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WELL-POSEDNESS FOR SOME NON-LINEAR DIFFUSION PROCESSES AND
RELATED PDE ON THE WASSERSTEIN SPACE

PAUL-ERIC CHAUDRU DE RAYNAL AND NOUFEL FRIKHA

ABSTRACT. In this paper, we investigate the well-posedness of the martingale problem for non-linear
stochastic differential equations (SDEs) in the sense of McKean-Vlasov under mild assumptions on the
coefficients as well as classical solutions for a class of associated linear partial differential equations
(PDEs) defined on [0,7] x R? x P2(R%), for any T > 0, P2(R?) being the Wasserstein space, that is,
the space of probability measures on R¢ with a finite second-order moment. The martingale problem is
addressed by a perturbation argument on R% x P2 (R%), for non-linear coefficients including any bounded
continuous drift and diffusion coefficient satisfying some structural assumption in the measure sense that
covers a large class of interaction. Some new well-posedness results in the strong sense also directly
stem from the previous analysis. Under additional assumptions, we then establish the existence and
smoothness of the associated density as well as Gaussian type bounds, the derivatives with respect to
the measure being understood in the sense introduced by P.-L. Lions. Finally, existence and uniqueness
for the related linear Cauchy problem with irregular terminal condition and source term among the
considered class of non-linear interaction is addressed.
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1. INTRODUCTION

In this work, we are interested in some non-linear stochastic differential equations (SDEs for short)
in the sense of McKean-Vlasov with dynamics:

(11) Xf=g+ / b, X5, [XE])ds + / (s, XE X)W, [€] € Po(RY),
0 0

driven by a g-dimensional W = (W1, ... W49) Brownian motion with coefficients b : R x R% x Pa(RY) —
R? and o : Ry x R x Po(R?) — R? @ RY. Here and throughout, we denote by [6] the law of the random
variable #. This kind of dynamics are also referred to as mean-field or McKean-Vlasov SDEs as it
describes the limiting behaviour of an individual particle evolving within a large system of particles
interacting through its empirical measure, as the size of the population grows to infinity. More generally,
the behaviour of the particle system is ruled by the so-called propagation of chaos phenomenon as
originally studied by McKean [McK67] and then investigated by Sznitman [Szn91]. Roughly speaking, it
says that if the initial conditions of a finite subset of the original system of particles become independent
of each other, as the size of the whole system grows to infinity, then the dynamics of the particles of
the finite subset synchronize and also become independent. Since the original works of Kac [Kac56]
in kinetic theory and of McKean [McK66] in non-linear parabolic partial differential equations (PDEs
for short), many authors have investigated theoretical and numerical aspects of McKean-Vlasov SDEs
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under various settings such as: well-posedness of related martingale problem, propagation of chaos and
other limit theorems, probabilistic representations to non-linear parabolic PDEs and their numerical
approximation schemes. We refer to Tanaka [Tan7§|, Gartner [G&r88], [Szn91] among others.

Well-posedness in the weak or strong sense of McKean-Vlasov SDEs have been intensively investigated
under various settings by many authors during the last decades, see e.g. Funaki [Fun84], Oelschliger
[Oel84], [Gar88], [Szn91], Jourdain [Jou97], and more recently, Li and Min [LM16], Chaudru de Raynal
[CdR15], Mishura and Veretenikov [MV1S§], Lacker [Lacl8] and Hammersley et al. [HvSI8] for a short
sample.

We here revisit the problem of the unique solvability of the SDE (IT]) by tackling the corresponding
formulation of the martingale problem. The main idea relies on Stroock & Varadhan’s [SV79] perturba-
tion argument applied on a suitable space. More precisely, we follow the methodology originally proposed
by Bass and Perkins [BP09] in the framework of non-degenerate, non-divergence and time-homogeneous
diffusion operators under the assumption that the diffusion matrix is a bounded and Hoélder continuous
function. We also refer the reader to Bass and Perkins [BP03], Menozzi [Menll] or Frikha and Li [FL17]
for some extensions of this technique in other directions. The key point in the mentioned papers consists
in performing the first step of a perturbation method for Markov semigroups, known as the parametrix
technique, such as exposed in McKean and Singer [MS67], see also Konakov and Mammen [KMO00], for
the expansion in infinite series of a transition density. In order to do this, one first has to approximate
the original system by a simple process for which the well-posedness holds and that does not depend on
the original process. This simple approximation process is usually obtained by removing the drift and
freezing the diffusion coefficient (with respect to the space variable) in the original dynamics so that
its transition density as well as its derivatives can be explicitly estimated. Finally, one crucially has to
benefit from the smoothing property of the underlying parametrix kernel, which reflects the quality of
the approximation procedure of the original dynamics. However, a direct application of this argument
to the McKean-Vlasov SDE (1)) does not work since the approximation process, obtained by removing
the drift and freezing the diffusion coefficient still depends on the original dynamics precisely through
the non-linearity induced by the law. Let us also note that a strategy consisting in freezing the measure
argument in the dynamics of the original process seems quite unclear and unreasonable since no noise is
added in the measure direction and so there is no hope to achieve a smoothing property.

Our strategy to tackle the well-posedness of the martingale problem consists in enlarging the space
on which the perturbation argument is performed in order to take into account the non-linearity. More
precisely, the underlying space in our analysis is R? x Py(R?). In this new setting, we will need a chain
rule formula for a map defined on the Wasserstein space along a flow of probability measures. The
chain rule formula that we employ here is the one established by Chassagneux & al. [CCD14], see also
Carmona and Delarue [CDI8]|, once we prove the well-posedness and the adequate smoothness of the
density of the approximation process. In comparison with the aforementioned results, our approach
allows us to deal with non linear diffusion coefficient satisfying a mild structural assumptiOIE as well as
very mild regularity hypotheses with respect to the space and measure variables, which, to the best of
our knowledge, appears to be new. Also, the smoothness assumption on the coefficient b can be weaken
to include bounded measurable (with some continuity with respect to the measure variable) drift using
some approximation argument but we do not pursue this goal here. By adding a Lispchitz continuity
assumption in space on the diffusion coefficient, we derive through usual strong uniqueness results on
linear SDE the well-posedness in the strong sense of the SDE ([L.TJ).

The well-posedness of the martingale problem then allows us to investigate in turn the regularity
properties of the transition density associated to equation (II]) and to establish some Gaussian estimates
for its derivatives. Some partial results related to the smoothing properties of McKean-Vlasov SDEs
have been obtained by Chaudru de Raynal [CdR15], Bafios [Banlg|, Crisan and McMurray [CMI17].
In [CdR15], such type of bound, under same kind of smoothness assumptions on the coefficients, have
been obtained in a regularized framework for McKean-Vlasov SDE (uniformly on the regularization
procedure) with scalar interaction only. In [Banl§|, a Bismut-Elworthy-Li formula is proved for a similar
equation under the assumption that both the drift and the diffusion matrix are continuously differentiable
with bounded Lipschitz derivatives in both variables and the diffusion matrix is uniformly elliptic. In
[CM17], using Malliavin calculus techniques, the authors proved several integration by parts formulae
for the decoupled dynamics associated to the equation (LIJ) from which stem several estimates on the

ILet us emphasize that, in this case, only the diffusion coefficient has to satisfy this structural assumption and not the
drift.
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associated density and its derivatives under smoothness of the coefficients b, o in the uniform elliptic
setting and when the initial law in (II)) is a Dirac mass.
Here, we will investigate the smoothness properties of the density of both random variables Xf and

Xy el (given by the unique associated decoupled flow once the well-posedness for (L)) has been estab-
lished) under mild regularity assumptions on the coefficients, namely b and a = oo™ are assumed to be
continuous, bounded, Holder continuous in space and a is uniformly elliptic. In this case, both the drift
and diffusion coefficients have to satisfy some structural assumption with respect to the measure variable
which guarantees that one can benefit from the smoothing property of the underlying density itself,
making the analysis more stringent than in the standard linear setting Friedman [Eri64], [Frill]. We
nevertheless emphasize that even under that structural assumption our result includes coefficients with
less than Lipschitz regularity w.r.t. the Wasserstein distance. We eventually establish some Gaussian
type estimates for both densities and their derivatives.

Finally, the previous smoothing properties of the densities enable us to investigate classical solutions
for a class of linear parabolic PDEs on the Wasserstein space, namely

(1.2) {(@ + LUt p) = f(t,x,p)  for (ta,p) € [0,T) x RY x Pa(RY),

U(T,x,p) = h(x, 1) for (z, 1) € R? x Po(RY),

where the source term f : Ry x R? x Py(R%) — R and the terminal condition h : R? x Py(RY) — R are
some given functions and the operator £; is defined by

d d
Etg(xvu) = Zbi(ta xz, M)aﬂﬂig(xa H’) + % Z ai,j(t’ Z, M)aﬂﬂuljg(‘rvu)
d | 1 d
(13) +/ Zbi(tv Zvﬂ)[a#g(xvﬂ)(z)]i + 5 Z aiyj(tv Z?M)azi [aﬂg(za ,LL)(Z)]j M(d'z)

and acts on sufficiently smooth test functions g : R? x P3(RY) — R and a = oo* is uniformly elliptic.
Though the first part of the operator appearing in the right-hand side of ([3)) is quite standard, the
second part is new and involves the derivative of the test function with respect to the measure variable
w1 in the sense introduced by P.-L. Lions in his seminal lectures at the Collége de France, see [Liol4].
We briefly present this notion of differentiation on the Wasserstein space in Section 1] together with
the chain rule formula established in [CCD14], see also Carmona and Delarue [CDIS], for the flow of
measures generated by the law of an Itd process. Classical solutions for PDEs of the form (LZ) have
already been investigated in the literature using different methods and under various settings Buckdhan
et al. [BLPRI1T] (for f =0), [CCD14] and very recently [CM17] (for f = 0). We also refer the reader to
the pedagogical paper Bensoussan et al. [BEFY17] for a discussion of the different point of views in order
to derive PDEs on the Wasserstein space and their applications.

In the classical diffusion setting, provided the coefficients b and ¢ and the terminal condition h are
smooth enough (with bounded derivatives), it is now well-known that the solution to the related linear
Kolmogorov PDE is smooth (see e. g. Krylov [Kry99]). In [BLPR17], the authors proved a similar
result in the case of the linear PDE (L2) (with f = 0) and Chassagneux et al. [CCD14] reached the
same conclusion for a non-linear version also known as the Master equation. In this sense, the solution
of the considered PDE preserves the regularity of the terminal condition. Still in the standard diffusion
setting, it is known that one can weaken the regularity assumption on h if one can benefit from the
smoothness of the underlying transition density. Indeed in this case, u(t,z) = [h(y)p(t,T,z,y) dy,
y — p(t,T,x,y) being the density of the (standard) SDE taken at time T and starting from z at time
t. However, in order to benefit from this regularizing property, one has to assume that the associated
operator L satisfies some non-degeneracy assumption. When the coefficients b, a = oo* are bounded
measurable and Holder continuous in space (uniformly in time) and if a is unformly elliptic, it is known
(see e.g. [Fri64]) that the linear Kolmogorov PDE admits a fundamental solution so that the unique
classical solution exists when the terminal condition h is not differentiable but only continuous. In the
seminal paper [Hor67], Hormander gave a sufficient condition for a second order linear Kolmogorov PDE
with smooth coefficients to be hypoelliptic. Thus, if Hérmander’s condition is satisfied then the unique
classical solution exists even if the terminal condition is not smooth. Note that this condition is known
to be nearly necessary since in the non-hypoelliptic regime, even in the case of smooth coefficients, there
exists counterexample to the regularity preservation of the terminal condition, see e.g. Hairer and al.



4 P.-E. Chaudru de Raynal and N. Frikha

[HHIT5).

The recent paper [CM17] provides the first result in this direction for the PDE ([2)) without source
term and for not differentiable terminal condition A using Malliavin calculus techniques under the as-
sumption that the time-homogeneous coefficients b, o are smooth with respect to the space and measure
variables. In particular, the function h has to belong to a certain class of (possibly non-smooth) func-
tions for which Malliavin integration by parts can be applied in order to retrieve the differentiability of
the solution in the measure direction. This kind of condition appears to be natural since one cannot
expect the solution of the PDE ([L2]) to preserve regularity in the measure variable as it is the case in
the space argument, see Example 5.1 in [CM17] for more details on this loss of regularity. Imposing our
structural assumption on the data f and h and on the coefficients b and a, we derive a theory on the
existence and uniqueness of classical solutions for the PDE (I.2]) which is analogous to the one considered
in Chapter 1 [Eri64] for linear parabolic PDEs. The drift and diffusion coefficients b and a are assumed
to be bounded, Holder continuous in space and they both satisfy together with the terminal condition
h and the source term f a structural assumption with respect to the measure argument. The central
idea behind the latter assumption, which will be pursued throughout the paper, is to be able to take
advantage of the smoothing effect of the underlying noise and thus to weaken the regularity assumptions
on the coefficients, especially with respect to the measure argument. This idea could seems strange at
first sight since there is no Brownian motion and no Laplacian acting on the measure variable in (T
and (Z). Moreover, as previously mentioned, there is no hope to take advantage of the smoothing
effect in that direction in full generality. This is the reason why we are led to consider a specific class
of law dependence, allowing to recover the spatial smoothing effect of the noise (or equivalently of the
Laplacian) in the measure direction. Fortunately, it appears that such a structural assumption is not
that restrictive in practice since it holds for a very large class of interactions considered so far in the
literature such as multiple scalar interactions, multiple order interactions, polynomials on Wasserstein
space.

The paper is organized as follows. The basic notion of differentiation on the Wasserstein space with
an emphasis on the chain rule and on the structural class of maps that will play a central role in our
analysis are presented in Section Bl The general set-up together with the assumptions and the main
results are described in Section Bl The well-posedness of the martingale problem associated to the SDE
(T is tackled in Section @l The existence and the smoothness properties of its transition density are
investigated in Section[Bl Finally, classical solutions to the Cauchy problem related to the PDE (L2) are
studied in Section 6l The proof of some useful technical results are given in Appendix.

Notations: In the following we will denote by C and K some generic positive constants that may
depend on the coefficients b and 0. We reserve the notation ¢ for constants depending on |o|s and A
(see assumption (HE) in Section B]) but not on the time horizon T. Moreover, the value of both C, K
or ¢ may eventually change from line to line.

We will denote by P(R%) the space of probability measures on R? and by P2 (R%) C P(R?) the space
of probability measures with finite second moment.

For a positive variance-covariance matrix X, the function y — ¢(X%,y) stands for the d-dimensional
Gaussian kernel with ¥ as covariance matrix g(X, z) = (27) % (det £)~ 2 exp(—3 (X712, z)). We also de-
fine the first and second order Hermite polynomials: Hi(3, z) := —(X~'); and HYY (2, ) := (2 ') (S 1z),—
(3714, 1 < i,j < d which are related to the previous Gaussian density as follows 9,,g(%,x) =
Hi{(Z,2)9(%,x), 97, ,.9(5,2) = HY? (2, 2)g(2, x). Also, when ¥ = cly, for some positive constant ¢, the
latter notation is simplified to g(c, x) := (1/(2mc))¥? exp(—|z|?/(2¢)).

One of the key inequality that will be used intensively in this work is the following: for any p,q > 0
and z € R, |x|1”e*‘7962 < (p/(2qe))P/?. As a direct consequence, we obtain the space-time inequality,

(1.4) Vp, ¢ >0, |z[Pglct,z) < CtP/2g(c't, x)

which in turn gives the standard Gaussian estimates for the first and second order derivatives of Gaussian
density, namely

| Q

. > C
(1.5) Ve >0, |Hj(ct,z)| < —g(dt,z) and |Hy’(ct,x)| < Tg(c’t,ac)

~+
Wl

for some positive constants C, ¢’. Since we will employ it quite frequently, we will often omit to mention
it explicitly at some places. We finally define the Mittag-Leffler function E, 5(2) := 3", <, 2"/T'(an+f),
z€R, a, 8>0. B
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2. PRELIMINARIES: DIFFERENTIATION ON THE WASSERSTEIN SPACE AND STRUCTURAL CLASS

2.1. Differentiation on the Wasserstein space. In this section, we present the reader with a brief
overview of the regularity notion used when working with mappings defined on P2(R?%). We refer the
reader to Lions’ seminal lectures [Liol4], to Cardaliaguet’s lectures notes [Carl3] or to Chapter 5 of
Carmona and Delarue’s monograph [CD18] for a more complete and detailed exposition. The space
Py (R?) is equipped with the 2-Wasserstein metric

Wa(p,v) = inf (/ | — y|? 7(dx, dy))
TEP (1,v) Rd x R4
where, for given u, v € Po(R?), P(u,v) denotes the set of measures on R? x R? with marginals p and v.

The strategy of Lions consists in considering the canonical lift of the real-valued function U : Po(R%) >
w — U(p) into a function U : Ly 5 Z — U(Z) = U([Z]) € R, (2, F,P) standing for an atomless
probability space, with Q a Polish space, F its Borel o-algebra, Ly := Lo (9, F, P, R%) standing for the
space of R%valued random variables defined on 2 with finite second moment and Z being a random
variable with law p. Taking advantage of the Hilbert structure of the Lo space, the function U is then
said to be differentiable at p € P2(R?) if its canonical lift U is Fréchet differentiable at some point Z such
that [Z] = p. In that case, its gradient is denoted by DU. Thanks to Riezs’ representation Theorem,
we can identify DU as an element of L2. It then turns out that DI is a random variable which is
o(Z)-measurable and given by a function DU (u)(.) from R? to R?, which depends on the law y of Z and
satisfying DU (u)(.) € L2(R%, B(R?), u; R?). Since we will work with mappings U depending on several
variables, we will adopt the notation 0,U()(.) in order to emphasize that we are taking the derivative
of the map U with respect to its measure argument. Thus, inspired by [CD18], the L-derivative (or
L-differential) of U at y is the map 8,U (u)(.) : R? 3 v+ 8,U(u)(v) € RY, satisfying DU = 8,U (n)(Z).

