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Abstract

Particle laden flows are of relevant interest in many industrial and natural systems. When the
carrier flow is turbulent, a striking feature is the phenomenon called preferential concentration: parti-
cles denser than the fluid have the tendency to inhomogeneously distribute in space, forming clusters
and depleted regions. We present an investigation of clustering of small water droplets in homoge-
neous and isotropic active-grid-generated turbulence. We investigate the effect of Reynolds number
(Rλ) and Stokes number (St) on particles clustering in the range Rλ ∼ 200 − 400 and St ∼ 2 − 10.
Using Voronöı diagrams, we characterize clustering level and clusters properties (geometry, typical
dimension and fractality). The exact same Voronöı analysis is then applied to investigate clustering
properties of specific topological points of the velocity field of homogeneous isotropic turbulence ob-
tained from Direct Numerical Simulations at Rλ ∼ 220 and 300. The goal is to compare clustering
properties of actual particles with those of such points in order to explore the relevance of possible
clustering mechanisms, including centrifugal effects (heavy particles sampling preferentially low vor-
ticity regions) and sweep-stick mechanisms (heavy particles preferentially sticking to low acceleration
points). Our study points toward a leading role of zero-acceleration points and sweep-stick effects, at
least for the experimental conditions considered in this study.

1 Introduction

A striking feature of turbulent flows laden with inertial particles is the so-called preferential concentration
phenomenon which leads to particles clustering with very strong inhomogeneities in the concentration
field at any scale. This has now been widely observed in many experimental and numerical configurations
including homogeneous and isotropic turbulence [19, 4, 18]. A robust result is that the concentration field
is more intermittent for particles whose Stokes number (defined as the ratio of the particle relaxation
time to the Kolmogorov viscous time) is close to unity. Aliseda and co-workers [1] have suggested that the
local enhancement of the concentration could be responsible for the measured enhancement of particles
settling velocity in turbulent flows due to collective effects. More generally preferential concentration
eventually affects the dynamics and the interactions of particles in a turbulent field, with possible impact
on important phenomena as for instance collisions, coalescence and fragmentation, phase transitions, etc.
The problem is therefore relevant both, from the fundamental aspect of particle/turbulence interaction
and also in the context of practical issues, such as rain initiation, spray dynamics, reactive dispersed
flows, etc.

The usual physical interpretation of preferential concentration of dense particles in turbulence relies
on the centrifugal expulsion of heavy particles from the core of turbulent eddies, hence concentrating the
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particles in low-vorticity regions of the carrier flow. During the past few years, Vassilicos and coworkers
proposed an alternative scenario, based on a stick-sweep mechanism [8], where particles tend to stick
preferentially to zero-acceleration points of the carrier flow with which they are then advected. Using
a simple point particle model for the particle’s equation of motion (in the limit where only the drag
term is preserved in the Maxey-Riley-Gatignol equation [10, 5]) Coleman et al. [3] have shown that the
centrifugal scenario is likely to prevail for particles with Stokes number less than unity, while sweep-stick
is expected to be dominant for Stokes number above unity.

In the present article, we address the question of the physical origin of preferential concentration of
small heavy particles in turbulence. The mechanisms described above suggest the existence of specific
correlations of particles position with prescribed regions of the carrier flow (low vorticity points in the
centrifugal scenario, or zero-acceleration points in the sweep-stick approach). Ideally, the experimental
investigation of these mechanisms would therefore require to measure simultaneously the dispersed phase
(the particles) and the continuous phase (the carrier flow), in order to access these correlations. Such
experiments are still very challenging to be achieved and very few such simultaneous measurements have
yet been attempted (the work by Poelma et al. [16] is a pioneering example of both the complexity and
the richness of such measurements). In the present study we propose a different strategy, consisting in
comparing direct numerical simulations (DNS) of the continuous phase with experimental measurements
of the dispersed phase (hence avoiding approximations intrinsic to usual numerical models for the equa-
tion of motion of inertial particles), and to compare the clustering properties of real particles in the
experiment with those of specific topological points of the flow in the DNS.

The article is organized as follows. In section 2 we describe the experimental investigation of prefer-
ential concentration of inertial particles (small water droplets) in homogeneous and isotropic turbulence
generated downstream an active grid in a wind tunnel. The details of the experiment are given before an-
alyzing clustering properties using Voronöı diagrams [2]. Main trends with Reynolds and Stokes numbers
are briefly discussed. Section 3 is then dedicated to the investigation of clustering properties of specific
points of a homogeneous and isotropic turbulent field obtained from DNS. A close comparison with the
case of actual particles in the experiment is proposed. Finally, section 4 summarizes the main findings
and draws the main conclusions of this study.

