaluation of curvature and mean curvature is already used for simulations
with domains having regular borders (see e.g. [1, 20, 30]). Using this approach for domains
having corners was suggested in [2, 3]. However, to the best of our knowledge, the accuracy of
the resulting schemes has never been studied. Let us mention that the curvature can also be
defined with heuristic formula (see e.g. [3, 19, 53]). In preliminary simulations, the formula we
have tested gave, at the best, the same level of accuracy as with the approach described above.
The careful comparison of these formulas is let for future works.

4.3 Numerical comparison of the corner treatments

To study and to compare the accuracy of the corner treatments for different angles, we again
use the scattering problems described in Section 3.3: the scattering of a plane wave by a disk or
a sphere. Here, we consider different computational domains having non-right corners: regular
polygons, slices of a disk, and regular polyhedra. The two-dimensional settings are shown on
Figure 8.

Polygonal truncated domains

In the first setting, a scattering disk of radius R = 1 is placed in the center of a regular
polygon, which the midradius is 1.65, as shown on Figure 8a for the hexagon case. The HABC
is prescribed on all the sides of the polygon, and the same corner treatment is used for all the
corners. The simulation parameters are the same as in Section 3.3, with N = 4 auxiliary fields
per edge and the rotating angle φ = π/3.

Snapshots of the error in the triangular case are shown on Figure 9 for the different corner
treatments: using the HABC with continuous auxiliary fields at the corners (hard regulariza-
tion), using the HABC for curved boundaries without and with the three last terms in equation
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Figure 8: Two-dimensional settings for the comparison of the corner treatments with a varying angle α.
In Figure 8a, the radius of the the dashed circle is midradius of the polygon.

(a) Reference solution (b) Sommerfeld BC at corners (c) Right-angle compatibility

(d) Hard regularization (e) Soft regularization 1 (f) Soft regularization 2

Figure 9: Error analysis for the triangular domain: analytic reference solution uref (a) and error on
the numerical solutions obtained with the approximate corner conditions (b)-(c) and the regularization
strategies (d)-(f). The soft regularization is tested without (e) and with (f) the three last terms in
equation (91).

(91) (soft regularization), using the Sommerfeld condition on the auxiliary fields at the corner,
and using the right-angle compatibility relations as an approximate treatment.
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Figure 10: Polygonal truncated domains: Relative L2-error of the numerical solution u compared to the
reference solution uref as a function of the angle α = π − 2π/Nsides for different corner treatments. The
values for α = π have been obtained with a circular domain and the exact curvature. The black line
corresponds to the relative L2-projection error.

Using the right-angle compatibility relations in this setting with a non-right angle (α = π/3
here) introduces an additional error, which is visible on Figure 9c. This error is likely due to
the corner treatment, since the error related to the HABC was negligible for a square domain
with the same simulation parameters and the same minimum distance between the scattering
object and the exterior boundary (see Section 3.3). In addition, the profile of error looks like
spurious waves generated at the corners. The error is rather similar when the Sommerfeld
condition is used at the corners. It is slightly larger with both soft regularization strategies,
and it dramatically rises with the hard regularization.

For a quantitative comparison of the corner treatments with a varying angle, the relative
L2-error of the numerical solution compared to the reference solution (74) has been computed
for polygonal domains with 3, 4, 5, 6, 8, 12 and 18 sides, and for the circular domain of radius
1.65. The relative error is plotted as a function of α for the different corner treatments on Figure
10. These results confirm that both corner conditions provide the lowest error for α = π/3. For
the right angle, the error obtained with the compatibility relations is very close to the projection
error of the exact solution, while the errors obtained with the other strategies is larger by at
least one order. When increasing α, the errors for both corner conditions rise, while those for
the regularization strategies slowly decrease. For α > 2π/3, the soft regularization with the
additional terms gives the best results. That technique always performs better than the other
regularizations, whatever the angle.

Sliced truncated domains

In order to refine the analysis, we consider the second setting, where the scattering disk is
placed inside a slice of a larger disk, as sketched on Figure 8b. The HABC is prescribed on both
straight sides of the slice, and the HABC for curved boundaries (91) is used on the exterior
circular border with the exact curvature. The compatibility relations are used at both exterior
corners, which are right, and the different corner strategies are tested on the interior corner,
with a varying angle α ∈ [π/3, π].

While the first setting allows only a discrete set of values for α, corresponding to the regular
polygons, a continued range of angles can be studied with this setting. However, the HABC
prescribed on the curved boundary generates a spurious error, caused by curvature effects, that
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(a) Re(uref) (b) Re(u− uref) (c) Re(uref·num − uref) (d) Re(u− uref·num)

Figure 11: Error analysis for the sliced domain with angle α = π/3: analytic reference solution uref

(a), error on the numerical solution u when using the approximate compatibility relations at the interior
corner (b) and error on the numerical solution uref·num computed on the whole disk (c). The difference
between both numerical solutions is shown on the last figure (d).

(a) Error versus analytic reference
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(b) Error versus numerical reference
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Figure 12: Slided truncated domains: relative L2-error on the numerical solution compared to the
analytic reference solution uref (a) and compared to the numerical reference solution uref·num (b) as a
function of the angle α with the different corner treatments. The black line corresponds to the relative
L2-projection error.

cannot be reduced simply by increasing the number of auxiliary fields. We observe this error
by comparing the snapshots of error for the numerical solutions computed on a slice (Figure
11b) and on the whole disk (Figure 11c, only the part on the slice is shown). For the latter
case, the error that is visible is due to the treatment at the curved boundary, since there is no
corner in this simulation. In order to isolate the error generated by the corner treatment, we
consider the difference between the numerical solution computed on a slice, and the reference
numerical solution computed on the whole domain. The difference shown on Figure 11d then
exhibits only a wave generated at the corner, which is similar to the one observed at the corners
of the triangular domain on Figure 9c.