It is important to note that this representation holds irrespectively of the choice of the original
probability space (€, F,P). In what follows, we will only consider functions which are C!, that is,
functions for which the associated canonical lift is C! on IL2. We will also restrict our consideration to the
class of functions which are C! and for which there exists a continuous version of the mapping P2(R%) x
R > (u,v) — 9,U(p)(v) € RE Tt then appears that this version is unique. We straightforwardly
extend the above discussion to R%-valued or R? ® R%valued maps U defined on P2(R%), component by
component.

In order to perform the perturbation argument on R? x Py(R%) and to tackle the PDE (LZ) on the
Wasserstein space, we need a chain rule formula for (U(t, Yy, [X¢]))e>0, where (X;)e>0 and (Y;)i>0 are
two It6 processes defined for sake of simplicity on the same probability space (2, F,F,P) assumed to be
equipped with a right-continuous and complete filtration F = (F;)¢>0. Their dynamics are given by

t t
(2.1) Xt:XO—i—/ bsds—i—/ o5 dWs, Xo € Lo,
0 0

t t
(2.2) Y, =Yy + / Nsds + / ~vs AW
0 0

where W = (Wy)>0 is an F-adapted d-dimensional Brownian, (b¢)i>0, (7t)t>0, (01)t>0 and (y)i>0 are
F-progressively measurable processes, with values in R?, R?, R? ® R? and R%*9 respectively, satisfying
the following conditions

T

T
(2.3) VT > 0, E[/ (|b¢|* + |o¢|*) dt| < oo and P </ (Ine] + |yel?) dt < —|—oo> =1.
0 0

We now introduce two classes of functions we will work with throughout the paper.

Definition 2.1. (The space CP22([0,T] x R? x Py(R%)), for p = 0, 1) Let T > 0 and p € {0,1}. The
continuous function U : [0, T] x R% x Py (R%) is in CP»22([0, T] x R? x P2(R?)) if the following conditions
hold:
(i) For any pu € P2(R?), the mapping [0, 7] x RY 3 (t,z) — U(t,x, ) is in CP2(]0, T] x R?) and the
functions [0, T] x R? x Pa(R?) 3 (¢, 2, p) = YU (t, x, ), 0.U(t, z, ), O*U(t, z, p) are continuous.
(ii) For any (t,7) € [0, 7] x R%, the mapping P2(R?) 3 p + U(t,z, ) is continuously L-differentiable
and for any p € P2(R?), we can find a version of the mapping R? 3 v — 9,U(t,z, u)(v) such
that the mapping [0,7] x R? x Po(R?) x R? > (¢, 2, p,v) — 9,U(t,z, pn)(v) is locally bounded
and is continuous at any (¢, x, 4, v) such that v € Supp(u).
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(iii) For the version of §,U mentioned above and for any (¢, , x) in [0, 7] x R x P2(R?), the mapping
RY 3 v+ 9,U(t,x, u)(v) is continuously differentiable and its derivative 0,[0,U (¢, z, u)](v) €
R?¥4 is jointly continuous in (¢,x, u,v) at any point (¢, x, u,v) such that v € Supp(u).

Remark 2.2. We will also consider the space C1'P([0,T] x Po(R?)) for p = 1, 2, where we adequately
remove the space variable in the definition 21l We will say that U € CY1([0,7] x P2(R9)) if U is
continuous, t + U(t,u) € CH([0,T]) for any u € P2(RY), (t,u) = O;U(t, 1) being continuous and
if for any ¢ € [0,T], p — U(¢,u) is continuously L-differentiable such that we can find a version of
v = 9,U(t, pu)(v) satisfying: (¢, p,v) — 0,U(t, p)(v) is locally bounded and continuous at any (t, u, v)
satisfying v € Supp(u).

We will say that U € CH2([0,T] x Po(R)) if U € CH1([0,T] x Pa(R?)) and for the version of 9,U
previously considered, for any (¢, 1) € [0, T]x P2(R?), the mapping R? 3 v ~ 8,U (¢, 1) (v) is continuously
differentiable and its derivative 8,[0,U (¢, n)](v) € R™? is jointly continuous in (¢, u,v) at any point
(t, 1, v) such that v € Supp(p).

With the above definitions, we can now provide the chain rule formula on the Wasserstein space that
will be used intensively in our analysis.

Proposition 2.1 ([CDI§|, Proposition 5.102). Let X and Y be two Itd6 processes, with respective
dynamics (1) and ([Z2), satisfying [Z3). Assume that U € C%2([0,T] x R? x Py(R%)) in the sense of
Definition 21 such that for any compact set K C RY x Py(R?),

(2.0 s [ U@ )+ [ 100,000 s <.

(t,z,n)€[0,TIxXK

Then, P-a.s., V¢ € [0, 7], one has
t
(Y5, X)) = U0, Yo, [Xa)) + [ 0,U(s. Y. [X.]) 7. W,
0

(2.5) + /0 {8SU(S, Ys, [X]) + 0.U (s, Ys, [Xs])ms + %TT(@iU(s, Y, [XS])'yS'yZ)} ds

+ [ {BloUE Y XDE)E) + FBIr0.0.06 v XD )2 } s

where the It6 process (Xt,bt,at)0<t<T is a copy of the original process (Xi,b:,0¢)o<t<r defined on a
copy (Q ]-" ]P’) of the original probability space (2, F,P).

2.2. Structural class. In this part, we present the structural class of maps defined on Py(R%) that
will have a key role in our analysis. As we already said, assuming that the coefficients b and a belong
to this class will allow us to differentiate the density associated to a McKean-Vlasov SDE with respect
to its measure argument. Later on, this will enable us to benefit from the smoothing property of the
underlying heat kernel and thus in turn to perform the perturbation argument on RY x Py(R?) as well
as to provide a well-posedness theory for classical solutions to the related PDE (L2).

In order to foster the understanding of the main idea, let us start with a very simple example of
such a function by considering what is called a first order interaction. To be more specific, a function
h: P2(RY) — R satisfies a first order interaction if it is of following form

o = [ Rz)a(dz).

for some measurable function h : RY — R. Recalling the definition of L-derivative, one immediately sees
that 9,h(p)(v) = 0 ,h(v) so that the function h is, in full generality, differentiable if and only if A is
differentiable. It is hence clear that, if one considers the SDE (1) with d = ¢=1,b=0and o =0, one
cannot expect the map p — h([X g]) to be differentiable without assuming that % is smooth.

Assuming now that o > 0, let us show how the spatial random perturbation of X%g =&+ o(Wp —Wy)
by the Brownian motion (which is assumed to be independent of &) allows to regularize such a map h
through h. Let us assume for sake of simplicity that h is bounded. Setting for simplicity O (¢, u)(dz) :=
[th dz) = [g(a(  Z = ac) u(dr)dz, a = o2, by Fubini’s theorem, we have that h(O(t,pu)) =
[ h(z)O(t, u)(dz) ffh —t),z —x)p(dz)dz = [ [h(z)g(a(T —t),z — x)dz p(dz) so that
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w— h(O(t, p)) is now smooth with derivatives:

8, h(O(t, 1) [// T—1t),z—x) dzu(dw)] (v)

_a, Uh(z)g( (T 1), z—v)dz]
— /E(z) (—H1.9)(a(T —t), 2 — v) dz.

The crucial point here is that the map © : [0,7] x Po(R?) > (¢, ) = O(t, u) € P2(R?) is smooth
and that the linearity with respect to the variable p of h allows to transfer the L-derivative on h to
O(t, u) which in turn reads as a space derivative on the underlying Gaussian kernel. Note that the map
[0,T) >t — h(O(t, 1)) is also differentiable with

O:h(O( // —8),z —x)dz p(dx) -

:—a// Yorg(a(T — t), z — x) dz p(dx)
:7_// ) (Ha.g)(a(T — 1),  — x) dz p(dz).

Such a property naturally leads to the following general definition for our class of coefficients.

Definition 2.3. [Class of functions (CS) and (CS.)] A map h : Po(R?) — R is in the class (CS) if for
any T > 0, for any mapping (t,z, u) + p(u,t, T, x,2) € CL22([0,T) x R? x Po(R?)), 2+ p(u,t,T, z, 2)
being a density function, such that (p(u,t, T, ., 2)iu)dz € Pe(R?) and for any compact set K C [0,T) x
Pa(R?) x (RY)2, for any n = 0,1,
(2.6) / sup  {107p(p,t, Tz, 2)| + | Oat"p(p,t, T\, z)| + 100 [0,p(p, t, T, z, 2)] ()|} dz < oo,
(t,p,x,0)EL
denoting by O(t, 1) : [0, T)xPa(RY) 3 (£, 1) > O(t, 1) (dz) € Pa(R) with ©(t, 1)(d2) = (p(ss 1, T,  2)t) (d2) =
Jga (s t, T, x, z)pu(dx) dz, one has:
o the map [0,7) x Pa(RY) 3 (t,1) > A(O(t, 1)) € CV2([0,T) x Py(RY),
e the Lions and time derivatives satisfy for n = 0, 1:

AP0, h(O(t, w))](v) = a7 [au [ / h(z,0(t, 1)) O(t, v)(dz)} |u:;j (v)
@) =0; (o[ [ [z 00t.)pt,T.2.2) de ()] ]
B h(O(t, 1)) = s [/Tz(z,e(t,u» O(s, v)(dZ)} ot
28) = 0.[ [ Rz 0t plus. T2 dzplde)]

for some bounded continuous function % : R% x Py(R%) — R.
We will say that the map h is in the class (CSy) if h is in (CS) and the two following conditions
(CS.)1 and (CSy)q are satisfied:

(CS4)1 The map z — h(z, p) is n-Holder continuous, for some 7 € (0, 1], with modulus denoted by [/]
uniformly with respect to u.

(CS, )2 There exists a map H : (R%)2 x (Py(R%)2 — RN, for some positive integer N, such that
2 H (z,2', p,v) is n-Holder continuous, with modulus denoted by [I;' ]z, uniformly with respect
to the other variables and satisfying:

(2.9) V(2 0,v) € RYx (PoRY)?, [z, ) = Bz )| < | / H(z, 2 v, 1) (v — p)(d2")].

Remark 2.4. o Importantly, we note that the above definition does not impose any smoothness as-
sumption on the function h but rather a structure on the derivative (when it exists) along a smooth
flow (t, 1) — O(t, 1) of probability measures of P2(RY). As already said, in what follows, the map
O will be the one generated by the unique weak solution of an SDE of the form (), that is, one
is interested in the smoothness of [0,T) x Pa(R%) 3 (£, 1) — h([X%]) so that we will often consider

0 :[0,T) x Pa(RY) 3 (, 1) — [X15] € Py(RY).
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o For functions h : Po(R%) — R% and h : Py (Rd) — R4 we will straightforwardly extend the above
definition to each component and still denote h : R% x Py (Rd) — R and h: RY x Py (RY) — R4 the
corresponding maps.

o Finally, when a function h belonging to the class (CS) or (CSy) does depend on other variables,
it is implicitly assumed that the continuity as well as the Holder regularity property stated in Definition
hold uniformly. For example, if one assumes that Po(RY) > pu +— a(t,z,u) € R¥ is in the class
(CS.) then the corresponding map z — a(t,z, z, i) appearing in conditions ([27) and (Z8)) is assumed
to be 7-Hélder, with modulus denoted by [a]s, unlformly with respect to (¢, z, 1) € Ry x R? x Py(R?).
The same remark holds for the map 2’ — A(t x,z,2',v, u) appearing in the condition (Z9) and we will
denote by [A]p its Holder modulus. In what follows, we will also denote by b and B (and by [b]g, [Bla
their Holder modulus) the two maps appearing respectively in the conditions (Z7), [2) and ([ZQI) as
soon as one assumes that p — b(t,z, 1) is in (CS) or (CS4).

Typical examples of functions in the classes (CS) and (CS.).

Let us illustrate this definition by giving some explicits examples of functions belonging to the classes
(CS) and (CSy). In the following, h denotes a map from Po(R?) to R. We can straightforwardly
consider their multidimensional version by applying the above remark.

(1) First order interaction belongs to (CS). We say that h satisfies a first order interaction if it is of
following form: for some bounded continuous function A : R — R, one has

h(p) = /ﬁ(y)u(dy)-

(2) N order interaction belongs to (CS). We say that h satisfies an N order interaction if it is of
following form: for some bounded continuous h : RN — R, one has

1) =/---/7L(y1,--- yyn) pldyn) - - p(dyn).-

(3) Polynomials on the Wasserstein space belong to (CS). We say that a function f is a polynomial
on the Wasserstein space if there exist some real-valued bounded continuous functions hq, - -+ , hy

defined on R? such that
N
() = [T [ hitenta
i=1

(4) Scalar interaction belongs to (CS). We say that a function h satisfies a scalar interaction if
there exist a continuously differentiable real-valued function h defined on RY as well as some
real-valued bounded continuous functions k1, - - - , hx defined on R? such that

) = ([ Tat uta) - [ ixnian).

(5) Sum, product and more generally any smooth composition of N order interactions, polynomials
on Wasserstein space or scalar interaction belong to (CS).

Any N order interactions as described in (1) — (2) with bounded n—Holder continuous functions h; any
polynomial in Wasserstein space as described in (3) with bounded n—Hoélder continuous hiyi=1,---,N
as well as any sum, product or smooth function of these two classes under the aforementioned assumptions
belong to the class (CSy). For the scalar interaction case, if h has a Lipschitz-continuous derivative
and if each h;, i = 1,--- , N, are bounded 7-Ho6lder continuous functions, then the function f belongs to
(CS4).

For the sake of completeness, let us prove the above statement in the case of first order interaction.
Similar arguments can be employed for the other aforementioned examples and we therefore leave to the
reader the task of writing the remaining technical details for each one of them.

We thus consider a map (t,x,u) — p(u,t,T,z,2) € CH>2([0,T) x R? x Py(R?)) satisfying the
conditions of Definition IZZI for any fixed T > 0 and denote O(t, u)(dz) = [p(p,t,T,z,z)p(dz)dz.
By Fubini’s theorem, h(© = [ [ h(z)p(u,t,T,z,z)dzpu(dz). We start by proving that (¢, u)
h(©(t, 1)) is continuous on [O T) x Pa(R?). Let (tns pin)n>1 be a sequence of [0,T) x P2(RY) satisfying
lim,, |t —t| = lim,, Wa(in, ) = 0. We decompose the difference [ h(2)p(tin,tn, T, x, 2) dz pin (dz) —
[ h(2)p(u,t, T, x,2) dz p(dzr) as the sum of two terms, namely

n;f// Pt tn, Ty 2, 2) d2 (ptn—p) (d n:f// Pt tn, Ty, 2)—p(p,t, T, 2, 2)) dzp(de)
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and prove that each term goes to zero as n 1 co. Let us note that from condition (Z6]) and Lebesgue’s
dominated convergence theorem, one directly gets lim,, II,, = 0. In order to prove that lim, I, = 0, we
decompose I,, as the sum of two terms namely

e [ [ Rt T, d ) 2 [ [ bt T,2) e (1) ) 10 )

where 7 is a non-negative smooth cutoff function such that nr(r) = 1 for |z| < R and nr(x) = 0 for |z| >
2R, with R > 0. The uniform continuity of the map K x Bag 3 (¢, u, ) — [ h(2)p(p,t, T, x, 2) dzngr(z),
K being a compact set of [0,T) x P (Rd) and Bog being the closed ball of radius R around the origin,
implies that the family of maps { [ h(2)p(p,t,T,x,2)dznr(z), (t, 1) € K} is equicontinuous and (20)
implies its boundedness. By weak convergence of (Hn)nZh we thus deduce

i sup | [ [ R T . 2) d2ne) (o~ )] =0

o (t,u)eK

so that lim,, I,ll = 0. From the boundedness of h and the weak convergence of (i )n>1, we also obtain
limsup,, [I7]| < [Aloc(limsup, [, 505 #n(d2) + [, 150 1(dT)) < 2|hlo [, 505 #(dz) so that by letting
R goes to infinity in the previous inequality we deduce lim, 12 = 0. We thus conclude that (t,u) —
h(O(t, 1)) is continuous on [0,T) x Pa(R9).

Moreover, from condition (2.6, by Fubini’s and Lebesgue’s differentiation theorems, one deduces that
p— [ h(z)p(p,t,T,x,2)dz p(dr) is differentiable at any fixed u € Po(R?) with

0] [ [ Rt t..2) ) d2] )
:ay / / E(z)p(mt,x,z)dzy(dz)} L +a / / p(u,t, T, z, z)dzz/(dx)L:#(v)

// Oup(pst, T, 2) (v )dzﬂ(dz)Jr/i_l(z)azp(u,t,T,v,z) dz.

In order to prove that each term appearing in the right-hand side of the previous expression is globally
continuous w.r.t ¢, i, v, one proceeds as previously done by considering a sequence (£, fin, U )n>1 cOnverg-
ing to (t u, v) € [0,T)xP2(R%) xR?. By dominated convergence, one obtains limy, [ 2(2)0:p(pin, tn, Ty vn, 2) dz =
f h O:p(,t, T, v, z) dz. Employing the previous decomposition using the cutoff function nr and the
contlnulty of (t,x, u,v) — aup(,u, t,T,z,z)(v) as well as condition (28], one proves in a completely anal-
ogous manner that Um [ [ h(2)0up(fin, tn, T2, 2)(vn) dz pn(dz) = [ [ h(2)0up(p,t, T, x, 2)(v) dz p(dx).
Still, from the previous expression, using again Lebesgue S dlfferentlatlon theorem under condition (2.6]),
one deduces that the mapping R? > v — 9, [[ [ h(2)p(i, t, , 2) p(dz) dz] (v) is continuously differen-
tiable with derivative

o / / Bp(p. 2, 2) () ]| / / 10,up(s1, £, T, 2, 2)] (v) dz p(der)+ / R(2)02p(u,t, T, v, 2) d

and the joint continuity of the previous expression in (¢, z, 4, v) € [0, T) xR x Py (R?) x R? stems from sim-

ilar lines of reasonings as those employed before. Finally, one also obtains that ¢ — [ [ h(2)p(p,t,z, z) p(dz) dz
is continuously differentiable on [0,7") with derivative [ [ h(2)0ip(u,t,,z) p(dx)dz being jointly con-
tinuous in (¢, ). We thus conclude that (¢, ) — h(0(t, n)) € CL2([0,T) x P2(R%)) so that h belongs to
(CS) after noting that h(z,u) = h(z) for any (z, 1) € R% x Py(R?). Once again a similar analysis can

be performed for each of the aforementioned examples which demonstrates that both classes (CS) and
(CS.) cover a large class of non-linear interaction.