2 Experimental study: preferential concentration of inertial par-
ticles in turbulence

2.1 Experimental Setup

Experiments are conducted in a wind tunnel with a measurement section 4 m long and a square cross-
section of 0.75× 0.75 m2 (see figure 1). Turbulence is generated with an active grid made of 16 rotating
axes (eight horizontal and eight vertical) mounted with co-planar square blades. Each axis is driven by
an independent step motor with random rotation rate and direction, which are both changed randomly
in time. Active grids with such random protocols are known to produce higher turbulence levels than
classical passive grids, with still good homogeneity and isotropy properties [9, 14, 17]. The mean velocity
of the wind varies from 3.4 m/s up to 7.6 m/s, corresponding to a range of Reynolds number (based
on Taylor micro-scale) Rλ ∈ [230; 400]. Table 1 summarizes the main turbulence parameters of the flow
generated at the measurement volume location (3 m downstream the active grid) for the 6 mean wind
velocities investigated.

As inertial particles we use small water droplets generated by 36 high-pressure atomizers (distributed
on a 6x6 mesh with identical spacing than the grid) located in a transverse plane 15 cm downstream the
grid. The droplets size distribution (measured with a Spraytec diffractometer from Malvern Instruments
Ltd) is peaked around a most probable droplet diameter of the order of Dp ∼ 50 µm, but is relatively
polydisperse (the standard deviation of particles diameter is σDp ' 35µm). We have checked that this
size distribution is robust and does no depend significantly on the mean wind velocity. Particles therefore
always have a sub-Kolmogorov size (see table 1). The volume fraction of water droplets is in the range
φv = [5 · 10−5 − 2 · 10−4] (the lower the average wind velocity, the larger the volume fraction). We define
the droplets Stokes number as the ratio St = τp/τη, with τη the carrier flow dissipation scale estimated
from hot-wire anemometry (see table 1) and τp the particles viscous relaxation time estimated for the

most probable particle diameter as τp =
ρpD

2
p

18ρairν
, with ρp the particle density, ρair and ν the density and

kinematic viscosity of air at working temperature. The Stokes number can be equivalently estimated as
St = (Dp/η)2Γ/18 with η the dissipation scale of the carrier turbulence and Γ = ρp/ρair, which in the
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Figure 1: Sketch of the experimental setup.

present case (water particles carried in air) simply gives St ' 46(Dp/η)2. Therefore, as the most probable
particle diameter Dp is kept constant and does not depend on flow conditions, varying the carrier flow
Reynolds number (and hence varying the dissipation scale η) also results in a variation of the particles
Stokes number.

Particles are illuminated with a laser sheet with millimetric width. We use an 8W Copper laser pulsed
at 10 kHz. Acquisitions are performed using a Phantom V12 high speed camera operated at 10 kHz (syn-
chronized with laser pulses) and acquiring 12 bits images at a resolution of 1280 pixels × 488 pixels. The
camera is mounted with a 90 mm macro lens, giving a measurement window of 125 mm (along x)× 55 mm
(along y), though homogeneous illumination conditions (tested a posteriori during the post-processing)
were actually limited to a smaller visualization window of 70 mm in the streamwise x-direction and 50 mm
in the transverse y-direction. Therefore, the explored domain covers a significant fraction of the integral
scale of the carrier flow in each direction. Images are taken in a slight forward scattering configuration, in
order to improve the contrast of particles images. The view angle with respect to the laser sheet is then of
the order of 60◦, requiring a Scheimpflug mount to compensate the loss of depth of field. At the working
spatial resolution and repetition rate, the onboard memory of our camera (8Gb) allows to record slightly
more than 104 images (hence slightly more than one second of recording), what corresponds already to
a few integral time scales of the carrier turbulence. For each experimental configuration we acquire at
least 15 such recordings ; thus a set of more than 1.5 · 105 images are obtained for each experiment.
In the present work we only consider a subsample of about 104 statistically independent images. Par-
ticles are then detected on each image, following standard thresholding and center finding algorithms [15].

