Laurent Beauregard 
  
Emmanuel Blazquez 
  
Stéphanie Lizy-Destrez 
  
OPTIMIZED TRANSFERS BETWEEN EARTH-MOON INVARIANT MANIFOLDS

Keywords: Optimization, Earth-Moon system, NRHO, Transfer, Manifolds

The future habitable space station, the Lunar Orbital Platform-Gateway (LOP-G), will, most likely, be placed in a southern L 2 Near Rectilinear Halo orbit. A significant body of work remains to be done on the design of the rendezvous procedure between Halo orbits. Given a fixed start and end Halo orbits, direct transfers between the two can produce simple strategies with short transfer time at the cost of relatively high velocity increment ∆v. When longer transfer time is allowed, as with some cargo, lower energy transfers, taking advantage the natural dynamics of the Earth-Moon system, can be used. Commonly used topological structure are the stable and unstable manifold of a given orbit. These trajectories can be used to transfer a spacecraft from one Halo orbit to another Halo orbit at a low cost. In this article, several transfer methods will be compared.

INTRODUCTION

As a successor of the International Space Station, the Lunar Orbital Platform-Gateway (LOP-G) will be a space station placed in cis-lunar space. Its will act as a scientific hub and will allow easy access to the lunar surface. The position of the LOP-G is tentatively chosen to be a L 2 southern Near Rectilinear Halo Orbit (NRHO) of the Earth-Moon system of period 6.56 days and an apoapsis altitude of 1500 km above the surface of the Moon [START_REF]Lunar outpost sustaining human space exploration by utilizing in-situ resources with a focus on propellant production[END_REF]. A significant amount of research is being done on the transfer to and from Halo orbits. One procedure involves going to an intermediate Halo orbit as part of the far approach maneuver. There is still an open question as to the best method to transfer from one Halo orbit to the other. In this article, three transfer methods will be discussed and compared for lowest total change in velocity ∆v. The first method is a quasi-static approach, used as a benchmark to provide an upper bound on the ∆v requirement. The next method will consider optimized Lambert arcs. The last method will use the stable and unstable manifold of the orbits and their intersections. While invariant manifolds have been used before for transfers [START_REF] Lizy-Destrez | Rendezvous optimization with an inhabited space station at EML2[END_REF][3] [START_REF] Gómez | Connecting orbits and invariant manifolds in the spatial restricted three-body problem[END_REF], this article will describe a procedure to obtain a one dimensional set of intersection between the manifolds along with a ∆v optimization procedure over these intersections.

CIRCULAR RESTRICTED THREE BODY PROBLEM

In the vicinity of the Earth-Moon system, it can be approximated, as a first order, that the only gravitational contributions come from the Earth and the Moon [START_REF] Szebehely | Theory of orbits. the restricted problem of three bodies[END_REF]. If the Moon is further assumed to move in a circular orbit, this is called the circular restricted three body problem (CR3PB). The orbital plane of the Moon is the x-y plane and the period of revolution is

T = 2π a 3 µ E + µ M ∼ 27.28 days (1) 
Where µ E and µ M are the standard gravitational parameter of the Earth and the Moon respectively and a is the distance between the Earth and the Moon. The origin of the frame is chosen to be the barycenter of the Earth-Moon system î, , k are units vectors in the x, y, z direction respectively. The frame is oriented such that the Earth and Moon lies on the x-axis with the Earth in the direction of -x and the Moon +x. The z-axis is defined by the direction of the rotation of the Moon ω. Its expression is given by

ω = µ E + µ M a 3 k (2) 
It is straightforward to show that the position of the Earth r E and the position of the Moon r M are

r E = - µ M µ E + µ M î , r M = µ E µ E + µ M î (3) 
The acceleration of a third massless body in this rotating frame is given by