To conclude we again emphasize that the main advantage of our class of coefficients is to be able to
take advantage of the usual smoothing effect of Gaussian-like kernels. We will intensively exploit this
property to establish our regularity results for the density associated to solutions of McKean-Vlasov
SDEs. We end this section with a simple result that illustrates this central idea.

Lemma 2.1. Let X%E be an R?-valued random variable with density function z +— p(u,t,T,z) =
Jpa (s t, T, z, z) p(dx) such that [0,T) x R? x Py(RY) > (¢, , 1) = p(u,t, T, x, z) satisfies the conditions
of Definition (Z3]).
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Then, for any h in (CS), the derivatives of the map (t, u) — h([X5%]) € C12([0,T) x Pa(RY)) admit
the following representations

O3 0D = [ e, X)) — Rto. (XG0 p(0,t, T2 0,2)
(2.10) n / / oz, (X)) — T, [XEE)]O0 Byppis £, T, 2, 2)](0) dz u(d), m = 0,1,

@2.11)  Fh([X5E) // XEE]) — o, (X)) Buplpast, T, 2) dz u(de).

Proof. Tt suffices to notice that from the key relation (21), by Fubini’s and Lebesgue’s differentiation
theorems, for any vy € R%, one has

an [a h((XE f])} // XS (1, t, T, 2) v(da) dzLV:H
=3[0 { / / JXHE)) u,t,T,x,z)dzu(dx)} |U_J(u)
+ a” U/ (v,t, T, z, 2) dzu(das)} lw] (v)
=0z [ou[ [ [ X)) ~ B, XED oo, .7, 2) devld)]
+ 0z / / XES]) = Rl [XEEDIp(v,t, T, 2) dz u(der)
+or[o,| / / h(vo,[Xgﬁ])p(u,t,T,x,z)dw(dm)}lu:u} (v)

+ 3” // (v, t,T,x,2)dz u(daz)} IV:u] (v)
= [ e D50) = Rewon XG0 b0 8.0, 2)

lv=p

/ / JXEED) = Bl [XED0; 0up(n,t, T, 2)](0) d2 ()

where we used the fact that the last two terms appearing in the last but one equality are 0 since
z = p(u, s,t,x, ) is a density function. The identity (Z10) then follows by taking vy = v in the previous
identity. The relation (ZII) for the time derivative 8;h([X7 £]) follows from a similar argument and
technical details are omitted.

O

The two representation formulas (ZI0) and (ZII) are crucial for the analysis of the smoothness
properties of densities associated to McKean-Vlasov SDEs. Indeed, under the additional assumption
that h belongs to (CS4) and if (¢, u, ) — p(p,t,x,z) as well as its derivatives satisfy Gaussian-type
bounds, they allow thanks to the n-Holder regularity of h and the space-time inequality (L4 to match
the diagonal regime of the underlying heat kernel and to benefit from the so-called smoothing property
of Gaussian kernels. At this stage, we stop from elaborating on this important idea and postpone the
discussion to the appropriate place.

3. OVERVIEW, ASSUMPTIONS AND MAIN RESULTS

3.1. On the well-posedness of the martingale problem related to the SDE (LI)). We first
present the martingale problem associated to equation (LTI).

Definition 3.1. Let u € P(R?). We say that the probability measure P on the canonical space
C([0,00),R?) (endowed with the canonical filtration (F;);>0) with time marginals (P(¢));>0, solves the
non-linear martingale problem associated to the SDE (1) with initial distribution p at time 0 if the
canonical process (y;)¢>0 satisfies the following two conditions:

(i) P(yo €T) = u(I), T € B(R?).

(ii) For all f € C2(R?), the process

d

B s~ - [ Zb 0 P)De [ (1) + 5 D 5,00, P)OF, o, F(02) b ds

4,J=1
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is a square integrable martingale under P.

Remark 3.2. A similar definition holds by letting the canonical process starts from time ¢y with initial
distribution p, in which case we say that the initial condition is (to, ) and (#) is replaced by the condition:
P(y(s) e T;0 < s < tg) = u(T).

Having this definition at hand we now introduce some assumptions on the coefficients:

(HC) The drift coefficient b : [0,00) x R x P(RY) — R? and diffusion coefficient o : [0, 00) x
R? x P(R?) — R? ® RY are bounded and continuous functions, in the following sense: for
all (i,§) € {1, ,d}, for all p € P(RY)

bi(t,z,p) = lm  bi(s,y,p), aii(t,z,pn)= lim a;;(s,vy,
(b p) =  Mm bilsyp), altep) = i Cai(s,yp)
and, for all u € P(R?), for any T, R > 0,

lim Sup |bl(t5$au) _bi(t,.’I],l/)| =0,

(V)10 0<t<T |2|<R
lim sup |aij(t, 2, p1) — aij(t, @, v)[ =0
()0 0<t<T,|z|<R
where 7 is the Lévy-Prokhorov metric on P(R?).
(HR) (i) The function R? > 2 + a(t,z,u) € RY ® R? is uniformly n-Hélder continuous for some
n € (0,1], that is,
|a’(t7 €L, M) — a’(ta Y, /L>|

[a]g = sup < 00
t>0, z#y, pEP2(RY) |$ - y|”7

(ii) There exists a function A : Ry x (R%)? x (P2(R%))? — RY, for some positive integer IV, such
that for every (¢,z,v, 1) € Ry x R% x (P2(R%))? the function z — A(t,z, z, v, 1) is n-Hélder
continuous, with modulus denoted by [A]y, for some n € (0, 1], uniformly with respect to
the other variables and satisfying: for all ¢ > 0, for all (z,v, u) € R? x (P2 (R9))?

s (t,,0) = ass(t,2,0)| < | [ At 00000 = ()],
%,

(HE) The diffusion coefficient is uniformly elliptic, that is, there exists A > 1 such that for every
(t,p) € [0,00) x P(R?) and (x,€) € (R, ATHEP < (alt,, p)€, &) < M€ where a(t,z, p) =
(co*)(t, z, ).

Our first main result concerns the well-posedness of the martingale problem associated to the SDE
(1.

Theorem 3.3. Under (HC), (HR), (HE) and assuming that P2(R%) > u + a(t, z, u) € R?*? belongs
to the class (CS. ), the martingale problem associated with (L)) is well-posed for any initial distribution
p € P2(R9). In particular, weak uniqueness in law holds for the SDE (..

When investigating strong well-posedness of non-linear SDE an interesting fact is that, combining
uniqueness in law for the non-linear SDE together with strong uniqueness result for the associated linear
SDE, i.e. the same SDE with time inhomogeneous coefficients, the law argument being now treated as
a time-inhomogeneity, immediately yields to strong uniqueness. To be more specific, from the previous
well-posedness result we have that any strong solution Y of the SDE (1)) (if it exists) writes

(32) Vimgs [ 0o,V XEs + [ ot vo (XSS, 6 € Pa(R)

implying that, setting b : RT x RY 3 (¢,) — b(t,y,[X5]) € R and & : RT x R 5 (t,y) = 5(t, y, [XE]) €
R? x R?, it solves

o~

(3.3) Yi—e+ / b(s, Ya)ds + / 5(s, Y. )dW,, (€] € Pa(RY),

But this linear SDE is well posed in the strong sense under the additional assumption that the diffusion
coefficient & is Lipschitz in space (see [Ver80]). Hence, any strong solutions of [B2) are equals P-a.s.
so that strong well-posedness follows from the Yamada-Watanabe theorem. This gives the following
corollary.
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Corollary 3.4. Suppose that assumptions (HC), (HR), (HE) hold and that P2(R%) > > a(t,z,p) €
R? ® RY belongs to the class (CSy ). Assume moreover that for all (t,u) in RY x Po(R?) the mapping
x — o(t,x, ) is Lispchitz continuous uniformly with respect to t and p. Then, strong uniqueness holds

for the SDE ().
Here are some examples for which our weak and strong uniqueness results apply.

Example 3.5. (First order interaction) We consider the following non-linear SDE with coefficients
b:Ry x (RY)? - R% and 0 : Ry x (RY)? — RY @ R

(3.4) X5 = g+/tﬁ[b(s,xg,)2§)]ds+/t1ﬁ[a(s,xg,)?§)]dws, [€] € Po(RY).
0 0

where the process ()?f)tzo is a copy of (Xf)tzo defined on a copy ((~2,}~', P) of the original probability
space (Q, F,P).

Assume that the functions b and o are bounded continuous functions; assume that (z,z) — o(¢, x, z)
is n-Holder continuous uniformly with respect to ¢ and that ([ o(¢, 2, z)u(dz))([ o(t,z, z)pu(dz))* is uni-
formly elliptic, uniformly with respect to the variables ¢, z, u.

Then, assumptions of Theorem B3 are fulfilled and ([B.4]) is well posed in the weak sense. If in addition
x — o(t,x, z) is Lipschitz continuous uniformly with respect to ¢t and z then assumptions of Corollary
B4 are satisfied and strong well posedness holds for (3.4).

An approximation argument that we do not detail here allows to handle the case of a bounded
measurable drift function (¢, x, z) — b(t, x, z) for both strong and weak well-posedness.

Example 3.6. (N order interaction) For some positive integer N, we consider the following non-linear
SDE with coefficients b : Ry x (R)N+L 5 R? and o : Ry x (R)N+L 5 RIx4:

t t
(35) Xf :§+/ E[b(57X§7X§7(1)7 ,XS&’(N))]dS+/ E[U(57X§7X§7(1)5 ,XS&’(N))]dW&
0 0

with [¢] € P2(R?) and where the processes {(Xf’(i))tzo, 1<i< N} are mutually independent copies of

the process (Xf)tzo defined on a copy (ﬁ, ]?, I@) of the original probability space (2, F,P).

Assume that b and o are bounded and continuous functions. Assume that (z,z) — o(t,z,z) is 7-
Holder continuous uniformly with respect to ¢, denoting by upy is the N-fold product measure of u,
that a(t,z,p) = ([o(t,z,2) pn(dz))([ o(t,x, z) pn(dz))* is uniformly elliptic, uniformly w.r.t to the
variables ¢, x, .

Then, assumptions of Theorem B3] are fulfilled and the SDE (IT]) is well posed in the weak sense.
If in addition = — o(t, z, z) is Lipschitz continuous uniformly with respect to ¢ and z, assumptions of
Corollary B4 are satisfied and strong well-posedness holds.

Again, an approximation argument that we do not detail here allows to handle the case of a bounded
measurable drift function (¢, x, z) — b(¢, x, z) for both weak and strong well-posedness.

Example 3.7. (Scalar interaction(s)) For some N > 0, for maps 1,01 -+ ,¥n, on : RY — R, we
consider the following non-linear SDE with coefficients b : Ry x R? x RN — R? and o : R, x R x RV —
R? @ RY:

XE=e [ 0o XERIARD] - ELow(RE)] s

39) [ o5 XS Bl (RO, Elow(R] ),

with [¢] € P2(R?) and where the process (X5);sq is a copy of (X5, defined on a copy (€2, F,P) of the
original probability space (2, F,P).

Assume that 91,1, -+ ,¥N, pn are bounded continuous functions such that each ¢;, i =1,--- | N,
is n-Holder continuous for some 1 € (0,1] and that b is a bounded and continuous function. Suppose
that o is a measurable map such that a = oo™ is bounded and continuous and satisfies: = — a(t,z, z)
is n-Hoélder continuous uniformly with respect to ¢ and z; z — a; (¢, z, z) is continuously differentiable
with a bounded derivative for 1 < 4,j < d; z — 0,,a,,(t,x,z) is Lipschitz-continuous, uniformly with
respect to the other variables for all (i,75, k) € {1, -- ,d}2 x {1,---, N}; there exists A > 1 such that for
all (t,u,7,2) € Ry x (RY)2 x RN, A7 |ul? < {a(t, z, 2)u, u) < Aul?.

Then, assumptions of Theorem B3] are fulfilled and the SDE (I.1]) is well posed in the weak sense. If
in addition = — o(t, z, z) is Lipschitz continuous, assumptions of Corollary B4l are satisfied and strong
well posedness holds.
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Finally, an approximation argument exposed in Remark[Z.T] (for sake of simplicity in the one-dimensional
setting d = ¢ = N = 1) allows to establish weak uniqueness under the following weaker assumption:
(t,x,z) = b(t, x, z) and a are bounded and continuous functions, v, is bounded measurable, z — o (¢, , 2)
and ¢ are n-Holder, z + o(t,x, 2) is continuously differentiable with a bounded derivative and o2 is
uniformly elliptic.

Example 3.8. (Polynomials on the Wasserstein space) We consider the following scalar non-linear SDE
t N ~ t N _

(37 Xp = §+/ HE[w(t,Xf,Xf)}dH/ [TE[ei(t. X85 XE)|aws, 1€ € PR,
0 =1 0 =1

where 11, 1 -+ ,¥n, on : Ri x R?2 = R and where the process (Xf%zo is a copy of (Xf)tzo defined on
a copy (ﬁ, F,P) of the original probability space (Q, F,P).

Assume that ¥1,¢1, -+ ,¥nN, Ny are bounded continuous functions and that the functions ¢;, i =
1,---, N are n-Holder continuous in space (uniformly in time) for some n € (0,1]. Assume for sake
of simplicity that there exists A > 0 such that, for any i € {1,---,N}, for all (t,z,z) € Ry x R?
A< itz 2).

Then, assumptions of Theorem [B3] are fulfilled and the SDE (I.1]) is well posed in the weak sense. If
in addition, each x — Hfil [ #i(t,z, z)pu(dz) is Lipschitz continuous uniformly with respect to ¢ and g,
assumptions of Corollary B4 are satisfied and strong well posedness holds.

A multi-dimensional version of [B7) can be described as follows. We consider functions ¢; : Ry X
(R%)? — R%-1 @ R%, 4 =1,--- , N, for some positive integers qo, - - , qn satisfying go = d and ¢y = q,
where each (z,2) — @;(t,x,2) is a bounded and n-Ho6lder continuous (uniformly with respect to t)
function. For sake of simplicity, assume that each a;(t,x, n) == ([ @i(t, 2, 2)u(d2)) ([ @i(t, z, z)p(dz))*,
i=1,---, N, is uniformly elliptic so that a(t,z, u) := ([Tr, [ wi(t,x, 2)u(d2))([1, [ @i(t, 2, z)u(dz))*
is also uniformly elliptic.

Then, (¢, x, ) — b(t, x, 1), with b; (¢, x, ) := vazl itz z)p(dz), j=1,--- ,d, each 9; ; : Ry x
(R9)2 — R being a bounded and continuous function, and (, z, u) + o (t,y, p) := vazl [ pi(t,z, z)u(dz)
satisfy (HC), (HR), (HE) and p — a(t, z, 1) belongs to (CS4). Hence, the SDE (1)) is well-posed in
the weak sense. If in addition, each x — Hfil f ©i(t, z, z)pu(dz) is Lipschitz continuous, then assumptions
of Corollary (3.4) are satisfied and strong well posedness holds.

3.2. On the density of the solution of the SDE (1)) and its regularity properties. Under the
assumption of Theorem B3] by weak uniqueness, the law of the process (X; ’E)tzs given by the unique
solution to the SDE (LI starting from the initial distribution p = [¢] at time s only depends upon
¢ through its law . Given p € Po(R?), it thus makes sense to consider ([X;*]);>s as a function of
w1 without specifying the choice of the lifted random variable ¢ that has p as distribution. We then
introduce, for any = € R%, the following decoupled stochastic flow associated to the SDE (L))

t t
(3.8) XpoH = g 4 / b(r, X35, [X24]) dr + / o(r, X350, [X24]) WV,

We note that the previous equation is not a McKean-Vlasov SDE since the law appearing in the
coefficients is not [X2%#] but rather [X5¢], that is, the law of the solution to the SDE (1)) (starting
at time s from the initial distribution p) at time r. Under the assumptions of Theorem B3] the time-
inhomogeneous martingale problem associated to the SDE (B3] is well-posed, see e.g. Stroock and
Varadhan [SV79]. In particular, weak existence and uniqueness in law holds for the SDE (B.8]).

Moreover, from Friedman [Fri64], see also McKean and Singer [MS67], it follows that the transition
density of the SDE (B.]) existdd. In particular, the random variable X" has a density that we denote
by z — p(u, s,t, x, z) which admits a representation in infinite series by means of the parametrix method
that we now briefly describe. We refer the reader to [Eri64] or Konakov and Mammen [KMOO] for more
details. We now introduce the approximation process ()?lem” )to>1, obtained from the dynamics (B.3)
by removing the drift and freezing the diffusion coefficient in space at a fixed point y, namely

~ t2
(3.9) Rton gy / o(r,y, [X3]) W,

ty

2In [Fri6d], it is proved that if @ — b(r,z) = b(r,z, [X'%]) is bounded and Hélder-continuous then the fundamental
solution associated to the infinitesimal generator of (3.8)) exists and is unique by means of the parametrix method. However,
existence of the transition density as well as weak existence and weak uniqueness can be derived under the sole assumption
that the drift is bounded and measurable and the diffusion matrix is uniformly elliptic and Hoélder continuous.
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The process ()A(lez“ )to>t, is a simple Gaussian process with transition density given explicitly by

to
DY (1, 8,11, t,,2) i =g (/ a(r,y, [ X3%)) dr, z — x) )

t1
To make the notation simpler, we will write p(p, s, t1, t2, x,y) := p¥(u, s, t1,te, z,y) and p¥(u, 8, ta, x, 2) =
Y (i, 8, 8, t2, z, z). Note importantly that the variable y acts twice since it appears as a terminal point
where the density is evaluated and also as the point where the diffusion coefficient is frozen. Note also
that in what follows we need to separate between the starting time ¢; of the approximation process and
the starting time s of the original McKean-Vlasov dynamics. We now introduce the two infinitesimal
generators associated to the dynamics (38) and (33), namely

d d

s 1 s
Es,tf(/j/a t,.’L’) = Z bi(t,.’l], [Xt 75])8Z1f(/1/5 t,.’L’) + 5 Z a/i,j(ta xz, [Xt ’6])agl,mjf(/j/a t,l’),
i=1 ig=1
N 1 &
ﬁs,tf(yﬂ t,SC) = 5 Z ai,j(tvya [Xfﬁg])azhxj f(,uvta :E)
ij=1

and define the parametrix kernel H for (u,r,z,y) € P2(RY) x [s,t) x (R?)?