Reλ U (m/s) L (cm) η (µm) ε (m3s−3) St

234 3.4 13.0 280 .69 2.1
264 4.0 13.2 240 1.2 3.3
295 4.8 13.5 208 2.0 4.3
331 5.7 13.8 178 3.4 5.8
357 6.4 14.0 160 4.7 6.6
400 7.6 14.3 140 7.7 9.9

Table 1: Experimental parameters : Reynolds number based on Taylor microscale (Rλ), mean wind
velocity (U), energy injection scale (L), dissipation scale (η), energy dissipation rate per unit mass (ε),
Stokes number (St).

2.2 Clustering evidence

In order to diagnose and quantify the clustering properties of the inertial droplets in the grid generated
turbulence we use a Voronöı tessellation [2] analysis of particles center. This method was first introduced
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Figure 2: (a) Example of raw image of water droplets in the active grid generated turbulence. (b)
Corresponding Voronöı diagram and detected clusters.
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Figure 3: (a) Probability distribution of normalized Voronöı area V for experiments at different Reynolds
number and Stokes number. The red dashed line represents a random Poisson process (RPP) distribution.
(b) Probability distribution function, centered and reduced, of log(V) for the same experiments as in figure
(a). The black dashed line represents a Gaussian distribution.

in the field of particles in turbulence by Monchaux et al. [12, 13] who showed the relevance of this ap-
proach to investigate clustering of particles from 2D images in a laser sheet ; it was recently extended
to 3D measurements by Tagawa et al. [20]. Figure 2 shows an example of raw image of the particles in
our experiment, and its corresponding Voronöı diagram. The analysis of the statistics of the area A of
Voronöı cells (whose inverse corresponds to the local concentration of particles) has been shown to be
particularly relevant to address preferential concentration issues [13]. We follow here this approach.

Probability density functions (PDFs) of normalized Voronöı cell areas (V = A/ 〈A〉) and their standard
deviation (σV) from this same set of experiments were analyzed in a previous work by Obligado et al. [15].
The main results of this previous analysis are recalled in figures 3a&b and 4. In figure 3a the strong
deviation between the PDFs of normalized Voronöı areas of water droplets in the experiment for different
Reynolds number (colored lines), and that of a random Poisson process (RPP) reveals the preferential
concentration phenomenon: large areas (depleted regions) and small areas (concentrated regions) are
statistically over-represented for the case of inertial particles. As in Monchaux et al. it was found
that (i) Reynolds and Stokes number effects essentially influence small and highly concentrated areas
(left tail of the PDFs in figure 3a) while large and depleted areas (right tail) remain independent of
Reynolds and Stokes numbers and (ii) the centered-reduced PDFs of log (V) are well approximated by a
Gaussian distribution, suggesting that Voronöı area distributions are close to lognormal. Finally, Figure 4
shows how σV varies with the particle Stokes number St. We recall that the standard deviation of two-
dimensional Voronöı cells for a RPP can be obtained analytically, being σRPPV = 0.53. Higher values of
σV indicate the presence of clustering, and the higher σV the stronger the clustering. Figure 4 shows that
clustering in active grid experiments is significantly more intense than what was observed in previous
measurements by Monchaux et al. [12] at lower Reynolds numbers. Interestingly, though σV changes by
less than 10% over the different active grid experiments, the present data set shows a local maximum of
clustering for St ∼ 3−4 (corresponding to the experiment at Rλ ∼ 300). Although a deeper insight would
require to disentangle Stokes and Reynolds number effects, these trends are consistent with those reported
by Monchaux et al. [12] at lower Reynolds numbers. The overall effect of increasing Rλ (compared to
Monchaux et al. [12]) is clearly to increase the clustering level (quantified by σV). Hence, if we take
for instance the point at St ' 4 (corresponding to Rλ ' 300) as a reference, one would expect that
for the evolution of σV as a function of Stokes keeping constant Rλ at 300, points at the right of the
reference point (for St > 4) will be actually below the points (stars) in figure 4 (which were obtained for
larger Rλ), while points at the left of the reference point (for St < 4), will be above the points (stars) in
figure 4 (which were obtained for smaller Rλ). This is emphasized by the arrows represented in figure 4.
Therefore, it is likely that the curve representing the evolution of σV as a function of Stokes at a constant
Rλ of 300 should look more peaked than the dahed-line curve represented in figure 4 (which mixes points
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Figure 4: Evolution of the standard deviation of the normalized Voronöı area with Reynolds number. The
arrows indicate how the dashed-line curve is be expected to be changed if the Stokes number was varied
keeping Rλ constant around 300 (what corresponds in the present experiment to the point at St ' 4).

at different Rλ) with a maximum of clustering for an optimal Stokes below 4.