¨ r = - µ E | r -r E | 3 ( r -r E ) - µ M | r -r M | 3 ( r -r M ) -ω × ( ω × r) -2 ω × ˙ r (4) 
where r, ˙ r and ¨ r are the vectorial position, velocity and acceleration of the massless body. The reduction to first order ODE can be done

d dt r v = F r F v (5) 
with F r = v and F v the right-hand side of equation 4 with ˙ r = v. The evolution of the state transition matrix is given by the matrix differential equation

d dt M rr M rv M vr M vv = ∂ r F r ∂ v F r ∂ r F v ∂ v F v M rr M rv M vr M vv (6) 
The data for the various orbital parameters are given in table 1 [START_REF]General mission analysis tool (GMAT)[END_REF]. The dynamical system, eq. 4, can be shown to have 5 fixed point, the Lagrange points. Three are co-linear L 1 , L 2 , L 3 and two are triangular L 4 , L 5 [START_REF] Wang | Dynamical systems, the three-body problem and space mission design[END_REF]. 

HALO ORBIT THEORY

Halo orbits start to exist as a bifurcation of the planar Lyapunov orbits associated with L 1 or L 2 . Several parametrizations of Halos exist, a common one originates from applying the Poincaré-Lindstedt method to obtain an approximation of the Halo orbit and then specifying the amplitude "A z " of the out-of-plane component and lastly applying a refinement procedure to obtain a closed orbit [START_REF] Wang | Dynamical systems, the three-body problem and space mission design[END_REF]. This parametrization suffers the drawback of being a one-way function, that is, given the points of the Halo orbit (r(t), v(t)), it is not trivial to retrieve the A z that generated this orbit. In this article, the parametrization chosen is the out of plane component of the velocity V z at the crossing of the x-y plane, i.e z = 0. This can be readily obtained from the state vector (r(t), v(t)) alone and is unique for every Halo orbit. It increases from 0 close to the planar Lyapunov to a maximum for NRHOs. Another valid parameter is the periapsis P e distance to the Moon. Figure 1 and 2 provide the relation between the commonly used variables A z , P e and V z . Up to an A z of 60000 km, there is an approximate linear relation between A z and V z described by eq. 7. The relation between the periapsis distance P e and V z is approximated by equation 8 with P e expressed in 10 3 km and

V z = 4 m/s 1000 km A z (7) 
V z is m/s V z = 1683 √ P e + 2.25 (8) 
The stability of a closed trajectory can be determined from the eigenvalues of the differential of the Poincaré map [START_REF] Lebovitz | Ordinary differential equations, chapter 9 stability ii: maps and periodic orbits[END_REF]. The real and imaginary parts of these eigenvalues for L 2 orbits are shown in figure 3. Four distinct sections of stability are identified

• Regular Halo orbit: V z = 0 to 400 m/s

• Stable/Neutral Halo orbit: V z = 400 to 450 m/s

• Regular NRHO: V z = 450 to 1150 m/s

• Stable/Neutral NRHO: V z = 1150 to 1200 m/s

QUASI-STATIC APPROACH

Two limiting cases for orbital transfers include instantaneous and infinitesimal propulsion, corresponding to the limit of infinite or zero thrust respectively. In the case of two body orbital dynamics, with central body having a standard gravitational parameter µ, the most efficient impulsive transfer between two circular co-planar orbits is a Hohmann transfer (except for some bi-elliptic transfers). The first and second impulse ∆v 1 and ∆v 2 to transfer from orbit of radius a 1 to 

∆v 1 = 2µ 1 a 1 - 1 a 1 + a 2 - µ a 1 (9) ∆v 2 = µ a 2 -2µ 1 a 2 - 1 a 1 + a 2 ( 10 
)
∆v Hoh = ∆v 1 + ∆v 2 (11) 
The limit of an infinitesimally low thrust trajectory between the two same orbit can be shown to give a total ∆v of

∆v Low = µ a 1 - µ a 2 (12) 
Conceptually and numerically, a low thrust trajectory can be obtained by a large number of Hohmann transfers of increasing radius

a 1 → ã1 → • • • → ãN → a 2 .
Expanding the difference between a low thrust trajectory and the Hohmann transfer ∆v Low -∆v Hoh as a function of the altitude difference a 2 -a 1 results in a lowest non-zero term of order of three as shown in eq. 13.