The relative L2-errors on the numerical solution compared to the analytic reference solution
and to the numerical reference solution are plotted on Figure 12, with a varying angle α for
the different corner strategies. Overall, these results confirm the analysis carried out with
the polygonal domains: both corner conditions give the lowest error for α = π/3, using the
right-angle compatibility relations is the best strategy for α ∈ [π/3, 2π/3], and the second soft
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Figure 13: Three-dimensional truncated domains: relative L2-error of the numerical solution u compared
to the reference solution uref as a function of the number of faces for the different corner treatments.
The black line corresponds to the relative L2-projection error.

regularization is the best for α > 2π/3. The most difficult angles to deal with are π/3 and 2π/3,
where the level of error is approximately one order of magnitude larger than the projection error.
By contrast, for π/2 and π, the best errors are smaller than the projection error (Figure 12b).
In those cases, the best strategies actually are exact corner treatments. Nevertheless, the error
grows rapidly when moving away from these very specific angles.

Polyhedral truncated domains

For the last benchmark, we consider the scattering of a plane wave by a unit sphere placed in
the center of a regular polyhedral computational domain. The simulation has been performed
for the six Platon solids with the HABC prescribed on each face, and for a spherical domain as
a limit case. The midradius of the polyhedra and the radius of the spherical domain are equal
to 2. The numerical setting is the same as in Section 3.3, with N = 2 auxiliary fields per face
and the rotating angle φ = π/4. In all the polyhedral cases, the incident plane wave enters
in the truncated domain first by hitting an edge. The real part of the the reference scattered
field and the error are shown on Figure 14 for several cases. The setting for the cube exactly
corresponds to the one in Section 3.3.

The relative L2-error on the solution is plotted as a function of the number of faces on
Figure 13 for the different treatments: the four approximate conditions described in Section
4.1 and the regularization techniques. For the cube and the sphere, the error is very close to
the projection error when using the right-angle 3D compatibility relations and the modified
HABC with the curvature, respectively. These techniques are obviously well suited for these
limit cases. In the other cases, the approximate conditions perform better for angles closes to
π/2 (i.e. with a small number of faces), while the regularization approaches give better results
for obtuse angles (i.e. with a large number of faces).

Among the approximate conditions, the two-dimensional right-angle compatibility relations
at the edges (magenta curve on Figure 13) is the rather attractive. It gives errors similar to
those with the three-dimensional compatibility relations prescribed on the edges, whatever the
treatment at the corner (yellow curve and black crosses), for = 4, 8 and 12 faces, while it
requires less memory storage. The second soft regularization is always the best regularization
technique. This validates our approach with the modified HABC having additional terms and
a numerical computation of the curvature.
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Figure 14: Three-dimensional truncated domains: snapshots of the reference solution and the simulation
error for different domains when using the two-dimensional compatibility relations (tetrahedron and
octahedron) or the second soft regularization (icosahedron and sphere). The range of the colorbar in the
snapshots of error is set to [−0.1, 0.1] for the three polyhedra, and the one used in Figure 5 is reused for
the sphere.
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5 Conclusion

We have addressed the use of the Padé-type high-order absorbing boundary condition (HABC)
for the finite-element solution of high-frequency scattering problems with polygonal and poly-
hedral computational domains, offering geometric flexibility when choosing the shape of the
domain in application contexts. While the Padé-types HABC provides a very effective nonre-
flective treatment for domains with regular boundary, domains having corners and edges require
specific care to preserve accuracy.

In this article, two approaches for dealing with corners and edges are proposed and analyzed
with numerical benchmarks in two and three dimensions:

• The first approach is based on compatibility relations involving auxiliary fields. Being
derived for corners and edges with right angles, they provide a perfect treatment for rect-
angular and cuboid computational domains. Such relations are not available for settings
with non-right angles, but using the right-angle compatibility relations as an approximate
treatment for angles close to π/2 already provides a good accuracy.

• The second approach consists in regularizing the boundary at corners and edges, and
using a HABC for curved boundary with a numerical curvature. This artificial curvature
reproduces in a heuristic way the wave propagation at corners and edges. This approach
is very effective and overcomes the other approaches for settings with very obtuse angles
(with angles close to π).

In two dimensions, we have observed that using right-angle compatibility relations is the best
approach for angles in the range [π/3, 2π/3], and using a soft regularization with a numerical
curvature is better in the range [2π/3, π].

These approaches can be applied to deal with other physical waves, such as electromagnetic
and elastic waves for which similar Padé-type HABCs have been proposed [20, 30, 54]. They
could also be applied in the time domain: the right-angle compatibility relations have already
been tested for transient acoustics with cuboidal domains [57].

Our main perspective for this work actually concerns other kind of methods. The Padé-type
HABCs are used in acceleration techniques for solving boundary integral solvers [6, 21, 26] and in
domain de decomposition methods for parallel finite element solvers [18, 56]. The improvement
of these methods thanks to the strategies proposed here is currently investigated.
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domaines rectangulaires. Technical Report 1790, INRIA, 1992.
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