2.3 Clusters geometry

The previous study has confirmed the presence of clustering and its dependency both on Stokes and
Reynolds numbers. We focus now on the characterization of the geometry and the structural properties
of clusters.

Identifying clusters. This requires first to identify clusters as individual entities. We follow the
protocol proposed by Monchaux et al. [12]: normalized Voronöı areas smaller than the mean which are
over-represented compared to a RPP are defined as belonging to clusters (equivalently, Voronöı cells
larger than the mean which are over-represented compared to a RPP are defined as belonging to voids).
In other words cells whose area is below the threshold defined by the intersection Vc (see figure 3a) belong
to clusters, while cells above the intersection Vv belong to voids (see figure 3a). Clusters are then defined
as the ensembles of connected clusters with V < Vc. Figure 2b shows an example of identified clusters.
In the sequel we present the results of the statistical analysis of clusters properties (voids, which are not
discussed here present very similar geometrical properties compared to clusters, although naturally at
larger scales).

Statistics of clusters area. Figure 5a shows the PDFs of the area AC of clusters, normalized by the
average area 〈AC〉. Interestingly, all PDFs collapse onto a single curve. As Monchaux et al. [12], we find
that for large areas the PDFs of clusters area follow a power law with an exponent close to -2. However,
contrary to Monchaux et al., we do observe a clear maximum of these PDFs, with a peak around a most
probable area AmaxC ' 0.2 〈AC〉. This gives strong experimental evidence that clusters do have a typical
characteristic area, in agreement with the earlier work by Aliseda et al. [1]. We can note at this point
that the conclusion on the absence of a typical cluster size drawn by Monchaux et al. [12] was essentially
motivated by the -2 power law of the clusters area PDF (a purely algebraic PDF with a -2 exponent
does not even have a converged average). However, a closer look at figure 7a in [12] shows that the data
of Monchaux et al. is not purely algerbriac, but presents a clear concave bending for the smallest areas
of detected clusters, which is not incompatible with a maximum of clusters area PDF (of the order of a
few millimeters squared). Repeating experiments in the range of moderate Reynolds numbers explored
by Monchaux et al. may be interesting in order to clarify this point. However, the data in the range of
parameteres explored in the present work points unambiguosuly towards the existence of a typical cluster
size.

Typical size of clusters. Figure 5b shows how the mean value 〈AC〉 of clusters area varies with Rλ
(or equivalently with St, as it ought to the relation St = 46(Dp/η)2 previously discussed). The typical
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Figure 5: (a) PDFs of clusters area normalized by the mean. (b) Mean value of clusters area as a function
of Reλ. (c) Linear dimension of clusters normalized by the dissipation scale of the flow. Red circles
represent the value obtained numerically in section 3 for clusters of zero-acceleration points, the green
square is for clusters of zero-vorticity points and the magenta diamond for clusters of mean-acceleration
points.

area is found of the order of a few squared millimeters, with a minimum around Rλ = 331 (or St = 5.8),
slightly larger than the corresponding maximum for the standard deviation of Voronöı cells in figure 3c.
Figure 5c shows the typical linear dimension

√
〈AC〉 of the clusters normalized by the dissipation scale

of the carrier flow, as a function of Rλ. A typical cluster linear dimension ranging from 10η to 20η is
found. When normalized by the dissipation scale of the flow, figure 5c shows that for Rλ ≤ 350 the linear
dimension of clusters exhibits a plateau around 11η. This is in quantitative agreement with the work
by Aliseda and co-workers [1]. Working in passive grid turbulence in a wind tunnel with Rλ = 75 and
using a qualitative inspection they found that poly-dispersed water droplets form clusters with a typical
area of 10η. For the largest Reynolds numbers (and Stokes numbers) investigated here, we observe an
increase of the normalized clusters dimension (up to 20η for the experiment at Rλ ' 400). The present
data does not allow to discriminate wether this increase is a Reynolds number effect or a Stokes number
effect. A possible explanation may be related to the fact that, in terms of Stokes number, the observed
increase occurs above St & 5, hence above the optimal clustering Stokes number. The increase of the
typical cluster size, may reveal that the decrease of clustering level occurs via an expansion (and hence a
dilution) of the clusters. To better address this question, further measurements at even larger Reynolds
numbers and with the possibility to adjust the droplets size (in order to vary St and Rλ independently)
will be carried in a new campaign of experiments.