∆v Low -∆v Hoh ∼ 1 32

µ a 1 (a 2 -a 1 ) 3 a 3 1 (13) 
One can conclude that for sufficiently close orbits, the cost of a low thrust trajectory can approximated (to the third order) to a Hohmann transfer and vice-versa. This result is the basis for the following analysis.

Given a finely spaced enough sampling of the L 2 family of Halo orbits, one can perform an analogous procedure and find transfers between all adjacent orbits. Similarly to the two body dynamics, this gives an upper bound on the transfer cost ∆v between any Halo orbits, obviously at the cost of high flight time. One advantage of this approach is that at every intermediate stage of the transfer, the vehicle is in a closed orbit. The computation of the transfers is done as follow. Given two close Halo orbits, labeled A and B, and two points a and b on their respective Halo, there is always a natural candidate for the time of flight (T oF ) to go from a to b: identify the point c on A that is closest, in space, to b. A first guess to the T oF is the amount of time it takes to travel from point a to c. One then applies a Newton's method with variable v a , the initial velocity at a, to converge to b. This Newton's method is also allowed to change the time of flight. The geometry of this procedure is illustrated in figure 4.

Having three equations to solve (arriving at b) but four variables (v a and T oF ), there is still room for some optimization. While one would want to optimize the total ∆v = |∆v a | + |∆v b | with respect to the T oF , such an optimization is computationally expensive because the underlying equations are non-linear. The objective function to 

min ∆T (∆v 0 a + ∆v a ) 2 + (v * a -v b + M vv ∆v a + F v ∆T ) 2 (14) 
With the following constraint

r b = r * a + M rv ∆v a + F r ∆T (15)
where ∆v 0 a is the previous guess of the velocity increment, r * a = r(T oF ), v * a = v(T oF ) are the end point and velocity of the guessed trajectory, M rv = M rv (T oF ), M vv = M vv (T oF ), the components of the state transition matrix at the final state and F r = F r (T oF ), F v = F v (T oF ) the component of the dynamics at the final time. This problem has a unique solution

∆T = -X • Y -Z • W X 2 + Z 2 (16) ∆v a = M -1 rv (r b -r * a -F r ∆T ) (17) 
Where

X = -M -1 rv F r (18) Y = ∆v 0 a + M -1 rv (r b -r * a ) (19) 
Z = F v -M vv M -1 rv F r (20) W = v * a -v b + M vv M -1 rv (r b -r * a ) ( 21 
)
the update is T oF → T oF + ∆T and ∆v 0 a → ∆v 0 a + ∆v a . If this algorithm converges, the trajectory will have a locally minimum sum of squares of ∆v's with respect to the time of flight. The next step is to divide each orbit in N points, either separated by fixed distance in space or by fixed orbital time. The above algorithm can then be used on every possible pairs. The computational burden may be reduced by limiting the maximum time of flight. Once that is complete, the lowest value ∆v is kept. Further refinement can be done by varying the best points locally for a lower ∆v, a pattern search is employed to this effect. This local optimization provides a lower cost ∆v. Figure 6 shows the cumulative cost from one Halo orbit to another. Interestingly enough, the whole L 2 Halo family can be covered with roughly 560 m/s. All NRHOs are covered with approximately 100 m/s. This hopping procedure was done both ways, from V z : 0 → 1200 and 1200 → 0: the results are identical.