H(H, 57 Tv t? IL’, y) = (ES,T - ES,T)ﬁ(M) Sa T? tv SC, y)

d
= Zbi(raxa [X;f])azlﬁ(,ua Saratvwvy)
i=1
1 d
*3 > (@i (rya, [X20) = aij(r,y, (XD))O2, o B, s, 7t 2, ).
i,7=1

Now we define the following space-time convolution operator

t
(f@g)(u st xy) = / , fp,s,m0,2,2)9(p, 8,0, ¢, 2,y) dz dv
r R

and to simplify the notation we will write (f ® g)(, s,t,x,y) := (f ® 9)(u, s, s,t,x,y), H(u, s, t,z,2) =
H(u, s,s,t,2,2) and proceed similarly for other maps. We also define f @ H*) = (f @ H* D) @ H for
k > 1 with the convention that f ® H(®) = f. With these notations, the following parametrix expansion
in infinite series of the transition p(u,s,t,z,z) holds. Let T' > 0. For any 0 < s < ¢ < T and any
(1,2, y) € P2(R?) x (R?)?

(3.10) Pl s,tz,y) = > (@ HE) (1, 5,t,2,y).
k>0
Moreover, the above infinite series converge absolutely and uniformly for (u, z,y) € P2(R%) x (R%)? and
satisfies the following Gaussian upper-bound: for any 0 < s <t < T and any (i, x,y) € Po(R?) x (R%)2
(3.11) Pl 8,62, y) < B a (C([bloo + 1)) g(e(t = s),y — )

where C' := C(T, \,n) and ¢ := ¢()) are two positive constants. We refer to [MS67] for a proof based on
Kolmogorov’s backward and forward equations satisfied by p, see also Frikha [Fril7] for a proof based
on probabilistic arguments.

Under the additional assumption that x +— b(¢, z, u) is n-Holder continuous (uniformly with respect to
the variables (¢, i), the series expansion (B.I0) satisfied by the mapping (s, x) — p(y, s, t, z,y) provides
the unique solution of the Backward Kolmogorov equation, see e.g. [Fri64], namely:

(0s + Lo)p(s,t,z,y) =0 for (s,2,y) € [0,) x (RY)?
p(s,t,.,y) = doy(.) weakly as s 1 t.

Moreover, the following Gaussian estimates hold:

(312) |8gp(ﬂ,5,t,$,y)| < ﬁg(c(ts)vyz)a n:07152
—3s)2

and

(3.13)

|21 — 57

Vﬁ € [Oan)a |63P(Ha5at,$1ay) _aip(/j/asataléay)' S 075
(t—s)ttz

[ge(t =),y —a1) + gle(t = ).y~ 22)]
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for some positive constants C' := C(T, |b|so, [b] 11, [a]m, A, ) and ¢ := ¢(X). We refer again to [Fri64] for a
proof of the above estimates.

A similar representation in infinite series is also valid for the density of the random variable X;**
denoted by z — p(u, s,t, z), but we will not use it explicitly. Actually, we will make use of the following
key relation

(3.14) p(p, 8,t,2) = /Rd p(p, 8, t, 2, 2) p(dx).

The representation in infinite series of p(y, s,t, z) is thus obtained by integrating x — p(y, s,t, x, z)
against the initial distribution p, in other words, z — p(u, s,t, z) is the density of the image measure of
the map « — p(p, s,t,x, z) by the measure pu.

We introduce the following additional assumption on the coefficients:

(HR) The diffusion coefficient a satisfies assumption (HR) and the map = — a(¢, z,y, u) is n-Holder,
with modulus still denoted by [a]g for notational convenience, uniformly with respect to the
other variables.

Moreover, the drift coefficient satisfies an assumption similar to (HR), namely:
— The function R? 3 x + b(t, z, u) € R? is uniformly -Holder continuous for some 7 € (0, 1],
that is,

[b]H = sup |b(t’xaﬂ) - b(tayau)l < 0.

>0, 2y, pEP2(RY) |z —y|"

— There exists a function B : Ry x (R%)? x (Py(R%))? — RN such that for every (t,x,v,u) €
Ry x R? x (P2(R%))? the function z + B(t,x, z, v, 1) is n-Holder continuous, with modulus
denoted by [B]g, for some n € (0,1], uniformly with respect to the other variables and
satisfies the following estimate: for all ¢ > 0, for all (z,v, u) € R? x (Py(R?))?2

bt 2, 7) = b(t, 0, 0)] < | / B(t,z, % v, p)(v — ) (dz)|-

Our next result concerns the regularity properties of the two maps (s, u) — p(u, s,t, z) and (s, p, ) —
p(p, s, t, x, z) and also important estimates on its derivatives. As mentioned above under the assumptions
of Theorem and (HR,), 2 — p(u, s,t,x, 2) is two times continuously differentiable. In view of the
relation ([BI4), it thus suffices to investigate the smoothness of the map (s, p, ) — p(u, s, t, z, ).

Theorem 3.9. Assume that (HC), (HE), (HR.,) and that both maps Po(R%) > pu ~ b(t, z, u) € R,
Po(RY) >y alt,z, n) € R4 belong to (CSy) (see also Remark 24]).

Then, the mapping [0,¢) x R? x Pa(RY) 3 (s, 2, 1) = p(u, s,t, 2, 2) is in CH22(]0,) x RY x Py(R?)).
For any T > 0, there exist two positive constants C := C(|bloo, [b 1, |blos, [b] 1+ |aloo, [@lso, [alar, [a), T),
c:= c()), such that for any (u, s, z, 2, z,v,v") € Pa(R?) x [0,%) x (R?)® and any 0 < s <t < T

(3.15) |0y [0up(pe, 5, t, 2, 2)|(v)| < 7@ ?Hnn gle(t —s),z—x), n=0,1,
_ gt
C

(3.16) [0sp(11y 8,8, 2, 2)| < tisg(c(t—s),z—x),

VB € [0,m), [0sp(p,s,t,x,2)(v) — Dsp(ps, s,t, 2", 2)(v)]
|z — /)"

(3.17) < C(t v

{g(ct =),z — x) + g(c(t — 5),2 — 2')},

|8§[8ﬂp(u,s,t,x,z)]( ) 8”[8#]?(#,8 t $/7Z)](U)|
_ 28
(3.18) < Ot el =9 ) (et =)= )
where 8 € [0,1] for n =0 and 8 € [0,7) for n =1,

(3.19)
Vﬂ S [0777>a |3v[3up(%57t751772>](”> - 8v[8ﬂp(U757t7zvz>](vl>| S C

v —v'}?
1+57n g(C(t - S),Z - ZL'),
P

(t—s)
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There exist positive constants C' := C(|b|o, [b] 1, |g|oo, [b] i, |B|007 [B]H, |a]oo, [a] i, |00, [@) i, |A|007 [A ] T,
c:= c()), such that for any (u, i', s, 7, z,v) € (P2(R%))? x [0,%) x (R?)3,
(3.20) |02, s, t, 2, 2) — Onp(p', s, t, @, 2)](v)] < C()inwn glc(t —s),z — x),
t—s) 2

where 8 € [0,1] for n =0, 1 and § € [0,7) for n = 2,

3 n W
(321) 10010 5,t, 2, 2)](0) — O 0p(a 5,1, ,2)](0)] < cuf%sx cft— ),z — )

—s

where 8 € [0,1] for n =0 and 8 € [0,7) for n =1 and for all (sq, s2) € [0,1)
|02 p(u, s1,t, 2, 2) — Onp(p, 2., , 2)|

|s —s| s —s|ﬁ
where 8 € [0,1] for n =0, 8 € [0, ££2) for n =1 and 8 € [0, %) for n = 2 and

|8:}[a#p(ﬂa Slvta xz, Z)](”) - 8”[8#1)(,“’7 52, t,SC, Z)](’U)|
|51 — 52|”

|51 — 52/
(3.23) < C{(—Q(C(t81),zx)+ (75—32)%

t—s) B

gle(t — s2), 2 — x)} :

where 3 € [0,4) forn =0, 1.

3.3. On the Cauchy problem related to the PDE ([2). The previous regularity properties on the
density of the random variables X ** and X ™" allow us in turn to tackle the Cauchy problem in the
strip 0 < ¢ < T related to the PDE ([2)) on the Wasserstein space. The two real-valued maps f and h
appearing in ([2) will be assumed to satisfy the following conditions:

(HST) — The two maps [0, 7] x RIx Py(RY) > (¢, 2, ) = f(t, 2, 1) and R x Po(RY) 3 (2, ) = h(z, )
are continuous, the two maps u — f(¢,z, u) and g — h(z, p) being of class (CS). Moreover,
the maps [0, 7] x (RT)2 x Po(RY) 5 (t,2, 2, 1) — f(t, 2,2, 1), (RY)2 x Po(RY) 5 (z, 2, )
E(m, z, ) are continuous.

— The two functions z — f(t, 2z, ) and 2’ f(t, z,2', ) are locally Holder continuous with
exponent 7, uniformly with respect to the other variables.
— The maps f, h, fand h satisfy the following growth assumptions:
2
(3.24) £tz + bz )] < Cexp (al20) (1 4 asg(),

(3.25) Pt )|+ e 2] < Coexp (0 E0) (14 22 4 2 0)

where My(p) := [ga || u(dz), for some positive constants C' := C(T'), a and ¢ > 1.

Theorem 3.10. Assume that the assumptions of Theorem B9 and that (HST) hold. Then, there exists
a positive constant ¢ := ¢(\) such that for any a < ¢, the function U defined by

(3.26) Ult,z,p) = /]Rd h(z, [XtTg]) (u, t, Tz, 2 dz—/ Rdf s, 2, [ X)) p(p, t, s, 2, 2) dz ds

) h( tz,u[XtE / f XtI“[th])d]7

where ¢ € L2 with [¢] = p, is the unique solution of the Cauchy problem (L2)) (in the strip 0 <t < T))
and

(3.27) Ut 2 1)| < Cexp (Klal?) (1+ M(n)),  for (¢, 1) € [0, 7] x RY x Py(RY)

where C := C(T, |bloo, [bloo, [@lses A, 1), k := k(T, A, @) are positive constants.

Moreover, U is unique among all of the classical solutions to the PDE ([L2)) satisfying (24]), T being
replaced by any 77 € [0,T), as well as the exponential growth assumption ([B27) and with h and f
satisfying (8:24) and (B:25)) for some positive constants k and «.
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4. WELL-POSEDNESS OF THE MARTINGALE PROBLEM

In this section, we investigate the well-posedness of the martingale problem of Definition BIlassociated
to the SDE (I)). As mentioned in the introduction, the proof follows Stroock and Varadhan’s perturba-
tion argument, the underlying space being RY x P, (R9). We first investigate the simple case of non-linear
SDEs obtained from (I.J]) by removing the drift coefficient and by freezing the diffusion coefficient only
in the space variable, importantly, the dependence in the measure variable remains unchanged. In a first
part, we thus study the well-posedness of the following class of non-linear SDEs with dynamics

— t —
(4.1) Xif=ey / o (r, [X5]) AW,

where £ is a random variable independent of W with law u.

4.1. Well-posedness of the approximation process. Unfortunately, there is no result in the litera-
ture that guarantees weak existence and uniqueness to the SDE (1I]) under the considered assumptions.
We clarify this situation in the next Lemma.

Lemma 4.1. Under (HR) and (HE) there exists a unique weak solution to the SDE (&1]). Moreover,
for any (s,z) € Ry x R% denoting by P, € P(C([0,00),R?)) the unique solution to the associated
martingale problem with initial distribution d, at time s, (s,x) + Ps ,(B) is measurable for any Borel
subset B of the canonical space C([0, ), R%). Moreover, it is strong Markov.

Proof. We restrict our consideration to the case s = 0. The proof relies on the application of the Banach
fixed point theorem to suitable map and complete metric space. For a fixed T' > 0 and an initial condition
u € P(RY), we consider the following set

Iy, ={P eC([0,T],P(RY) : P(0) = u,

Vt € (0,T], P(t)is absolutely continuous w.r.t. the Lebesgue measure.}

which is a complete metric space for the metric d(P, P’) := SUPyeo,7) Jga lp = P'|(11,0,t, 2)dz where p
and p’ stands for measurable versions for the densities of P and P’ respectively. We define the map
Tt o, — o7, which to a probability measure Q € o/, associates the measure J(Q) € o/,
induced by the process

=«s+/0 o(rQ(r) dW,, te[0,T)

that is, 7 (Q)(t) = [XF], t € [0, T). Note that any fixed point of 7 is a solution to the martingale problem.
For Py, P, € a/r,, we consider the two following sequences of SDEs (Xl’(m))mzo and (XQ’(m))mzo with
dynamics:

(4.2) Vm >0,¥t € [0,T], X"t =¢ +/ o(s, [XNaw,, X9 =Pit), i=1,2.
0

We denote by Pi(m) = (Pi(m) (t))teio,1) € 1, the probability measure induced by (Xti’(m))te[o,T]- The
density function of the random vector X:’(mﬂ) is given by z — pEmH) (14,0,¢,2) fplmﬂ) (,0,t, x, 2) p(dx),
with p{"™ (1, 0,t,2, 2) = g(fy a(s, [X™])ds, 2 — 2) and a(s, [X¢"™]) = (00%) (s, [X¢™]). Form > 1,

by the mean-value theorem, one has

" =)0, 2)
HI, a Y 1.(m) — Na(s, [X2™ds, z — x
(13) Z/ [, 35 90 [ Ol [KEO) + (1 = Nl (K20, 2 —

u LMY _ g (s (X200 ds d\.
x/om,J(,[Xs 1) — as (s, [X20M]))ds dx
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Using (HR)(ii) and then Fubini’s theorem, for m > 1, we can bound the difference of the diffusion
matrix between the two solutions as follows

a5, (X3 0) = (s, (X)) < | /R Ao, [REOO (R 6 ) 1,0,5,2)
= ’/Rd A(s, 2, (XD X2 G = p§™) (11,0, 5,2, 2) dz p(da)
— |/(Rd)2(A(S’Z’ (XL X200y — A(s, 2, [X 2], [X2(M)]))
x (0™ = pS"™) (1,0, 5,2, 2) dz p(de)|
44 < [ =l A =1 0,50, 2) d
and for m = 0, one gets |a; ; (s, [Xo V) — a;; (s, [XZOD)| = |as; (s, Pi(s)) — aij(s, Pa(s))| < Cd(Py, Py),

1 <i,j <d. Hence, combining ([@3]), (£4) together with (HE) and the space-time inequality (I4]), we
obtain

/(Rd)2(|z —z|"A 1)|P§m+1) — pgm4r1)|(u, 0,t,7,2)dz u(dz)

ds (|2 = 2" A1) [p™ = pS™ (11,0, 5, 2, 2) dz p(da)

]Rd

which in turn, by induction, easily yields

o o A =101, 2)
R 2

Cm
<7 / o || S mgxlai,j(sm,[Xi;,fo’])—ai,j<sm,[X3;§0)])|dsl---dsm
A (t) b

(Ctz)m
< —d(Pth)
[T+ (m—1)Z]!
where Ay, (t) == {(s1,-+* ,8m) € [0, ] : Spg1 : =0 <5y, <sp_1 <--- <81 <t =:5} for a fixed t > 0.

We now plug the previous estimate into ([@4]) so that coming back to [£3)), we finally get

ﬂ
(4.5)  d@P™Y pmYy = sup /|p(m+1 P (1,0, ¢, 2) dz < ((1 )] d(Py,Py), m>1.
te[0,T)

n
Since ), <o (CZ:! )" < 00, the Banach fixed point theorem guarantees that the map .7 has a unique
fixed point P* € /7, for any T > 0. Hence, the martingale problem associated to (&Il) is well-posed on
any compact interval [0,T]. Obviously, existence and uniqueness extends to [0,00). The measurability
and strong Markov properties follow as in [EK86].

O

4.2. Regularity of the transition density of the approximation process. In this section, we
investigate the regularity properties of the transition density of the SDE (I]), the regularity with
respect to the measure variable being understood in the sense of Lions. Hence, from now on, we will
always assume that the initial condition ¢ has yu € Po(R?) as distribution. We first remark that, by weak
uniqueness, the law of the process (X; ,5)t28 generated by the SDE (&) starting from & at time s only
depends upon the law of £&. Given p € Py(R?), it thus makes sense to consider ([X;*]);>, as a function
of p without specifying the choice of the lifted random variable £ that has p as distribution. We then
introduce, for any = € R%, the following decoupled stochastic flow associated to the SDE (1))

t
(4.6) XPoh = :E+/ o(r, [X55))dW,.
We denote by z — p(u, s, t,z) (resp. z — p(u,s,t,z,2)) the density function of the random vector

X% (resp. X" given by the unique solution of the SDE (@) (resp. the SDE (@) taken at time ¢
and starting from & with law p € Po(R?) (resp. starting from x € R?) at time s. Observe the following
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relations

t
P t2) = [ Bloss.toe,2) pld), ﬂmaaa@g</(wwxﬁnwwz)

Our next objective is to investigate the regularity properties of the two maps (s, 1) — p(u, s, t, z) and
(s,2,p) = p(p, s,t,2,2). Since x + p(u, s,t,r,z) € C2(R?) and in view of the above relation between
p(p, s,t,2) and p(pu, s,t, x, 2), it suffices to investigate the smoothness of the map [0,) x R? x Py(RY) >
(s,z, 1) = p(p, s, t, 2, 2).