Fractality of clusters. Finally we investigate the basic fractal properties of clustering by computing
the joint histogram, for all clusters identified in a given experiment (here the experiment at Rλ ' 300,
while the others experimental sets show similar tendencies), of the clusters perimeter PC and the root
square of its area

√
AC . This plot is shown in figure 9a. The figure shows many different tendencies

but the fractional behavior of the exponent evidences the fractal nature of clusters with the presence of
several different populations. Moreover, the almost continuum range for this exponent (ranging from ∼ 2
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DNS resolution 2563 5123

ν 7.6× 10−4 3× 10−4

Rλ 220 300
Pixel (µm) 110 80

L (cm) 2.8 4.0

Table 2: Parameters of simulations: numerical viscosity ν, Rλ (estimated using the same relations than the
experimental value), grid point size in real world space and maximum lengthscale resolved in simulations.

to ∼ 3.5) evidence again the extreme complexity of this structures.

Summary. We briefly summarize here the main experimental observations of clustering properties of
inertial particles in turbulence, which will serve as elements of comparison with the numerical results
presented in the next section :

• Small inertial particles tend to cluster, with Voronöı cells areas following a quasi-lognormal distri-
bution.

• Clusters area PDFs exhibit a -2 power law for large areas and reveal a typical linear dimension of
clusters of the order of 10η.

• Clusters exhibit a complex fractal structure.

3 Numerical simulations.

As mentioned in the introduction, our main goal here is to compare clustering properties of inertial
particles in the experiment with that of specific topological points of a turbulent flow (in particular low
acceleration and low vorticity points). The turbulent velocity field is obtained from Direct Numerical
Simulations (DNS) of homogeneous isotropic turbulence. DNS has been performed using a pseudo-
spectral code, with a resolution of N = 2563 and 5123. Further details of the code can be found in [11].
In order to warrant a proper resolution of all the turbulent scales it has been checked that κη/κmax ∼ 1,
where κη = η−1 and κmax is the maximum wave number resolved in the simulations. Table 3.1 shows the
parameters of the simulations. It can be noted that Rλ the for 2563 simulation is very close to that of
the first experiment reported in table 1 while Rλ for the 5123 simulation is very close to that of the third
experiment in this same table. Comparison between numerics and experiments will therefore focus on this
two specific experimental sets. To compare experimental and numerical scales, we choose here to match
the dissipation scale of the DNS to that of this specific experiments. In this context the equivalent size
in real world of a grid point and the maximum lengthscales resolved by the simulations can be deduced.
In table 3.1 can be observed that the maximum lenghtscales resolved in simulations are in the order of a
few centimeter and slightly smaller than the integral scale in experiments.

3.1 Determination of “zero-acceleration” points.

Let consider the Eulerian acceleration field of the flow at a given time (figure 6a). We define low-
acceleration points as the set of points with an acceleration modulus below a certain threshold athresh.
Strictly speaking this defines small patches of locally low-acceleration rather than actual zero-acceleration
points. We point out though that results presented in this section have been shown to be robust to
variations of the choice of the threshold used to define low-acceleration regions (sensitivity to the choice
of threshold athresh will be briefly discussed below) or if a Newton-Raphson method is used to actually
find zeros of the acceleration field, as done in [7].

Then, considering that the thickness of the laser sheet in the experiment is of the order of 1 mm,
using the equivalent size of pixels in real world unit shown in table we consider stacks of slices of the
numerical box to reproduce artificially a plane comparable to the experimental laser sheet (figure 6b).
Zero acceleration points are then defined as the center of mass of the low acceleration patches on these
reconstructed planes (figure 6c). Once these points are identified, the standard Voronöı analysis is
performed (figure 6d).
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Figure 6: (a) Eulerian field of the modulus of the Lagrangian acceleration for a cross-section of 512× 512
pixels in the DNS at Rλ ' 300. (b) Zero-acceleration patches (defined as regions with acceleration magni-
tude below a threshold athresh = arms/10) obtained after stacking 13 consecutive planes, corresponding
to the thickness of the experimental laser sheet. (c) Zero-acceleration points obtained as the centers of
mass of the patches in figure (b). (d) Voronöı tesselation of previous image. (e) Average Voronöı area as
a function of the threshold athresh. The thresold has been taken at the very begining of the plateau.
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Figure 7: (a) Probability distribution function, centered and reduced, of log(V) obtained experimen-
tally for Rλ = 220 (black line) and numerically for zero-acceleration points (blue line), zero-vorticity
points (red line) and mean-acceleration points (green line). The red dashed dashed line represents a
Gaussian distribution. (b) Clusters area PDF obtained experimentally (black line) and numerically for
zero-acceleration points (blue line), zero-vorticity points (red line) and mean-acceleration points (green
line). The red dashed line emphasizes the asymptotic -2 power law.