OPTIMIZED LAMBERT ARC

The Lambert problem for a dynamical system is: given two points in space r 1 , r 2 , a departure time t 1 and an arrival time t 2 find a (or all) trajectory r(t) such that r(t 1 ) = r 1 and r(t 2 ) = r 2 . Equivalently, one can solve for the initial velocity v 1 that produces the correct trajectory. For the two body problem, this problem is fully solved: given any two (noncolinear with the central body) points in space and a flight time T , there exist two unique trajectories which satisfy the Lambert problem [START_REF] Sangra | Review of lambert's problem[END_REF]. In the case of the CR3PB, this problem has no simple solution. In fact, it is unclear how many solutions the problem has or if it even has solutions at all. Putting these issues aside, several methods can be employed to find solutions to Lambert's problem. A simple method is based on the fact that for sufficiently short flight time T oF , one possible trajectory can be approximated by a line connecting r 1 and r 2 . In that case the velocity v 1 = r2-r1 T oF . One must then use a Newton's method to correct v 1 to obtain r(T oF ) = r 2 . If T oF is sufficiently short (and there is no singularly in the line between r 2 and r 1 ), this method is guaranteed to converge for the CR3PB. Next, one increases the time of flight incrementally using the initial velocity v 1 from the previous iteration, performing a Newton's method at every step, until the desired time of flight is obtained. While this method always produces a solution, the trajectory obtained often have very costly outof-plane maneuvers. Since the total ∆v should be minimized, the algorithm described in chapter 4 can sometimes be used successfully even when orbits are not close. The further the orbits are, the less likely the algorithm is to converge and produce a connecting trajectory between two points on the Halos. By considering many departure and arrival points on the starting and final orbit, it is often possible to obtain a number of trajectories and so a ∆v figure. An example of a set of trajectories are depicted in figure 7. Similarly to the quasi-static case, the trajectories can sometimes be optimized locally for lower ∆v.

MANIFOLD METHOD

Manifold generation

Given a closed orbit, one is interested in the behavior of trajectories that are close to this original orbit. The differential of the Poincaré map encodes this information [START_REF] Lebovitz | Ordinary differential equations, chapter 9 stability ii: maps and periodic orbits[END_REF]. It has 5 nontrivial eigenvalues λ i , see figure 3. Except for neutral/stable Halos, the eigenvalues follow this pattern If the unstable direction is excited, the trajectory will diverge from the original trajectory by a factor of λ each orbit. The deviation after N is related to the original deviation 0 orbit by ∼ λ N 0 . It follows that in the CR3BP, it is possible to insert into a unstable trajectory with an arbitrary small nonzero maneuver. Analogously, if a perturbation 0 is applied in the stable direction then the perturbations will be damped by a factor of λ each orbit i.e. ∼ λ N 0 hence converging to the original orbit. When orbits are propagated backward in time, their behavior are inverted; stable orbits diverge and unstable orbits converge to the original trajectory. The collection of all unstable/stable trajectories generated from a given orbit is called the unstable/stable manifold of the orbit. A method to generate all unstable trajectories is the following (for λ > 0): pick an initial perturbation 0 and a number of branches to be generated N , then the kth perturbation is given by

k = λ k/N 0 (23) for k ∈ {0, • • • , N -1}, when k = N ,
the trajectory obtained is the same as k = 0 but with an effective shift in the time variable. If λ < 0, the kth perturbation is given by

k = [λ 2 ] k/N 0 (24)
Given w u , the unstable direction, there still remains the choice of whether to apply perturbations in the direction of +w u or -w u , this choice is only relevant in the case λ > 0.

In the case of λ < 0 equation 24 covers all trajectories. In the former case, the trajectories that go away from the Moon 8 and9. The same procedure can be applied to the stable manifold with backward time propagation. The manifolds are two dimensional objects for which one possible parametrization is α and t, with = α 0 and t the propagation time.