Proposition 4.1. Assume that (HR), (HE) are satisfied for (s, u) — a(s, 1) and that p+— a(s, ) is in

(CS.). Then, the map [0,t) x R? x Po(R?) > (s, 2, 1) = pp, 8,1, 2, 2) is in CH22([0,1) x RY x Po(R?)).
Furthermore, for any T > 0, there exist some positive constants C' := C(|a|oo, |@|co, [@]m, T), ¢ := c(A)

such that for all (i, i, x, z,v,v") € (P2(R%))? x (R?)* and 0 < s < t < T, the following estimates hold

(47) kﬁ@mmJJJJMWNSG—J%E7gwu@JxxnmL
EpyITer
_ C
(48) 0.7 (15,1, 2)] < 7 —glelt — 5), 2 — ),

Vﬁ S [0,77)’ |8U[auﬁ(ﬂa S,t,.”L',Z)](’U) - av[aﬂﬁ(ua S,t,l’,Z)](’U/”
v — v’

(4.9) = g

gle(t —s),z — x).

There exists some positive constant C' := C(|a|so, [@lso: [@] 1, | Aloo, [A] z, T) such that for any (u, i/, s, 2, z,v) €
(P2(R%))2 x [0,t) x (R?)3 the following estimates hold

Wy (. 1)
(t B S) 1+n42rﬂfn

(4.10) 100 10up (s 5,1, 2)(v) = O[O, 5,1, w, 2)] (v)| < C gle(t —s),2 — x)

where 3 € [0,1] for n = 0 and 3 € [0,7) for n = 1 and for all (s1, s2) € [0,%)2,

|8g[aﬂﬁ(uv Slvtﬂ z, Z)](’U) - 81?[8#]5(,”7 SQvta x, Z)](’U)|

|51 — 52/

|51 — so/”
(4.11) SC{(—Q(C(ﬁ—Sl),Z—l‘)—FMw

c(t—s82),z—x) p,
t751>1+7+n+,3 g(c( 2) )}

where 3 € [O,HT") forn=0and 3 € [O,g) forn=1,

Vﬂ € [07 Q)a |aSﬁ(Ma Sl,t,SC,Z)] - asﬁ(ﬂ; 525t7$72)|

2
81_825 a\S1, — alS2,
(4.12) SC{((le)llﬂf L ut)i Sl( M)|)g(c(ﬁ—sl),z—g;)
s1 — 52|’ a(s1, 1) — a(ssz,
(s ) slil) )

Proof. Let us introduce some notations. We identify any d x d matrix I" as an R _valued vector and for
any z € R? define:

£, R SR

I'— f.() = (277)% det(l")f% exp (—%(F%,z)) .

We denote by Df,, its gradient seen as an R _valued vector. Formally, using the fact that u —
a(t, ;1) belongs to (CS), the derivatives of the mapping [0,) x P2(R?) > (s,pu) + p(u,s,t,z) =
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S p(w,s,t, 2, 2) p(dz), with [£] = p, satisfy the following relations

0up(py s,t,2)(v) = au[/ﬁ(,u,s,t,x,z) V(dm)]uzu( v) + 0, {/ p(v, s,t,x, z) u(dx) (v)

v=p

8ﬂﬁ(ﬂa s,t,x, Z)(U) =Df. .

asﬁ(ﬂa s, t,x, Z) =Df. s

=Df._y /: a(r, [Xf’g])dr) . (—a(s,u)—i—/: m[/&(r,y, (X2 Dp(s s, y) dyLu:S d?“)

where 9,a(r, [X;4])(v) = Ou[ai; (r, (X3N] (0)k)1<igw<a and Oy [ alr,y, [X2)p(v, s, 7,y) dy)j=u(v) =
O [ @i j(ryy, [X2))D(v, 8,7, y) dy]luzu( )k )1<i,jk<d are seen as d? x d matrices, for any fixed v € R9.
Similarly, by formally differentiating the previous equality with respect to v, the derivatives of the
mappings v — 0,p(u, s,t, 2)(v), v = Oup(p, s, t,x, z)(v) satisfy the following identities

Oul0y(11,5,,2)](0) = (Haog) ( / a(r, [X3€))dr, 2 - ) + [ 210,00 5.8, 2)(0) ()
0001 51,7, 2)|(v) = D, ( / alr, [X24])d ) / 0.0, [ vy, X )50 5.7 )=y 0)

where 0, [0,p(u, 5,1, 2)](v) = (O, (Oub(i, 5,1, 2)(v))i)1<i,j<da- Of course, the previous computations are
only formal since one does not know that the map [0,7) x P2(R?) > (s, u) ~ a(r, [X2€]) € R™¥9 is in
Ch2([0,7) x Po(R?)), for r € [s,t]. In order to make these formal differentiations rigorous, our strategy
consists in using an approximation argument that we now expose.

Step 1: Construction of an approximation sequence and related estimates.

For a fixed s > 0 and an initial measure P° € P(C([s,00),R%)), we consider the sequence of
probability measures (P("™),,>¢ on the canonical space C([s,o0),R?) induced by the iterative scheme

Xs’g’(m) t>s,m > 0 ¢ with the following dynamics
{( t 28 g y

t
(4.13) m>0, XUt ¢y / o(r, (XSS aw,,  [X759) = P(1), te[s,00).

Since the diffusion coefficient a is bounded and p € P2(R?), the sequence (P("™)),,>¢ is tight. Rela-
belling the indices if necessary, we may assert that (P(m))mzo converges weakly to a probability measure
P>°. From standard arguments that we omit for sake of simplicity, that is, passing to the limit in
the characterisation of the related martingale problem, we deduce that P is the (unique) probability
measure P induced by the unique weak solution to the SDE ([&I]). As a consequence, every convergent

subsequence converges to the same limit P. Hence, the original sequence (]P’(m))mzl converges weakly to

P.
We also introduce the sequence of decoupled stochastic flows (X5 (™))

the recursive scheme ([@I3)), namely

t>s, m > 0, associated to

t
(4.14) m>0, Xpommth gy / o(r, [XSE))AW,,  t € [s,00).

Since (P(™),,>¢ converges weakly to P and u + a(s, ) is continuous with respect to the weak
topology, we deduce that for any fixed p, s,t, z, z, the sequence of density functions (pm, (i, 8, ¢, T, 2))m>1,
2 = pm(p,s,t,,2) being the density of the randorn vector X, " (m)
m 1 oo.

Then, again for a fixed (s,t,z,2) (Ry)? x (R9)2, with 0 < s < t < T, we consider the sequence
of real-valued mappings {L2 3¢ Pl s, t,x,2),m > 1} obtained by lifting the original sequence

, converges to p(u, s, t,x,z) as
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{P2(R?) 5 pu = pp(pt, s,t,2,2),m > 1} on the atomless probability space (2, A,P) B.

We now prove by induction on m the following properties:

e Under (HR), (HE) and if u +— a(t, ) belongs to (CS), the continuous mapping [0,¢) x R x
Pa(RY) > (s, 2, 1) = pm (i, 8,t, 2, 2) is in C%22([0,1) x R? x Py(RY)).

e Additionally, if u +— a(t,u) satisfies (CS. )1, then there exist two positive constants C :=
C(laloo, |@loo, [@)m, T), ¢ := ¢(N), thus do not depending on m, such that for any (p, s, x,2’, z,v,v") €
P2(R?) x [0,1) x (R)?,

(4.15) 02 O (s 5.1, 7, 2)](0)] < %mc(t S i—a)n =01,
—

107 10upm (1, 8, 1,3, 2)](v) = 07 [Oupm (1, 5,1, 2, 2)] ()|

z —z'|?
(4.16) < CW {g(c(t —s),z —x) + g(c(t — 5),2 — 2},

where 8 € [0,1] for n =0 and 8 € [0,7) for n =1,

Vﬂ S [07 77)5 |8v[8#pm(ﬂ, S, tv €, Z)](’U) - 871 [aupm(ﬂa S, tv €, Z)](’Ul)|
o —v'}f

(t — )i+

(4.17) <C gle(t —s),z — x).

o Additionally, if u — a(t, u) satisfies (CS4 )2 so that pu — a(t, ) belongs to (CS.), then there
exist two positive constants C' := C(|a|oo, |@|co, [@]H, |Aloo, [A]lm,T), ¢ := ¢(N\), thus do not
depending on m, such that for any (u, i', s, 7, z,v) € (P2(R%))2 x [0,1) x (R?)3,

Wy (1, 1)

(t . S) 1+n;ﬁfn

(4.18) 0} [0upm(p, 5, 8,2, 2)](v) = O [Oupm (', 5,1, 2, 2)|(v)] < C g(e(t = s),2 — x),

where 3 € [0,1] for n =0 and § € [0,7) for n =1, and for all (s1,s2) € [0,t)?,

|8g[a,u.pm(ﬂ, 51, t,SC, Z)](’U) - 817}[8#1)7’”(#5 SQvta €z, Z)](’U)|

|51 — s2|°

|51 — 5o/
(4.19) SC{(—Q(C(ﬁ—Sl),Z—l‘)—FMw

t— )5 HB

gle(t —s2),z — x)} ,

where 8 € [0,2£2) for n =0 and 8 € [0, 2) for n = 1.

Form =1,&w— p1(§, s, t,2,2) = g(f: a(r, P°(r))dr, z—x) is clearly Fréchet differentiable with Fréchet
derivative Dp; (€, s,t,x,2) = 0 so that [0,£) x R? x Po(RY) x R 5 (5,2, pu,v) = Oup1 (i, s,t, 2, 2)(v) :=
0, 0u[0up1(1,s,t,2,2)|(v) = 0 and the estimates @ID) to (@IY) are clearly valid. Finally, since
1 (p, 8,t,x,2) = —(Hng)(f; a(r, P°(r))dr,z — x), n > 1, one also gets that the maps [0,#) x R? x
Po(RY) > (s,, 1) — Oup1(p, 8,t, 2, 2), 02p1 (1, 5, t, x, 2) are continuous. We thus conclude that (s, z, u)

x

p1(p, 5,1, 2,2) € CO%2([0,1) x RY x Py(RY)).

Let us assume that the induction hypothesis is valid at step m. We then remark that if (sn, fn)n>1 1S
a sequence of [0, 1) x P2(R?) satisfying lim,, |s, —s| = lim,, Wa (g, pt) = 0 for some (s, i) € [0,t) x P2(R%),

3For sake of simplicity, the lifting procedure is done onto the same probability space that carries the unique weak
solution (X, W, {F:}) to the SDE (@I)). Alternatively, one can enlarge the previous space and consider an arbitrary rich
enough atomless probability space.
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then for any Borel map h defined over R? with at most quadratic growth one has

/h(z)pm(un,sn,t,z) dz—/h(z)pm(u,s,t,x,z) dz
= /h(z)pm(un,sn,t,x,z) dz pn (dx) —/h(z)pm(u,s,t,x,z) dz p(dx)
(4.20) = [ 1.5t 2) = 1 = ()

// Mpm (pns Snsts @, 2) = Pm(py 8, ¢, 2, 2)) d2 p(dx) = 1" + 11"

Let R > 0. We introduce a smooth cutoff function ng : R — R, such that nr(z) = 1 for
|z| < R and 77R( ) = 0 for |z|] > 2R. We split the first term into two parts namely I" = It + 1%

nr(z )) (,u )(dm) Assuming w1thout loss of generality that n is sufﬁaently large so that lsn —

s| < (t — s)/2, we remark that since |9y (fin, Snst, 2, 2)| < C(t — sp) " 2g(c(t — sn),2 — 2) < C(t —
s)_%g( (t — 8),z — x) for some positive constants C, ¢ independent of n and m, the function z —
J h(2)pm(fens Snst, @, 2) dznr(z) is Lipschitz continuous with modulus bounded uniformly w.r.t n. The
first term I} thus goes to zero as n goes to infinity. Now, since h is of at most quadratic growth,
limsup, T3] < Climsup, {fmm () + [ o [Pt () + [}, 5 p(da) +f‘z‘22R|:c|2u(dz)} <
2C {f\z\ZQR wu(dx) + f\z\ZQR |z|2u(das)} so that choosing n and then R large enough, we see that I} can
be made smaller as any prescribed € > 0. We thus deduce that I goes to zero as n goes to infinity.
The last term II" goes to zero as n goes to infinity by dominated convergence theorem and continuity
of (11,8) = pm(pt, $,7,2,2). We thus conclude that Wa([X;" ™) [X4™]) = 0 as n 1 oo, where
[€2] = pn and [€] = g, so that lim,, a(t, [X:"5 ™)) = a(t, [X5™)]) which in turn yields the continuity
of the map [0,t) x R? x P2(RY) > (s,2, 1) = pmt1(p,s,t,2,2) = g(f: a(r, [Xf’g’(m)])dr,z —x). The
continuity of the two maps [0,2) x R? x P2(R?) > (s,z, 1) = OuPmi1(pt, 8,1, 7, 2), 02pmi1(p, s, t, 7, 2)
readily follows from a similar argument.

We next apply LemmaZTlto the map p — a(r, i) along the flow of probability measures ([Xf’g’(m)])szr,#em (R4)
to derive the differentiability of u — a(r, [X, ’5’(m)]). Note that from the estimate (4I5]) and the inequal-
ity |02 pm (1, 8,7, 2, 2)| < O(r—s8) "2 g(c(r—s),z—x), n = 1,2, the map (x, 1) = pm (i1, 5,7, T, 2) satisfies
the condition (Z.6]) of Definition [Z3] (observe that we don’t need the time regularity of the density). We
thus deduce that Pa(R?) 5 g a(r, [X5™)) is partially C2(P2(R%)) (see Chapter 5 of [CDI8] for a
definition of partial C%(P2(R?)) regularity) and satisfies the key decomposition

(4.21)
0y [Opa(r, [ X5 ™M])](v) :/(a(r, Y (XS ]) = v, (XSO D (s 5,0,y dy’

+/ (a(r,y', [X350M]) —ar, 2, (X204 0))0; [0upm (1, 5,72, y)] (v) dy p(da’)
(R%)?

Again note that the continuity of the map [0,¢) x Po(R?) x R? > (s, u,v) + 070 a(r, [ X & (m)])](v)
for n = 0,1 follows from the continuity of the maps [0,7) x Po(R?) > (s, 1) — a(r, 2, [X. T,g (m)]), z € R4
and (s, p,v) = O "p (1, s,7,0,9"), O00upm (s .72, y)](v) as well as the estimate (LI5) and the
inequality [07p,, (1, s,7,0,9')] < C(r — s)"2g(c(r — s),y — v). Observe now that from the dynamics
I4), one has £ — ppy1(§,s,t,x,2) = g(f; a(r, [Xf’g’(m)])dr,z — x). Here, there is a slight abuse of
notations since we still denote by a(r, [X55™)]) the lift of the function y s a(r, [X55™)])
the subsequent proof, we will not really work with it directly but rather on its Fréchet derivative. Hence,
from the previous arguments, L2 3 & — p11(€, 8, t, 2, 2) is Fréchet differentiable with Fréchet derivative

. However, in

t
Diinss(€5:t:2,9) = Dfecs [l K0 )
t ’ _ _
(1.22) S L @ R 6 R D) 0up s )

+/ (@(r,y', [X30M]) —a(r, 2, (X34 0)0pm (5, 2,y ) (€) dy’ﬂ(dz’)} dr
(R9)?



WELL-POSEDNESS OF NON-LINEAR SDES AND PDE ON THE WASSERSTEIN SPACE 23

so that the mapping [0,t) x R? x Po(R?) x RY > (s, 2, 1, v) +> Oubm1(p, 8, t, @, 2)(v) is given by
t —

Oyl t,)(0) = DFocs ([ ol (X2

t
(4.2 L @t L <l KD 0

s R4

+/ @(r,y', (X250 = a(r, !, (X3 ]) 0upi (1, 5,7,y ) (v) dy'u(dx')} dr
(R7)2

and it is globally continuous. Moreover, from ([Z1)), one deduces that the map R? 3 v + 0,pm+1 (1, 8, t, 2, 2) (v)
is continuously differentiable with

81; [a,uperl(Mﬂ S, t, Zz, Z)] (’U)

:=Df. 4 (/t a(r, [X;f’g’(’")])dr> -/t {/ @(r,y', (X250 —a(r, v, [ X250 2pm (1, 5,7, 0,y) dy’
s s Rd
(4.24)

+/ @(r,y', [X00]) —ar, 2!, [X250))) 0, [0,pm (1, 5,7, w',y’)](v)dy’u(dw')} dr.
(RY)?

Combining the previous expression with the induction hypothesis and the condition (CS); as well as
the estimate (£I5]) and the straightforward inequality |02p,, (i, s,7,v,y")| < C(r — s) " Lg(e(r — )y’ —v),
we also get that [0, ) x R? x Po(RY) xR > (s, 2, 1, v) + 0, [0upm+1 (1, 8, t, 7, 2)](v) is globally continuous.
We thus conclude that (s, x, 1) = pma1 (i, s,t, 2, 2) is in C%22([0,t) x R? x Py(R%)).

In order to establish the estimates (£IH), for n = 0, 1, at step m + 1, we proceed as follows. Starting
from the induction relations (#23)) and ([E24), since p — a(s, p) is in (CS) and satisfies (CS4 )1, using
(HE) we deduce that there exist some positive constants C' := C(|a|so, [@]1), ¢ := ¢()\) independent of
m such that

t—s (r—s)T

n C ¢ y—o|TA1
0L 0 (5,1, 2))(0)] < { [ =D et = s -y
s R
(4.25) [ =P AN Bt ) dyu(d:c’)}dr}
x g(c(t —s),z —x)
which in turn, by the space-time inequality (4], clearly implies the following relation

/(Rd)2(|y — | A )0 [0ppmr1 (1 5, L, 2, 9)] (v)| dy pu(dz)

(4.26)

c ! 1 ! ” n
S e { =l i IS A1>|av[aupmw,s,r,z,y)](vndyu(dz)dr}.

Iterating the previous inequality, we deduce that there exists a constant C' independent of m such
that

C

(t—s)

L =217 AV B, 8,20/ 00 ) <
R 2
which in turn, by ([@23)), directly yields

C
|8’L777I|:8Hpm+1(u’ S,t,$,Z)](U)| < 71%4,9(0(15 - S)a Z = x)a n= Oa 1.