The choice for the thresholding of acceleration modulus is done based on the average area 〈A〉 of
the Voronöı cells of zero-acceleration points (which is the inverse of the global concentration of zero-
acceleration points and hence directly reflects the number of zero-acceleration points detected). Figure 6e
shows the dependency of 〈A〉 as a function of the threshold value athresh. It can be seen that when a
strong criteria is employed (athresh << 1) 〈A〉 rapidly increases as very few zero-acceleration points are
detected. the graph shows a clear plateau for thresholds in the range 0.1 < athresh/arms < 0.8. We have
therefore used the minimum possible threshold within this plateau, hence taking athresh equal to 10%
of arms.

3.2 Voronöı analysis of zero-acceleration points.

Log-normality. Figures 7a and 8a shows the PDF of log(V) (centered and reduced) for the zero-
acceleration points in the DNS (blue line), for Rλ ' 220 and 300 respectively, compared to that of
inertial particles in the experiment (black line). In both cases the agreement is very good. For Rλ ' 300
The similarity between both curves is remarkable. This observation indicates that zero-acceleration points
do have a similar spatial distribution compared to inertial particles in the experiment. In particular, the
quasi-lognormal shape of the PDF of log (V) (which was shown to be a robust feature of preferential
concentration of particles [12, 15]) is well reproduced by zero-acceleration points. Even the deviations to
lognormality for the case at Rλ ' 300 are well captured.

Clusters geometry. To go further in the analysis, we investigate the geometry of clusters of zero-
acceleration points and compare them to the experimental results for particles (already presented in the
previous section). Figures 7b and 8b show the PDF of clusters area (normalized by the mean area) for
the case of zero-acceleration points in DNS (blue line) and for that of inertial particles in the experiment
(black line). Again the numerics reasonably reproduces the experimental results, specially for the lower
Rλ. Although small clusters are slightly more represented for zero acceleration points than for the
particles in the DNS at N = 5123, the algebraic tail with a −2 power law is robustly reproduced. The
most probable normalized cluster area is very well captured by clusters of zero acceleration points for the
case at Rλ ' 220, and is slightly under-estimated in the simulation at Rλ ' 300. The typical linear size
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Figure 8: Same parameters shown in figure 7 for DNS at Rλ = 300.

of zero-acceleration clusters is
√
〈AC〉 is of the order of 10η in both cases (red circle in figure 5c), hence

very close to what has been found for actual particles in the experiment (figure 5c).

Clusters fractality. Finally, we show in figure 9b the joint histograms of clusters of zero acceleration
points and the square root of their area, to be compared to figure 9a, where the same quantities are
plotted for the inertial particles in the experiment at Rλ ' 300. Both plots show similar tendencies,
and evidence the fractal structure of both kind of clusters. The results for Rλ ' 220 exhibit the same
tendencies.

3.3 Voronöı analysis of other characteristic points of the turbulent field.

In order to verify the actual relevance of zero-acceleration points to characterize clustering properties of
inertial particles, other characteristic points of the flow have been investigated in the exact same manner,
namely : the mean acceleration points (i.e. points where the acceleration is equal to the mean magnitude
acceleration) and the zero-vorticity points. The first set of points is not related to any particular known
clustering mechanisms, it is just a sort of placebo case which is not expected to have any particular relation
with the experimental results for inertial particles. The second set of points on the contrary is related to
the centrifugal mechanism, which predicts that heavy particles should explore preferentially low-vorticity
regions as they are expelled outside the turbulent vortices. Interestingly, all these characteristic points
are found to actually tend to clusterize, although clustering is significantly stronger for zero-acceleration
points than for zero-vorticity or mean-acceleration points, as evidenced by the standard deviation σV of
Voronöı cells, reported in Table 3. It can be seen in this table that for the simulation at Rλ ' 220 the
clustering for zero-vorticity points is weak, as the standard deviation of Voronöı areas is 0.57, hence only
slightly higher than the value for a random Poisson process (for which we recall σV ' 0.53). We also
note that for both Reynolds numbers considered, the experimental value of σV is much closer to that of
zero-acceleration points than to other points explored in the DNS.