( r u , v u ) ↔ (α u , t u ) (25) ( r s , v s ) ↔ (α s , t s ) ( 26 
)
with t u > 0 and t s < 0

Manifold Intersection

This section will be devoted to finding intersections between the unstable manifold of a departure Halo orbit A and the stable manifold of a target Halo orbit B. To begin, it is noteworthy to point the problem in a mathematical framework.

Find a set of 4 parameters α u , α u , t u , t s such that

r u = r s ( 27 
)
There are 3 equations to solve, the x,y,z components of equation 27, but 4 variables. It is expected that if there is an intersection at all, there is a whole 1 dimensional subspace, analogously to how 2 planes intersect in a line. To compute the intersection, several manifold branches are generated, typically on the order of ∼ 100. The integration time is chosen such that the trajectory are propagated far enough from the initial orbit to make sure the two manifolds intersect. Next a spline interpolation is done on the trajectory with respect to t to obtain a uniform grid in time with a resolution on the order of hours. A triangulation of the manifold must then be Once the two manifolds are triangulated, a Möller triangletriangle intersection algorithm is performed [START_REF] Moeller | A fast triangle-triangle intersection test[END_REF] to obtain a set of intersections, as shown in figure 12. The intersections being found, one must reconstruct the variables α u , t u , α s , t s , that produced these intersections. A simple linear approximation based on the triangle vertices can be employed. Given that the following 3 vertices are known, with intersection point r *

(α 1 , t 1 ) ↔ r 1 (28) (α 2 , t 2 ) ↔ r 2 (29) (α 3 , t 3 ) ↔ r 3 (30) 
The following linear approximation can be made With constants C 0 , C α , C t chosen to satisfy relation 28, 29 and 30. By simple resolution of the system (algorithmically done with a least square) one can obtain α * and t * that has r = r * . From this, velocities v * can also be obtained. As the surface is triangulated more and more finely, this approximation gets more accurate. In the case that higher accuracy is needed, a refinement procedure can be performed. As a result, a list of intersections is obtained, the one with lowest ∆v is chosen.

r = C 0 + C α α + C t t (31) 

Energy consideration

A constant of motion of the CR3PB is the Jacobi constant.

J = 1 2 v 2 - µ E | r -r E | - µ M | r -r M | - 1 2 ( ω × r) 2 (32) 
For the L 2 family the Jacobi constant has the behavior described in figure 13. It is interesting to note that the energy of the orbit reaches a plateau and then decreases. This fact will be used in case 11,12,13 and 14 of next section. 

Analysis

The comparison between the methods are shown in table 3.

The quasi-static and manifold methods are limiting cases for an infinite time of flight. For the manifold method, a finite time of flight is possible by jumping in and out of the manifold arcs. The faster one wants to achieve the transfer, the more ∆v will be paid, eventually defeating the purpose of the manifold transfer. For Lambert arcs, the time of flight is well defined and is given in the column ToF.

One fact is immediately clear: if the orbits are close then the 3 methods give essentially the same results within less than 10%. There is at least two ways the manifold method could be improved. The first is to consider very large flight time, this is because the manifolds eventually re-intersect very far away from the original orbit. This was discarded due to the flight time being too large. The other way would be to consider much higher resolution of the manifold, both in α and in t in the hope of bringing back very fine structure of the manifold which was lost during the discretization procedure.

Other than such a resolution making the intersection computation prohibitive, these solutions would be more sensitive to maneuver errors.

Where the manifold method starts to be of interest is for far Halo orbits, even though the saving is only in the order of 10%, the difference in absolute ∆v starts to be significant. Interestingly for far NRHO to NRHO, the manifold method does not give any improvement as compared to the Lambert arc. That could be due to the geometrically complicated shape of the manifolds for NRHO which may require much higher resolution than what was considered in this article.

The instance where the manifold method is clearly superior is when the transfer is done between two orbits of the same Jacobi constant. There, savings from 25% to 45% as compared to Lambert arcs are observed. This translates to a saving in ∆v that varies between 10 m/s and 65 m/s.