(t—s)

This concludes the proof of ([@I5). Now, the estimate (£I0) easily follows from the previous estimate
combined with the relations [@23]) and ([@.24) so we omit its proof.
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We now prove [@IT). From ([@24]), we use the following decomposition
¢
Oul0upms (1,5, 2, 2)](0) = BulOupm (1,51, 2, )] (V) = Dfora / alr,y, [X40))ar )

t
[ ar { [ XSO0 = o, (05,720
(4.27)

*/[5(7“, Y (XS] —a(r o (XS0 (s 5,0y ) dy
+ /(Rd)2 [a(ryy', X 0]) = a2, (XS UD)@uBpm (1, 5,727, )] (0) = B [Dyupm (1, 5,72 y)](v’))dyu(dx’)}

which is valid for any (v,v’) € (R?)2. First let us assume that |v — v'|2

< r — s. From Fubini’s theorem
and the mean value theorem, we get

/[E(T’ yla [X;s,{,(m)]) - Ad(r’ v, [Xi7€7(m)])]a§pm(ﬂa s, 7,0, y/) dy/

- /[Zi(?“, y/a [X?E’(m)]) - Zi(ra U/’ [er,g,(m)])]agpm(% S, T, 'U/a y/) dy/

/E(T’ v, [Xﬁ,f,(m)])[azpm(ﬂ, $,7,0,Y") — O2pm (p, 5,70,y dy’

= /01 /5(7“, Y [XEEMN O3, (s, Ao+ (1= A, y') (v — o) dy’ dA

— /01 /[6(7*, ' (X5 — G Ao + (1= A, (XS0 (1, 5,7, Ao + (1 = Mo’ ) (v — o) dy’ dA.
Using the direct bound |03p,, (1, 5,7, 2, )| < C(r — s)~2 g(c(r — s), y — =) and noting that for any point

¢ € (v,v'), one has
o () s fon (B o 20)

from the space-time inequality (I4) and condition (CS. )1, we deduce

‘ /[Zi(h Y, (XS 0]) —a(r, v, [XES)]02pm (1, 5,70, 9) dy

- /[,&:(T’ yl) [XTS‘,S,(W)]) - ,&:(/r’ U/’ [Xi7£7(m)])]a§pm(/’[’7 S) r) ,UI’ yl) dyl

_ !
SCL&
(r—s)=
P

(7’ . S)1+ ﬁng
for any 8 € [0,1]. If [v —v'|> > r — s, then from (L), condition (CS.); and (L4), we directly get

| [l 200 v, (X2 5,10,

v—|P
< C/ﬁg(c(fs)vylv) dy’
T —S 2

v — o'}

= (r _ S)lJrB;n

and similarly

_ ~ _ 8
’ [a(r,y’, [X240M]) —a(r, o, (XS D]02pm (1, 5,70, y) dy SCLU'W~
(r — s)t*+2"
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Hence, for all (v,v') € (R%)? and for all 3 € [0, 1], one has
‘/ a(r,y' (X0 0]) = a(r, o, (X0 pm (1, 5,7, 0, ) dy

—~ / a(r,y, [X2™)) = alr, o, [ X3S D)2 pm (1, 5,70, y) dy’
lv—'|)?
(r—s)

We now plug the previous estimates into ({27 so that we obtain

<C

C t | _ /|ﬁ
100 [Oupimra(p, 8, .2, 2)](0) = Bu[Oupmra (s 8., 2, 2)] (V)] < — {/ [m

+/( ., (Iy" = 2" A 1)|0s[Oppm (1, 5,7, 2", y)](0) — Do [Oupm (1, 5,7, 2, y') (") dy’ u(dz’)] dr} g(e(t —s),z — x)
R 2
which in turn implies

/( d)z(ly — 2" A 1)|0[Oppma1 (ps 8,8, 2, )| (V) = Ou[Oupms1 (s 5, t, 2, y)](v')] dy p(de)

C ¢ lv — |8
= (t—s)t2 {/s [(T - s)“‘wTﬁ)
+/ (ly = =" A 1)|0u[0upum (1, 5,7, 2, 9))(v) = 0o [Opupm (1, 5,7, 2, y)](v")) dy u(dx)@ dT} :
(R)2

From the previous relation, using similar arguments as those employed for the previous estimates, we

obtain ([EIT).

It now remains to prove ([I8) and (I9) under the additional assumption (CS; )2, or in other words,
under the assumption that the map u — a(s, ) is in (CS4). Since the arguments are quite similar for
both estimates, we prove ([£I8) and shall be brief for ([I9). From now on, we assume that u — a(s, 1)
belongs to (CS4). In order to establish (@I8) we make use of the following decomposition:

Oy [0upm+1(, s, t, 2, 2)](v) — O [Oupma1 (W, s, t, 2, 2)](v) =T+ T+ NI+ IV

with
t _ t _ ,
- {sz i (/ a(r, [Xf*g*(m)])dr) _DJ., (/ a(r, [ ’(m)])dr)}
t
/ {/(5(“ y' (XS =@ v, (XSS D)L D (1, 5,7, 0,y) dy
+//(Zi(r, Y, (XS0 —a(r, o, (XSO0 0upm (1, 5,7, 2,y )](v)dy’u(dw')}dr,
t t
=Dl (/ alr, [X:’f’*m)])d?“) / { / @,y X)) — (o [0S ), (5,10, y) dyf
+ /(5(7"7 Yy (X3S0 a0, [ X5 O (i, 8,7, 0, y) — X D (1, 5,7, 0,97)) dy'} dr,
t t
I:=Df._, (/ a(r, [Xf’gl’(m)])dr) / {//5(7“, Y (XSO0, pm (1, 5,7, 2y (v) dy' ( — i) (dx’)

+//(5(73 Y (X)) = A,y (X200 [0upm (1 5,7,y (v) dy i (da') }dﬂ

V= or [t 1x2 )ir) [ [ [t ixesom —ay iz o)

(03 [Oupm (s 5,7, 2,y )| (0) = O [Opupm (1, 5,7, 2", y)](v) dy' 1 (da”) dhr
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and will prove the following estimates

<o B e —oea, v3e)
(t—s)7= 7"
/
I} < C’(M/Q)(%g(c(t — ),z —x), where 8 € [0, H—n), if n=0,and g € [0,7n), if n =1,
t—s)” =z
5 (p ') iy — if =
II1) < ng( c(t —s),z—x), where 8 € [0,1], if n =0,and 8 € [0,2n), if n =1,

|IV|<C— /// —2'|"A1)

X0 Db (1 5,7, 9] () = O 10Dty 572",y ()] dy’ ' (da) ')
x g(e(t —s),z —x).

Before that, note that the previous estimates yield

W4 (u, ') L
(t o S) 1+n42rﬂfn t—s

95 0Pm 1 (13,2, 2))(0) = D Db (5.8, )] (0)] < €|

([ = 21 A Dp 50 O By N0 w0 Jaett = 9.2 )

which in turn, by an induction argument similar to the previous ones, which is omitted, implies ([£LIH]).
We now prove the announced estimates on I, 1T, III, IV.

o Estimate on I:
From (HR)(ii), for any 3 € [0, 1], we get the following intermediate estimate

alr, [X3€0V]) = alr, [X3€00)|
(128) < | [ Al XX N 1) = 5,701
<| [ [ Ay e L X s )
] [ [ {Ary pree o, 1€ 00) - Ao, (X0, (26 )
X (pm (s 8,7, 2,") = pm (W' 5,7, 27, 3")) dy' 1 (da”)

= ’//A(T, Y XS X ) p (s s m 2!y ) dy (i — ) (da)

// =2 " AV pm(p, 8,72, y") = (s 5,7, 2"y ) | dy' ' (da')
W2 s M / o / o ;o /
(4.29) < ( — 2" A D) pm (s 8,72,y ) — pn (s s, 2"y dy’ ' (da)
r—3s) =t
where we used the fact that x — [ A(r,y, [X; > (m)] (X7 24 (m)])pm(u, s,r,x,y) dy is f-Holder with mod-

ulus bounded by C(r — s) %52 for any f3 € [0, 1], for some positive constant C' := C(a). Combining the
previous computation with the mean value theorem and (5], we obtain

|pm+1(ﬂa S,t,SC,Z) 7pm+1(/1¢ )85, X, Z)|

IN

t
FEg(elt = 5).2 =) [ la(n X6 - alr, (X far
= s

IN

@ gtelt — ).z =) (10— WY ()

t—s

t
+/ / (| = 2" A D) pm(p, s, 7,2 y") — o (W', s, 2", y') | dy’ u’(dw’))
s J(R4)2
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and, employing similar arguments as those previously used, we deduce that there exists a positive constant
C := C(T, \) such that

Wy (1, 1)
(t— s)¥

More generally, in a completely analogous manner, we also obtain the estimates: for any m > 0
(4.31)

(4.30) Vg € [0,1], [P (i 8, 8,0, 2) — Py (W, 8,8, 2, 2)] < C glc(t—s),z —x).

Wy (1, 1)

Vﬂ S [07 1]7 |a;lpm+1(‘u7 S,t,:l?, Z) - a;lperl(M/ﬂ S, t,SC, Z)| < CWQ(C@ - S)v Z — SC), n= 05 17 2.
—s) =2

We now come back to I. Plugging (£30) into (£29), we finally deduce

Wy (1, 1)

B=mn

o 2007 a1 ) < €28
r—s)2

so that, using the mean-value theorem as well as (CS; )i, (LH), [@IF) and the space-time inequality

(), we get

B ’ t t
VB e[0,1], |II < Cm(/iiﬂ(;)ﬁ;) </S - i)BJ dr) (/S ﬁdr) gle(t —s),z — )

Wy (. ')
<C—2000 gle(t—s),2—x).
= (tf S) 1+g+5_ng(c( S),Z :C)

o Estimate on 11:
Following similar lines of reasonings as those employed to establish (@29, namely using the fact that
w— a(r, 1) satisfies (CS. )a instead of (HR)(ii), one gets

ar,y, (XS4 —a(r,y, [Xf’fl’(m)])‘ < ‘/Z(T,y,z, (X260 (X2 (p (1, 8,7, 2) — p (1t 5,7, 2)) dz

B ’
(4.32) <cWelwi)
(r— )5
which in turn, by (3], directly yields
~ — . - o W’B ’ /
| 0 R X2 0,2 ] < €l
r—s)T 2z

Moreover, from (&31]), the n-Holder regularity of y — a(r,y, u) and the space-time inequality (L4])

o, _ WB ’ ’
| / @, s (XS )i, 0, (K€ )) O po (s 5,7, 0,y )= O (4 3,70,y )| < O—D 2 U2 l)

(7’ B s) 1+Z+B .
so that combining the two previous bounds finally yield

Wy (1, 1)

| <c ) Tt 9(c(t —s), 2 — x).
2

where 8 € [0,452) if n = 0 and B € [0,7) if n = 1.
o Estimate on IIl:

From the relation ([#24), the mean-value theorem and using the fact that y — a(r,y, u) is n-Holder,
it follows that « — [ a(r, v, [Xf*f*(m])ag [0upm (1, 8,7, 2,9)](v) dy is B-Holder continuous with a modulus

bounded by C(r—s)~ o 1, for any 3 € [0, 1], for some positive constant C := C(|a|, [a] ). Hence,

one has

Wy (. 1)
(r— )" F 2

I//E(T,y, (X3S, [0 (1, 5,7, 2, 9)](0) dy (1 — ) (da)| < C
From ([@32) and (£I5), we get
B /
| @ (R0 0, L2 ) B 010 )] < €

(r—s n
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Consequently, combining the two previous bounds, we obtain

Wy (i) ([ 1 W3 (1, 1)
1) < 027 / ————dr | gle(t—s),z —2) < C—=—"——g(c(t — 5),z — x)
- s (T—s)%ﬂa_” (t—g)%%_n

where 8 € [0,1]if n=0and 8 € [0,2n) if n = 1.
o Estimate on IV:
For the last term, using that y — a(r,y, 1) is n-Holder, we get

v <& ( / / A D) O (s 5.2 ) (0) — O B8, 4] (0)] u'(dﬂf'))
g( (t—s),z—x).

This last inequality completes the proof of the announced estimates on I, II, III, TV.

The estimate (ZI9]) is proved by following similar lines of reasonings. We only sketch its proof and
omit some technical details. Using (HR), the mean value theorem and the space-time inequality (L4,
we get

1
C
m ’ 7t5 ’ — Pm ’ 5t7 ’ S t— (A 1—X y R — d\

51,42 2) = P (50,2, < | o= (s (1= sa)).2 =)

t
(4.33) X (|31 — $9| +/ //(|y/_(E/|77/\1)|pm(ﬂ,51,T,x/,y/) _pm(,u,sz,r,x’,y/)|dy/u(dx/)d7“)

s1Vso
so that

//(|Z - $|77 A 1)|p’m+1(/j/a Sl,t,ZC,Z) _pm-‘rl(/j/a SQatava” dZ,U/(dl')

< (C [s1 = 52|
(

t—s1V SQ)'B_g
C t
e [ [ el A 51072, 2) — i, 2
(t_31 \/SQ) 2 s1Vsa

if [s1 — 82| <t — 51V s2. Hence, by an induction argument that we omit, we obtain
(4.34)
|s1 — so/”

Vﬁ € [0’ 1]’ //('Z - ‘T|n A 1) |pm+1(:u” Slata ZC,Z) _pm-i-l(ﬂa SQata ZC,Z)| dz M(dl‘) S C—n

(t -5V 82)ﬁ75
for some positive constant C' := C(T, A, [A]g) if |s1 — s2| <t — 51V s2. Now, if |s1 — s2| >t — $1 V 89,
[#E34) easily follows from the space-time inequality (L4]). More generally, from a completely analogous
argument, we obtain
|51 — 52|”

(t -5V 82)%+ﬁ

(435) Vz € Rda /(|Z - :C|77 A 1) |8gpm(ﬂ, 51, t,SC, Z) - 8gpm(ﬂ, 52, t,SC, Z)| dz < C

which directly implies

—g,|B
(4.36) //(|z —z|" A1) |02 pm (s, $1,t, 2, 2) — On pm (p, $2,t, 2, 2)| dz pu(dx) < C 51 S2|n7n
(t -5V 82)T+’6
where 8 € [0,1] for n =0, 8 € [0, 2£2) for n = 1, and 3 € [0, 2) for n = 2. Hence, plugging (@34) into

E33), we get
Vﬂ € [Oﬂ 1]’ |pm(ﬂﬂ Sl,t,:L',Z> 7pm(ﬂa 527t51"5’z>|

Slfszﬁ Sl*SQﬁ
< C{ﬁg(c(t —581),z—x)+ ﬁg(c(t — 89),2z — z)}

if [s1 — s2] <t — 81V s9. Otherwise, if |s1 — s2| >t — 51 V s2, we directly get

Vﬂ € [051]5 |pm(ﬂ; Sl,t,l',2> 7pm(ﬂ; 525t7$72)|
|Sl _ 52|ﬁ (t A SQ)ﬁ
=~ mg(c(t — 81 V SQ),Z - SC) + mg(c(t — 81 A SQ),Z - ZL')

|s1 — so|”

S1 — S2 B
< C{(|7|)ﬂg(c(t81 Vs2),z— )+ 0= /\82)59(0(15*51 /\52)7250)}'

t—s1V sy
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Combining the two previous cases, we get

Vﬂ € [Oﬂ 1]’ |pm(ﬂﬂ Sl,t,:L',Z) 7pm(ﬂa 527t51"5’z)|

|51 — 50| |51 — 52|
(4.37) SC{ﬁg(c(t—sl),z—x)—i—mg(c(t—sQ),z—x)}.

More generally, similar arguments as those previously employed allow to derive for n =0, 1, 2

Vﬁ € [Oa 1]) |3;pm(,u,81,t,x,z) - a:pm(,u,SQ,t,ZE,Z)l

e S S L ek | L S
(4.38) <C (t_81)%+ﬁg(c(t $1), 2 $)+(t—52)%+5g(c(t S2),2—T) ¢ .