Log-normality. The red and green lines in figures 7a and 8a show the centered and reduced PDFs of
log(V) for zero-vorticity and mean-acceleration points respectively. For the Rλ ' 220 case, the PDF for
zero-acceleration fits better the experimental PDF only marginally. However for Rλ ' 300 case, PFDs
for zero-vorticity points and mean-acceleration points are in clear disagreement with that of particles in
the experiment and zero-acceleration points are the only to conveniently reproduce the quasi log-normal
distribution of Voronöı areas, as well as the deviations to log-normality.
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(a) (b)

Figure 9: Joint histograms of clusters perimeter and the square root of their area obtained experimentally
for particles (a) and numerically for zero-acceleration points (b). Both figures are in logarithmic scale.

Zero-acc. Zero-vort. Mean-acc. Experiment

Rλ ' 220
σV 0.97 0.57 0.70 1.03
〈AC〉 8.5 4.5 4.5 10.5

Rλ ' 300
σV 1.19 0.76 0.77 1.11√
〈AC〉
η 10.3 8.7 16.1 11.4

Table 3: Standard deviation σV of Voronöı areas and typical linear cluster dimension (normalized by
the dissipation scale η) for three different characteristic points of the velocity field in the DNS: zero-
acceleration, mean-acceleration an zero-vorticity points. For comparison, the corresponding experimental
values for particles in the wind-tunnel at each Rλ are shown in the last column.
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Points class
|σexp

V −σnum
V |

σexp
V

Log-normality Ac PDF shape

√
〈AC〉exp−

√
〈AC〉num

√
〈AC〉exp

Rλ ' 220
Zero-acc. 6% ++ ++ 19%
Zero-vort. 45% + - 57%
Mean-acc. 32% + - 57%

Rλ ' 300

Zero-acc. 7% ++ + 10%
Zero-vort. 32% - ++ 41%
Mean-acc. 31% - - 24%

Table 4: Summary of the comparison between clustering properties of particles in experiments and the
three different classes of special points investigated in the DNS. Two qualitative criteria are shown based
on the Log-normality shape of the Voronöı areas PDFs (second column) and the ressemblance of clusters
area PDF (third) column. “++”, “+” and “-” indicate respectively “very good agreement”, “reasonable
agreement”, “poor agreement”. Two quantitative criteria are also given, based on the relative difference
between experimental and numerical values for the variance of Voronöı areas σV (first columne) and the
typical cluster size

√
〈AC〉 (last column). For each criteria, the best match between experiments and

numerics has been highlighted in gray.

Clusters geometry. Finally, red and green lines in figures 7b and 8b show the PDF of clusters area
for zero-vorticity and mean-acceleration points for the two Reynolds numbers considered. In all cases,
mean-acceleration points disagree with experimental results, with a most probable normalized cluster area
(AmaxC / 〈AC〉) either larger or smaller than what is found for particles. The typical linear dimension of
clusters of mean-acceleration points (upper triangles in figure 5c) does not match either that of particles
in the experiment. Concerning zero-vorticity points figures 7b and 8b show that the PDF of clusters area
also disagree with that of inertial particles in the experiment at Rλ ' 220, but reproduces surpringly well
that of particles in the experiment at Rλ ' 300. However the normalized linear dimension of zero-vorticity
clusters (down triangles in figure 5c) systematically underestimates that of particles in the experiment.

3.4 Summary

Table 4 summarizes the main criteria previously discussed for the comparison of clustering properties
between inertial particles in the experiment and the three different classes of special points of the carrier
flow investigated from DNS data. We consider two qualitative criteria (based on the overall shape of the
PDF of Voronöı cells areas and of the PDF of clusters area) and two quantitative criteria (based on the
relative difference between experiments and numerics of the Voronöı areas variance σV and of the typical
cluster linear dimension

√
〈AC〉.) Fractality is not shown in the table as all cases give similar fractal

behaviors and therefore this does not seem to give a discriminatory criterion. The best match between
experiments and numerics for each criterion has been highlighted in gray. It can be seen in Table 4 that,
except for the shape of the PDF of clusters area in the simulation at Rλ ' 300 (for which zero-vorticity
points give the best match), zero-acceleration points match best the experiment for all other cases. They
also give a reasonable agreement for the shape of clusters PDF at Rλ ' 300. Put all together, these
observations indicate that zero-acceleration points tend to organize in space in a very similar way as
inertial particles do (in the range of Stokes and Reynolds numbers explored here).