Conclusion

A benchmark for the cost ∆v between any two L 2 southern Halo orbits was established with the quasi-static method (fig 5). Two other methods were compared for the transfer cost ∆v between orbits: Optimized Lambert arcs and manifold intersections. The three methods results are essentially identical for orbits that are close, but differs for far orbits. The case of interest occurs when the transfer is between two orbits of same energy where substantial savings is obtained. The case of far NRHO to NRHO interestingly enough is made worse with the manifold method, higher resolution or longer transfer time may help in finding better transfers. It is concluded that the only instance where the manifold method substantially saves ∆v is when the transfers are done between orbits of similar energy.

One important improvement to consider would be to increase the degree of freedoms of the transfers; this article only considered pure unstable/stable manifolds which have two degree of freedoms per manifold (4 in total). By also exciting the central eigenspace i.e. |λ| = 1, one can increase the search space and possibly reducing the cost ∆v. The main drawback would be the doubling of the search space for intersections. Not being pure a unstable/stable manifold, they would also require at least three, potentially large, burns to perform the transfer.

Another important aspect to consider is the robustness of these solutions in an ephemeris dynamics. On one hand the notion of manifold is destroyed for ephemeris models but new dynamics of the Earth-Moon-Sun system can now be exploited.
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 556 Figure 5 depicts the differential cost d∆V dV z (22) of hopping between neighbouring orbit. Near the horizontal Halos, the cost is essentially 1 to 1. It increases and reaches a peak near V z = 200 m/s, costing 1.5 m/s of ∆v to increase V z by 1 m/s. In the NRHO family, the cost to change orbit is small.
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Table 1 .

 1 Orbital data µ E (km 3 /s 2 ) 398600.4415 µ

M (km 3 /s 2 ) 4902.8005821478 a (km) 384400

This dynamical system is often adimensionalized by choosing units for which µ E + µ M = 1 and a = 1. This implies the scale in table

2

Table 2 .

 2 Adimensionalized

unit conversion factor Time scale (s) 375190.259 Length scale (km) 384400 Velocity scale (km/s) 1.02454685531

Table 3 .

 3 Methods comparison 

	Case	V z (m/s)	A z (A) or P e (P ) (10 3 km)	Quasi-static (m/s)	Manifold (m/s)	Lambert (m/s)	ToF (hours)	Comments
		Dep.	Arr.	Dep.	Arr.					
	1	42	83	10.04A 19.98A	48.92	49.76	48.55	125.03	Close Regular Halo
	2	232.5	285	57.24A 68.50A	72.13	69.32	72.56	128.82	Close Regular Halo
	3	42	285	10.04A 68.50A	331.02	312.28	340.72	119.6	Far Regular Halo
	4	285	42	68.50A 10.04A	331.02	312.44	356.64	138.8	Backward of 4
	5	549	634.5	7.03P	4.71P	17.09	18.42	17.05	121.84	Close NRHO
	6	792.5 884.5	2.32P	1.49P	11.44	12.33	11.48	91.74	Close NRHO
	7	549	884.5	7.03P	1.49P	53.41	61.87	54	105.18	Far NRHO
	8	884.5	549	1.49P	7.03P	53.41	59.1	52.84	111.55	Backward of 7
	9	423.5 884.5 13.64P	1.49P	79.15	N/A	83.39	134.71 Neutral Halo to NRHO
	10	884.5 423.5	1.49P	13.64P	79.15	N/A	81.51	130.63	Backward of 9
	11	315.5 586.5 72.21A	5.88P	80.3	33.75	44.98	340.16	Same Jacobi constant
	12	586.5 315.5	5.88P	72.21A	80.3	33.78	54.89	293.56	Backward of 11
	13	274.5	883	66.5A	1.51P	173.05	81.71	110.11	281.95	Same Jacobi constant
	14	883	274.5	1.51P	66.5A	173.05	80.3	146.2	209.11	Backward of 13