We now make use of the following decompositon

0y [0uPm+1 (e, 51V 82, t, 2, 2)](v) — OF [Oupm+1(p, 51 A s2,t, 2, 2)](v) =T+ I+ IIT 4+ IV

with

t t
v {0 ([ atnpzvsoar) = pp ([ atelprcmpar) |
s1Vso 5182

t
/ {/(5(7"7 Y (XY O) G, 0, XV S D)0 (51 V 82,70,y ) dy’

1Vs2

4 / / @,y X225 G, [R5 SO0 D (151 V 52,7,y )|(0) dyf u(dw’)} dr,

t
II1:=Df,_, (/ a(r, [Xfl/\sz’g’(m)])dr>

1/A\S2

t
(/ (/(5(“ y' (X Ve ) — Gy (X028 0] 9 p (1, 51V 82,70, y) dy'

1Vsa

+ / (@', (X o= 0]) =G v, [X o5 0)))
. (8;+npm (H’ﬂ s1V $2,T,0, y/) - 8;+npm (,LL, s1 A 52,1, 0, y/)) dy/) dT) )

t
I :=Df._, (/ a(r, [XflASZ,g,(m)])dr)

1/A\S2

t
-(/ { / (@(ryy', (X3 Vo2 8 0)) —a(r,y (X052 0]) O [0 51 V 82,72,y (v) dyf

1Vsa
" / / (@(r,y/, (X9 0]) = a(r, !, XA 0 0]))

(O 10upm (ps 51V 52,7, 2, y)[(0) = O [Oupm (s 51 A 52,727, ))(v)) dy’ pu(da’)} d?‘)a

t
IV:=Df,_, (/ a(r, [Xfl/\sz’g’(m)])dr>

1/A\S2

t
([ @ e e, (€5 )0 A st

1Vs2

+ / /(Zi(’l“, y,a [X:IASL&(m)]) - Zi(’l“, xla [X:IASL&(m)]))a:} [8upm (,u, 51 A\ 82,7, 'T,a yl)](v) dyl M(d‘ml)} dr,

t
- / {/(6(“ Y (XS ]) =G, o, (XSO0, (0,51 A s, 70,y dy'

1/A\S2

+ / /(Zi(’l“, y,a [X:IASL&(m)]) - Zi(’l“, xla [X:IASL&(m)]))a:} [8upm (,u, 51 A\ 82,7, 'T,a yl)](v) dyl M(dml)} dr)
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and prove the following estimates

— 5|8 — g,|B
| < C{@bl—lf?}wg(c(tsl),z;p) + (t|51)—1f3|’7+ﬁg(0(t52>’2z)} ,for all g €0,1],
2 — S9 2

|s1 — s2|”

— g(c(t — s1 A s2),z — x),where 5 € [0,
(t A 82) 1+2 L8

<ol Bl L ([ [ [ way
(t — 51 A 52>T+B—U t— 51N S2 $1Vss

<010, 151V 52,72y )] (0) = Db 11,51 A 5272”3 (0)| dy’ a(da’) ) |

1
1 <c ﬂ)

,for n =0, andﬂG[O,g) forn =1,

1
x g(e(t — s1 A s2),z —x), where § € [0, 3 +n),if n=0,and 8 € [0,n)if n =1,

|s1 — s9/”
(t A 82) 1+7217n+ﬁ

| <c 1t

1
g(c(t — 81 A 82),z — x) where § € [0, 5

,forn=0, and § € [O,g) for n = 1.
The previous estimates in turn imply

/ / (I — 27 A D)0 By (1 51V 52,1, 27, )](0) — O Byumas (1251 A 521 8,27, 4] (0)] dy’ ()
|81 — 82|ﬁ 1
(t—s1Vs2) TP (t =51V s2)' 73

<c|

t
< =P AV O v s 1) = 0201 A s )] df ) ]
s1Vsg

which, by an induction argument that we omit, yields

[z A D10 1151V 520" 2] (0) — DOy 1 Aoty 2)](0)] d ()

|51 — so|”

<C —
(t —S51V 82)%+ﬁin

for some positive constant C' := C(T, A, |d@|oo, |Aloo, [@]a, [A]zr). The previous bound finally implies
(#EI9). It now remains to obtain the announced estimates on I, IT, III, IV. We only prove the estimates
on I and II and omit the proof for the others since they stem from similar arguments.

o FEstimate on 1:
Using the fact that y — a(t, y, p) is n-Holder uniformly with respect to ¢, u, the space-time inequality

(C4) and [EI3), we get
t — —
[ @ R0 o, LYo )0 iV s
s51Vso

[ [ @y [0 st [0 OV s ) ) ]
¢ 1

< C’/ = dr
s1vss (1 — 81V 82) 2

(tn-
<Ot — 51V o) m 52,
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If |s1 — s2| >t — 51V $9, one directly gets
W) Do ([ atlkeveeon)an| + |pr (

<¢livy

t t

ol (X7 ) |

1Vsa 1/AS2

glc(t—s1Vs2),z—x)+ g(c(t_81/\32),2_$):|

(t — 851 A SQ)
(t — 81 A SQ)ﬁ
(t A 82)1+Bg

|s1 — s9/”
(t —Ss1V 82)1+ﬂg

IN

C{ (c(t—s1Vs2),z—x)+ (C(t*Sl/\SQ),Z*:C)}

IN

|s1 — so|”
C{—(t o1V 52)1 TP g(c(t —s1V 82),2 —x)

(t—s1Vs2)? + |51 — s2|?
(t — 851 A 52>1+ﬁ

gle(t —s1 Asa),z— x)}

<C{Mg(c(t—s ) z—:z:)—l—Mg(c(t—s ) z—x)}
=t —s)H8 t (t — 52)1+P 27 '

Otherwise if |s1 — sa| <t — s1 V 89, using the mean-value theorem, (HR)) and (£34]), we obtain

t t
‘szfx (/ a(r, [XﬁlVS%fv(m)])dr) —Df._, </ a(r, [XTsMsQ,&,(m)])dT) ’
s1Vsa S1/A\S2
1

C [ [s1 — s2] + |s1 — s9/? } (c(t — (As1 4+ (1 = N)s2),z — x) dA
o Lt—(s1+(1—=X)s2)?  (t—s1Vsp)tth—3 gie 51 52),2 =%

1
|s1 — s2|” |s1 — so|”
C’/O [(t " et 1 (1= Nsa) 158 + (s A52)1+ﬁ*%} gle(t — (As1 + (1 — N)sa2), 2 — z) dX
|1 — so|” |s1 — so|”
(t—Sl/\SQ)lJ'_’B (t—51 /\SQ)lJFﬁ*%

IN

IN

gC[ :|g(0(t751/\52>,271').

where we used the bound (t — s)™! < 2(t — 51 A s2) 7! for any s € (s1, s2) for the last inequality.
Hence, for all 8 € [0,1], one gets

]DfH < /t a(r,[Xflvsmfv(m)])dr)Df” ( / t a(r,[XflAS?f*(m)])dr)‘

1Vsa 1AS2
|s1 — 50" |s1 — s2/”

and gathering the previous computations we obtain the announced estimate on I.
o FEstimate on I1:
Using the fact that p — a(t, u) belongs to (CS.y), more precisely combining condition (Z9) with

(#£38), one obtains

t
’ / /(5(7’, y, (XY S ) Gy, (X200 )) 91 (1, 51V 52,7, 0, y) dy dr
s1Vso

¢
1
< Clsy — 32|B/ e dr
s1Vso (7’*81 \/82>1+2 148
<C |51 — 59"

(t—s1V 52)1737”'5-
Using the fact that = — a(r, z, ) is n-Holder with (£38]) and the space-time inequality (I4]), one gets
| [ (@t L) — e, prpesim)
(O D (11, 81V 82,7,0,9) — 02T (11, 81 A 82,7, 0,9)) dy) dr‘
< C/(|y — 0T A |03 (s 51V 82,70, ) — Oy i (1, 51 A s2, 7,0, y)| dy dir

|s1 — s2|”

(r—s1Vsa) e

<C
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Gathering the two previous computations yield

B — 5y|B
1| < C|81 527 ( : S1 /;92) g(c(t—s1N82), z—x) < C’( |s1 j21|+nn+ﬁ g(c(t—s1N82), z—x)
— 81 A\ 8o t— 51 A So 2

which is the announced estimate on II.
Step 2: Extraction of a convergent subsequence.

Our next step now is to extract from the following sequences {IL2 S3E pm(&, st x,2),m > 0},
{Rd 3 v = Oupm(p, s, t, @, 2)(v),m > O}, {Rd 3 v = Oy [0upm(p, s, t, 2, 2)](v), m > O} the corresponding
subsequences which converge locally uniformly using the Arzela-Ascoli theorem.

We remind the reader that since (P(™),,> converges weakly to P, for any fixed t > 0 and z € R?,
the sequence of functions {K > (s, x, u) + pm (i, s,t,2,2), m > 1}, K being a compact set of [0, 1) x R% x
Po(R%), converges to (s,z,u) — p(u, s, t,x,z), for any fixed (s,z, ). Moreover, it is clearly uniformly
bounded and from (Z30), [@37) and the direct bound 8, pm (1, 5, ¢, x, 2) < C(t—s) " 2g(c(t—s), z—z), C, ¢
being two positive constants independent of m, it is equicontinuous. Relabelling the indices if necessary,
from the Arzela-Ascoli theorem, we may assert that it converges uniformly. Hence, [0,) x R? x Py(R%) >
(s,x, 1) — pu, s,t,x, z) is continuous.

For any p € Po(R?%) and any integer m, the mapping (s, z) — pm (i, s,t,x,2) is in C%2([0,1) x R?).
Moreover, from the estimates [@31)), (38) and the bound |[92p,, (1, s, t,z, 2)| < C(t—s)" 2g(c(t—s), z—
), the sequence of functions K > (s, x, p) — upm (8, t, 7, 2), 02pm (11, 8, t, 7, 2), are uniformly bounded
and equicontinuous. Hence, from Arzela-Ascoli’s theorem, we may assert that (s,z) — p(p, s, t,x,2) €
C%2([0,t) x R?) and that the mappings [0,¢) x R% x Po(R?) > (s, 2, 1) — 0up(p, 8,t, 7, 2), 2p(u, s,t,z,2)
are continuous.

From (@I5), the sequence {L? D B(0,R) 3 & — Dpp (&, s,t,2,2) = Oupm (s s, t, 2, 2)(§), m > 1} is
uniformly bounded and equicontinuous for any R > 0. Relabelling the indices if necessary, from the
Arzela-Ascoli theorem, we may assert it converges uniformly. Hence, L*(Q, A,P) D B(0,R) > &
P(&, s,t, x, 2) is differentiable. Passing to the limit (along the considered subsequence) in ([@22]) or
as m T 0o, we obtain that (u,v) — 9,p(i, s,t, x, z)(v) satisfies

DBt 5., 2)(0) i= Df_s ( / atr, [)_(ﬁ’g])dr)
|/ t { [ @l (X2 o, 620)0,500, 57,0, 5') df

(4.40) n / / @ o/ X)) — a2 (X)), 5,7, o) () df u(dﬂf')} dr

and the estimate (1) holds for n = 0. As a consequence, P2(R?) > u +— p(u, s,t,x,z) is continuously
L-differentiable and its derivative satisfies (40). From the estimates ([@I9), (EIY) (both for n = 0)
and (ZI5), the same conclusion holds for the sequence K 3 (s, x, i, v) = Oupm(p, s, t,,2)(v), m > 1, K
being a compact set of [0,¢) x R? x Py(R?) x RY, that is, it is uniformly bounded and equicontinuous
(equicontinuity w.r.t the space variable z being a direct consequence of ([@23])) so that the map [0,t) x
RY x Po(RY) x R? 5 (5,2, pu,v) — 0,p(p, s,t, 2, 2)(v) is continuous. By passing to the limit in (EIS)
(n = 0), we obtain (£I0) (n = 0).

From the estimates (LI5) and (@IT7), the sequence R? O B(0,R) > v + 9u[0upm(p, s, t, x, 2)](v),
m > 1, is bounded and equicontinuous. From the Arzela-Ascoli theorem, we thus conclude that v
0up(p, 8,t, x, 2)(v) is continuously differentiable. Passing to the limit (along the considered subsequence)

in (Z24)), we get

611 [8uﬁ(ua s,t, @, Z)](U)

~Dr( ol (X3, / t { [ @ (X59) = o, (X902, 0.0

@) [ [ D = Tl KD s ) i)

and the estimates (Z7)) for n = 1 and (@3) hold. The continuity of the map [0,#) x R? x Py(RY) x R¢ >
(8,2, p1,v) = 0p[0uD(1, 5,t,,2)](v) can be deduced from the uniform convergence of the sequence of
continuous mappings K 3 (s,z, 1, v) — 0y[0upm (1, s,t, 2, 2)](v), m > 1, K being a compact set of
[0,%) x RY x Py(R?) x R?, along a subsequence, obtained from the estimates (ZI7), (ZI8)) and (@I9) for
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n =1 (the equicontinuity w.r.t the space variable being a direct consequence of ([£24))), combined with
the Arzela-Ascoli theorem. The estimates (£I0) for n = 1, (£I1)) follow by passing to the limit in the
corresponding upper-bounds proved in the first step.

Step 3: C122(]0,t) x R? x Po(R?)) regularity and related time estimates.

Let us now prove that (s,z, i) — p(u,s,t,x,z) is in CH22([0,1) x R? x Py(R4)). From the Markov
property satisfied by the SDE ([&1]), stemming from the well-posedness of the related martingale problem,
the following relation is satisfied for all h > 0

i s = hyt, @, 2) = B[p([X:7"], 5,8, X700 ).

From the very definition of the map z — p(u, s, t, z, z), one has |0,5(u, s, t,z, 2)| < C(t—s)~?g(c(t—
s), z — x) so that, combining estimates (7)) with the chain rule formula of Proposition [Z1] (with respect
to the space and measure variables only) we obtain

E[ﬁ([Xih’g],s,t,Xih’I’“,Z)]ﬁ(uvs,t,w,ZH]EU Lop([X3~ ™8], s, b, Xl Z)dT]
s—h

with L,g(x, 1) = 3 01 @i (1, )0s, 0, 9(x, 1) + 5 [ 3052 @i i (r, 10y, (09 (x, 1) (v)]; (). Hence,
one has

1 1 5
E(ﬁ(u,s—h,t,z,z)—ﬁ(u,s,t,z,z)):EE [/ L, ([XS hE],s,t,XS how,p z)dr}
s—h

with
d
> ai i (r (X370, XS, 5,1, 2, 2)

1,j=1

Lop([X7"8] s, t 2, 2) =

l\3|H

= S 0 (K20 [0, K2, .1, ) )] P — o) o ).

3,7=1

Letting A | 0, from the boundedness and continuity of the coefficients as well as the continuity of the maps
(s ) = plp, s, t,x, 2), 02p(u, 8, t, 2, 2), 0y [0,D(1, s, t, 2, 2)], we deduce that [0,t) > s — p(u, s, t,, 2) is
left differentiable. Still from the continuity of the coefficients and of the map (s, z, u) — E_sﬁ(,u, s,t,x, z),
we then conclude that it is differentiable in time on the interval [0,¢) with a time derivative satisfying

Dsp(p, 8,t,,2) = —Lop(p, 5,t,x,2)  on [0,t) x R x Py(RY).

The time derivative estimates ([{8) and ([I2) now follow from the previous relation (&1, the in-
equality [07p(u,s,t,z,2)] < C(t — s)"2g(c(t — s),2 —z), n = 1,2 as well the estimates (@II) and

O

4.3. Well-posedness of the martingale problem. We now have all the ingredients to prove the well-
posedness of the original martingale problem. Under (HC), a standard compactness argument implies
weak existence of solutions to the SDE (ILI)). For sake of completeness, we provide a simple proof of
this claim in Appendix, Section [l We consider two probability measures P! and P? on the space
(C([0, 00), RY), B(C([0, 00), R?)) induced by two weak solutions to the SDE (II). The time marginals at
time s are denoted by P!(s) and P?(s) respectively. We also introduce the two probability measures ﬁ’il,
i =1, 2, induced by the two unique weak solutions to the SDE with dynamics

t t
Xf’z’“:qu/ b(T,Xf’z”u,Pi(T))dTJr/ o(r, X55H P r))dW,, i=1,2.

Note that weak uniqueness to the above SDE under (HR) and (HE) follows from well-known re-
sults, see e.g. Stroock and Varadhan [SV79]. Importantly, we remark that for any t > 0, P¥(t) is the

pushforward measure of u by the map = — ﬁ; (t), that is, Pi(¢t) = [ P! (t) u(dz), or in other words,
Epi[h = Es, h(yt)] u(dx) for any bounded measurable functlons h. In What follows, to make the

notation sunpler, we will simply write P* instead of I@fm when there is no ambiguity.
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We consider the resolvents associated to the above SDEs defined for all bounded measurable A :
R, x R? x Pg(Rd) and all A > 0 by

Sih(saxaﬂ) = E’IEZ [/ e_/\(t_S)h(tayta]Pi(t)) dt} = / e_A(t_S)Eﬁi h(ﬁ,yt,]?i(ﬁ)) dt, =12,

S S

S)éh(svxvu) = (Si - Si)h(saif,ﬂ),

ISR = sup S|
[hloe <1

where we emphasise that the supremum in the last definition is taken over all bounded continuous
function h that does not depend on the time and the measure variables.
Clearly, one has [|S$| < 2/A < oo for A > 0. For a given y € R, we also define the two operators

d d

1
‘Cth(taxaﬂ) = Z;bi(ta xz, N)aﬂcih(ta T, N) + 5 'Zl aiaj(t’ x?ﬂ)aﬂﬂuljh(t’xaﬂ)
i= i,j=
d 1 d
/ sz t z ,U' 8 h(t T M)( )] + 9 Z aiyj(tvzvﬂ)azi [aﬂh(tazau)('z)]j M(dz)a
i=1 ij=1
. 1< 1<
‘Cth(tv'rvﬂ> = 5 Z ai,j(tayvﬂ)amiymjh(tvxvﬂ) +/ 5 Z ai,j(t,y,ﬂ)azi [a#h(tazau)('z)b M(dz)
i,j=1 1,5=1

both acting on smooth test functions € C122(Ry x R? x Po(R?)). Importantly, note that £; has been
obtained from £; by removing the drift and freezing the diffusion coefficient in the space variable but
not in the measure argument. _

From the chain rule formula of Proposition 5.102 of [CDI18|, applied to h(t,y:, P*(t)) under P* for
h € CY22(Ry x RY x P(R9))), h having bounded continuous derivatives and the coefficients being
bounded and continuous, the following identities hold

S0 = (@ + L)h(s,zp) = [ NI (0 (0 + L)ty P e

= /OO e M) (NEg, [h(t, e, P (1))] — 0Bg, [, ye, P (1))]) dt
(4.42) =h(s,x,u), i=1,2.

In a similar fashion, we define the resolvent of the process with frozen diffusion coefficient (with respect
to the space variable) at y € R¢ by

Rah(s, . 1) = / MRt X (X6 dt

where (X" X*);>, is the approximation process defined as the unique weak solution (see Lemma
[AT) to the SDE with dynamics

t

(4.43) Xt =g+ [ oty (X aw,
t

(4.44) Xpoh = +/ a(r,y, [X7¢]) AW,

as well as the Markov semigroup operator Py jh(z, 1) = E[h(X5™",[X*])] acting on bounded measur-
able functions h defined on R? x Py (R%).

Note that, to simplify the notation, in what follows we omit to specify the dependence with respect
to the point y in the dynamics of the process (X‘s b X&,g)t% as well as in the semigroup operator Pst
when there is no ambiguity. The chain rule formula applied to h(t, X;* [X %)), similarly to @242),
implies

Ra(\ — (0r + L))h(s,z, 1) = h(s,z, ).

— o« Y& —
The Markov property satisfied by the solution to the SDE ([@Z3) yields [X; e ] = [X[*], for
any r < s < t. As a consequence, from the very definition of the dynamics (£44]), we deduce that

[Xfy)-(:,z,[s]y[)-(;,s]] — [X;7I7M]'
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For a fixed t > 0, we introduce the real-valued map [0,¢] x R? x Pa(RY) > (s, 2, 1) — V(s,z, ) =
E[h(X5™", [X])]. The preceding discussion clearly yields

S,X;,I,u,[)’(:,ﬁ]

v v v v S, 7:’5 v T, v,
V(s, XpoH [X0F) = E[A(X, XD TNIF = IR [XT4)|F)

is a continuous martingale.