4 Discussion and conclusions

We have presented in this work an experimental study of clustering of inertial particles in homogeneous
isotropic turbulence at Reynolds numbers up toReλ ∼ 400, and with particles Stokes numbers in the range
[2-10]. A high level of clustering, analyzed by Voronöı tessellation analysis, has been observed. Statistics
of Voronöı areas were found to follow a quasi-lognormal distribution, in agreement with previous studies
at lower Reynolds numbers. We have identified clusters and analyzed some of their basic geometric
properties. This study has revealed the existence of a characteristic size of clusters in the order of 10η,
as well as a complex fractal structure of the clusters. Besides the simple characterization of preferential
concentration of particles in turbulence, one goal of this work concerns the possibility to discriminate
the relevance of several physical mechanisms possibly responsible for the clustering of particles, and
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more particularly the centrifugal effect (particles been expelled out of turbulent eddies) and the sweep-
stick mechanism (particles tending to stick to zero-acceleration points of the carrier turbulent field).
These two mechanisms suggest that particles tend to preferentially sample specific points of the carrier
flow, namely low vorticity points for the centrifugal effect and low acceleration points for the sweep-
stick mechanism. We have therefore investigated numerically the clustering properties of such points
in isotropic homogeneous turbulence obtained from DNS at two Reynolds numbers (Rλ ' 300 and
Rλ ' 220). This study reveals that clustering of zero-acceleration points share many similarities with that
of real particles in the experiments : (i) the quasi log-normality (including deviations to log-normality)
of Voronöı areas, (ii) clusters area PDF and typical scale and (iii) fractality are very well captured by
zero-acceleration points. It is also appealing that the value of σV (the standard deviation of Voronöı areas,
which is an indicator of clustering level) for zero-acceleration points in DNS and particles in the experiment
are very similar (as shown in table 3).

If we turn now the clustering properties of zero-vorticity points (relevant in a centrifugal scenario), our
analysis reveals less clustering similarities compared to actual particles : (i) log-normality (and deviations
from log-normality) are not well captured, (ii) clusters area PDF is well reproduced but clusters typical
scale is underestimated (by 57% and 41% for the cases at Rλ220 and Rλ300 respectively, according to
table 4), (iii) fractality is well reproduced. Besides, the clustering level of zero-vorticity points (given by
σV) is significantly less than that of the particles (45% less in the simulation at Rλ ' 220 and 32% less
in the simulation at Rλ ' 300, as shown in table 4).

As a test case, we have also considered the clustering properties of points of the carrier flow where
acceleration amplitude is equal to the mean acceleration amplitude of the flow. These points, which
are not expected to play any particular role does not reproduce satisfactorily any property of particles
clustering (except the fractality, which seems to be present for all classes of clusters we have encountered).

Our conclusion is therefore that zero-acceleration points have clustering properties which are the
closest to the particles experimentally investigated at the same Rλ. Although the observation that the
spatial distribution of these two sets of points (zero-acceleration points and real particles) share similar
statistical properties does not warrant that they actually coincide, it tends however to point toward a
dominant role of stick-sweep effects in the clustering mechanism that play in the experiment. Future
studies are planned in order to access simultaneous measurements in the experiment of both the particle
concentration field and the velocity field of the carrier field in order to actually correlate both fields
and corroborate the sweep-stick scenario. In these future studies, it will also be important to vary
independently the Reynolds and Stokes numbers, in order to explore the influence of St at fixed Rλ on
clustering level and clustering mechanisms. As suggested numerically by Vassilicos and co-workers [3]
using point particle models, centrifugal effect may be dominant for particles with St < 1 while sweep-
stick is expected to dominate for St > 1 (the case investigated in this work). Exploring such a transition
between the two mechanisms may for instance help understanding the recent experimental results by
Gibert et al. [6] who finds that the location of small and weakly inertial particles is correlated to low
vorticity/strain dominated regions of the carrier field.
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