From now on, we restrict our consideration to the class of bounded continuous test functions h that do
not depend on the time and the measure variables, that is, h(t,z, u) = h(z). Hence, one has V (s, z, u) =
Jga h(2)D(p, s, t, @, z) dz. By continuity and boundedness of [0, £) x R x Po(R?) 3 (s, @, p) — by, s, t, x, 2)
and h, the map [0,t) x R? x P2(R?) 3 (s,z, u) — V(s,z, p) is continuous and satisfies limgp V (s, 2, p) =
h(z). We also remark that, from Proposition &1L (s, x, ) — V (s, 2, 1) € CH22([0,t) x R x Py(RY)),
so that, applying the chain rule formula Z3) to V (s, X7®# [X7€]), 0 < r < s < t, taking expectation,
then differentiating with respect to s and finally letting s | r, we get that (s, x, u) — V(s,x, ) satisfies
the PDE:

(0s + L)V (s,2,1) =0, for (s,2,p) €[0,t) x R x Py(RY),
V(t,x, 1) = h(z), for (z,u) € R? x Py(RY).

From the previous argument and using the estimates of Proposition 1l to interchange differentiations
and integrals, the following identities hold

(A= (8¢ + L))Rah(s,z, 1) = / e MNETINE[R(X PP H)] dt — O, / e MR [R(X M) di

S

- / e M=) L BR(X ™M) dt

S

(4.45) :/ e’A(t’S))\E[h(Xf’I’“)]dt—|—h(x)—/ e M= NE[A (X)) dt

S S

- / e~ M=9) (9, £)E[R(X5] dt

= h(z)

for h € CZ2(RY). Let 6¥(x) = g(e,y — x), € > 0, be an approximation of the Dirac mass at point y. Let
r > 0. Since (s,z, 1) — p(u, s,t +r,2,2) € CL22([0,t) x R? x P(RY)), we remark that for h € Cp(R?),
the mapping

(5,2, 1) = RAP, 48 h(s,x, ) =/ e NI, 4 6LR(X T (X)) d

S

:/ e_)\(t_s)Ps7t+régh($,M)dt

S

is in C122(Ry x R? x Po(R%)). Note that the fact that r > 0 allows one to differentiate w.r.t the variables
s or z inside the integrals by removing the singularity when ¢ | s. Consequently, from the identity (42l
and Fubini’s theorem, one derives

sg/ A= (D + L)) RAP.4 6% h dy — / S (A= (B +L))RaP. 4,60 h dy = /RAP_,,H(sgh dy, i=1,2,
R R
Combining the previous equality with the identity (£45]) and Fubini’s theorem we thus obtain
/R@,,wsgh dy= [ S\(A\— (0 +L))R\P, 1.6Yhdy

Rd

= [ Si(A— (8 + L))RAP, 4.0%hdy — [ SA(L—L)RAP, 4+6¢hdy
R4 R4

= | SAP.4rdthdy — | S\(L—L)R\P. 4r0¢hdy
Rd Rd

(4.46) =5} [ Poaithdy S} [ (£ DRP.abthdy
R4 R4

We now pass to the limit in the previous equality as € | 0 and then as r | 0. Let us consider the
term appearing in the left-hand side of the previous expression. The dominated convergence and the
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continuity of the map r — p¥(u, s,t + r,y) yield

limlim [ RyP. -0Yh(s,z,p dyfhmhm/ e A= S)// Y, s, t+r,x,2)g(e,y —2)dzdy

710 €10
= lim Alt= S// pY(u, s, t +r,z,y)dy
rl0

_ / e—w—s> / B (s 5., 2, ) dy
= Ekh(saxaﬂ)‘

We then apply the dominated convergence theorem and Lemma [T to obtain

limlim [ P 44r6Yh(z, p)dy = lim1 ot oy —2)dzd
limlim [ P (2, p)dy rlﬁ)léﬁ)l// Yt t+ry)gle,y — z) dzdy
—hm/ Y (u, bt + 1,2, y)dy

so that, again by dominated convergence,

4.4 lim1 pY_5Y = Sih.
(4.47) 7}?0161135)\(/ WH(SEhdy) Sih

In order to investigate the limit of the second term appearing in the right-hand side of (£486]), we first
need to introduce some notations and derive some key estimates. Observe that from the very definition
of the operators L;, L and the density z — p(u, s,t,x, z), one can write

(Ls — Ls) Py h(z, 1) = /Rd h(z) (Ls — Ls)p(u, s,t,x,2) dz

= [0 Sk ) + S (s 2)) d
Rd

with
d
SE (@ 2) = (= D bils, v, 1) 0, Bl 5,3, 2)
i=1
1 &
+ 5 Z (ai7j(s’ €T, ,LL) - ai7j(s’ Y, M)) 851-,11-17(#7 st x, Z)
ij=1
d . t B
(4.48) = ( - Zbi(s,x,u)H{ (/ a(r,y, [X58))dr, z — :I:)
i=1 s

+ % zd: (i (5.2, 1) — @i g (s,y, 1)) Hy? (/t ary, (X7 ])dr, z x) )

g/ a(r,y, Xsf)drzz>,



WELL-POSEDNESS OF NON-LINEAR SDES AND PDE ON THE WASSERSTEIN SPACE 37

d
S2wnz) = [ D0 blon 2 10[0ubo 5,12, (s )

d
1 _
+/§ (ij(s, 2", 1) = @i j (5,9, 1) Ot [0uD(p, 5., 2, 2) (2")]i p(d2')

:/{zd: bi(s,z’,u)%(Hg’k.g) </t a(r,y, (X} ])dr2—$>

-

<.
Il
—

(z’)) dr

K2

d t
1 (- g
+5 E (aij(s, 2", 1) — aij(s,y, u))g(Hz .9) </ a(r,y, (X ])dr, z — w>

i,4,k,0=1

t
< [ o, (ay { / ak,m,y,z",[Xf*ﬂ)zay(u,s,r,z"mz"} (z'>> dr} u(d=")
S V:H 1

When the freezing point y is chosen to be the terminal point z of the above kernels, we denote
by Sst(:c M, 2) = S (wop,z) + Sof (w2 ) the corresponding kernel and also write Ssl’tyh(z p) =

Jza B Uz, p, 2 )dz S2Vh(z, 1) = fra b Y@, p, 2) dz and S, h(x, 1) = [pa h(2) SZ(x, 1, 2) dz
for the assomated operators.

Importantly, we point out that the law [)‘(5,5] also depends on the freezing point y in the above kernels.
We now derive some important estimates on these kernels. First let us note that from the boundedness of
the coefficients and (LH) one easily gets that there exists positive constants C := C(T, |b|co, |¢|cc ), ¢ 1=
¢(\) such that

(4.50) V(w, z,y, 2) € Pa(RY) x (RY)3, |S;’§’(Jc,u,z)| <C(t—s)"tg(e(t —s), 2 —x)
and, from assumption (HR) and the space-time inequality (L4]), one also derives
(4.51) V(i x,2) € Pa(RY) x (RY)?, |87 (w, 1, 2)] < C(t— )" FEg(e(t — s), 2 — 2).

The estimate on 5521;7’ (x, u, z) follows directly from Proposition [£Il Using the boundedness of the
coeflicients, one easily gets

(4.52) Y(p, z,y, 2) € Pa(RY) x (RT3, |852,’ty(:13,u, 2| <Ot — )" 3g(e(t — s), 2 — ).

Observe now that, by Fubini’s theorem, one has
[ Drp oty dy = [ [ NCNLL - L), 82 dtdy
= / ei/\(tis) /(85 t+r + Ss t+7‘)56yh($7 M) dy dt

= / e_k(t_S) / 5g(z)h(z) (Ss S+ + Ss t+r)(‘ra s Z) dz dy dt.

s (R4)2

Combining (£50), (£52) with Lebesgue’s dominated convergence theorem yields

hm (Ss RENS + Ss t+r>($7 /L? z)5§(z)h(z)dz dy = / (Ss Jt4r + Ss t+r)(z ,LL y)h’( )dy
€l0 (R4)2 Rd

= s,t-‘rTh(‘Ta M)

so that again by (£E1l), [@52) and the Lebesgue dominated convergence theorem

lim [ (£ = D)RAP. rd2h(z, 1) dy = / A8, o (i, ) dt.
€ S
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We finally observe that Ry 3 7+ S, t4rh(z, pt) is continuous so that from the estimates [@51]), [A52)
and Lebesgue’s dominated convergence theorem, we derive

N AP P ” 1 Oo_)\(t_s) )
1T1JI/1£)11€1J{18 (L —L)RAP, +76Yh(x, 1) dy 1:%/9 e Ss.t4rh(z, p) dt

= / e A=) h?ol Ss.t4rh(z, p) dt

:/ efA(tfs)Ss,th(%M) dt

which in turn, again by the dominated convergence, yields

lim lim S3 (/(c —L)R\P. 1 .0%h dy) =i (/ e M98, h dt) :

Hence, putting everything together we conclude that the following key identity holds

(4.53) Sih — S5 (/ e M98, 1k dt) = Rah(s,z,p), i=1,2

S

S{&h =S8 ( / e M98, h dt>

and, from (@351 and ([{52), one can pick A large enough such that

which in turn implies

= At-s) % _Ai-s) 14T g, () 1
s s 2

which by the very definition of || S5 | clearly yields
e 1
spf=[sg ([ e sunar) | <SSRl

By an approximation argument, the last inequality remains valid for real-valued bounded continuous
functions. Taking the supremum over i (we remind the reader that h does not depend on the time and
the measure variables) satisfying |h|o < 1 yields ||S]| < 2]1S5 and, since [|S$]| < oo, for any A > 0,
we conclude that [|S$[| = 0. Consequently, [ e =Bz [h(y,)]dt = [7° e =Bz, [h(y,)] dt. By
the uniqueness of the Laplace transform together with the continuity of the mappings ¢t — Es, [h(y2)],
i =1, 2, we obtain E, [h(y:)] = Eg,[h(y:)], t > s, if h is bounded continuous. By a monotone class

argument, the previous equality also extends to bounded measurable functions. Hence, ﬁil(t) = Iﬁfz (t)
and pushing forward the previous equality with respect to the law p of the initial condition, we get
P(t) = P%(t) for all t > s.

Finally, since P! and P? share the same one-dimensional marginal distribution, we remark that P! and
IP? are two solutions of the same standard martingale problem associated to the following operator with
time dependent coefficients: Ly := b;(t,2); + $as,;(t, 2)0?, with b(t, ) := b(t,z,P1(t)) = b(t,z, Pa(t)),
o(t,x) = o(t,z,P1(t)) = o(t,x,Pa(t)), @ := oo™ for which the well-posedness follows from Stroock and
Varadhan [SV79]. Hence, we conclude that the finite-dimensional distributions of P! and P? coincide
so that P! = P? and the martingale problem associated to the SDE (ILI)) is well-posed. The proof of
Theorem is now complete.

Remark 4.1. (Extension of Theorem by an approximation argument) The previous result on weak
existence and uniqueness for the SDE (L)) can be slightly improved in the case of scalar interactions by
means of an approximation argument that we now briefly explain without going into too much technical
detail. Similar arguments can be used for other examples.

Assuming d = ¢ = N = 1 for simplicity, that is, b(t,z,n) = b(t,z, [¢(z')pu(dz’)) and a(t,z, p) =
o?(t,x, [ o(x')u(dx’)), it is possible to establish the well-posedness of the martingale problem under the
following weaker assumption: (¢,z,z) — b(t,z,2) and o are bounded and continuous functions, ¢ is
bounded measurable, z — o (¢, xz, z) and ¢ are n-Holder, z — o(t, x, z) is continuously differentiable and
o2 is uniformly elliptic.

From Theorem 174 p.111 of Kestelman [Kes60], there exists a sequence (¢)n)n>1 of continuous func-
tions defined on R such that supysq ¥~ |co < |[¥]oo and limy4eo v = ¢ a.e. One may also approximate
o by a sequence (on)n>1 such that limy an(t, 2, 2) = a(t,z, 2) for every t,z,2, z = an(t,z,2) is C
and satisfying supyq sup; , , [0.0n(t, @, 2)| < sup, , . [020(t, 2, 2)|0o, SUPN>1[an]a < [a]m-
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Weak existence and uniqueness to the SDE (L)) with coefficients by (¢, z, n) = b(t, z, [ ¥ (z/)p(dz’))
and an(t,z,p) = o (t,z, [ (2" )p(dz’")) defined above, follow from Theorem 331 Denote by (PY)n>1
the associated sequence of probability measures. From the boundedness of the coefficients, the sequence
(PN)n>1 is tight and up to an extraction of a subsequence it converges to a probability measure P>.
Passing to the limit in the characterisation of the martingale problem in terms of conditional expectations,
it follows that P> is a solution to the martingale.

Then, the key idea consists in passing to the limit as N 1 oo in the relation (£53)) in order to prove
that it still holds for any weak solution of the limit equation. We proceed as follows and deliberately
skip some technical details.

We first remark that the transition density pn(p,s,t,z, z) associated to the SDE with coefficients
by and oy exists and can be represented in terms of an infinite series as in ([FI0) but with b and a
replaced by by and ay in H and p. By dominated convergence, one may pass to the limit as N 1 oo
in the representation so that py(u, s,t,z,2) = Poo(i, 8, t, @, 2) Where poo (1, 8, t, x, z) satisfies a similar
representation in infinite series but with coefficients (¢,z) — b(¢, z, P>°(t)) and (¢, z) — a(t, z,P>°(t)) in
the very definition of p and of the kernel H. Hence, by (BI1]) and dominated convergence,

1ij{ln5§\vh(s,x,u) = h]{]n/ ef)‘(tfs)/h(z)pN(u,s,t,x,z) dzdt

:/ e_’\(t_s)/h(z)pm(u,s,t,x,z)dzdt
=: SS°h(s,x, ).

Then, we importantly note that, from Proposition Bl (s,z,u) — pn(u,s,t,x,2) € CH>2([0,t) x
R? x Py(R?)) and satisfies the estimates ([@7) to ([EJ) with constants C, ¢ that do not depend on N.
Hence, relabelling the indices if necessary, noting that by weak uniqueness of the proxy process ([@.1]) with
coefficients a (see Lemma 1)), p — pn(u, s,t,x,z) converges to u — p(u, s,t,x,z), from the Arzela-
Ascoli theorem, we may assert that {v — 0} [0u.pn (1, 8,t, 2, 2)](v), N > 1} converges uniformly so that
v = 0[0up(1, s,t, x, z)(v)] is continuously differentiable for n = 0 and continuous for n = 1. Hence,
passing to the limit as N 1 oo, by dominated convergence, we get

lim Sy ( / e—Mt—s)s;Ythdt) = 55° ( / e"\(t_s)S&thdt)

where SYY, is defined as in ([Z48) and @ZJ) but with coefficients by and ay instead of b and a. Finally,
by dominated convergence,

lim RY h(s, . 1) := 11;31/ e’A(H)/h(y)ﬁ?v(u,s,t,w,y) dy

:/ e*“”’/h(y)ﬁy(u,s,t,:c,y)dy

=: Ryh(s, x, ).

By passing to the limit in (£53), we thus conclude that for any weak solution P> of the SDE (LT
with coefficients b and o

S°h — S5 (/ e M98, h dt) = Ryh

and one completes the proof of weak uniqueness by following the same lines of reasonings as those
employed in the rest of the proof of Theorem

5. EXISTENCE AND REGULARITY PROPERTIES OF THE TRANSITION DENSITY

This section is dedicated to the proof of Theorem[3.9l Hence, throughout this section, we assume that
(HC), (HR;), (HE) are in force and that both maps p+— b(s,x, 1), a(s,x, ) belong to (CSy).

5.1. Strategy of proof. Our strategy is essentially the same as the one employed for the proof of
Proposition &Il To be more specific, for a given initial condition (s, ) € Ry x Po(R?) and a probability
measure v € Po(RY), v # p, we let PO = (P(O)(¢));>, be the probability measure on C([s, o), R%),
endowed with its canonical filtration, satisfying P(°) (t) = v, t > s, and we consider the following recursive
sequence of probability measures {P(m);m > 0}, with time marginals (PU™(t));>s, where, P(™) being
given, P("+1) ig the unique solution to the following martingale problem

(i) PO (y(r) € T;0 < r < s5) = (), for all T € B(RY).
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(ii) For all f € C2(RY),

d
1 m
f(yt) - f(yé) - / Z b Ty, P ))a f(yT) Z 5@1',]‘(7“, y’!‘)P( )(r))aigf(yr) dr
s i,j=1
is a continuous square-integrable martingale under P(m+1),

Note that, under the considered assumptions, the well-posedness of the above martingale problem
follows from standard results, see e.g. [SV79], so that there exists a unique weak solution to the SDE

t t
(5.1) xpomt) — ¢y / b(r, X6+ (X &My g 4 / o(r, X3 (X280 qw,.

We also associate to the above dynamics the decoupled stochastic flow given by the unique weak
solution to SDE

¢ ¢
(5.2) th,z,u,(mﬂ) — +/ b(r, Xﬁ,x,uy(erl), [Xf’g’(m)])dr +/ o(r, Xﬁyryuy(erl)’ [Xf’g’(m)])dWT.

We point out that the notation X" {(m+1) hakes sense since by weak uniqueness of solution to the

SDE (&), the law [X S’g’(m)] only depends on the initial condition £ through its law fx.
From [Fri64], for any m > 0, the two random variables X% (™) and X (™) admit a density

respectively denoted by pm, (1, s,t, z) and py,(u, s, t, z, 2). Moreover the followmg relation is satisfied

(5.3) Ve € R pnsiti2) = [ bl oo 2)a(d)

where for all m > 1

(5'4) pm(,u,s,t,ac,z) = Z(ﬁm®7{$f§))(u,s,t,x,z),
k>0

with

t
Pty 5,7,1,,2) — g ( / afw, 2, (X5 D])do, 2~ ) |

¢
Ho (8,7, t, 2, 2) { sz oz, [ X2 M=) Hi (/ a(v, z, [ XM= D])dy, 2 z>

=1

1 s,&,(m— s.&.(m—
+§(am‘(7’, @, [ X)) — a5 (r, 2, [ X3S TY))

o t
e e e R | LA A

and Hgfﬂ)(u,s,t,x,z) = (Hm *) @ H,n ), s, t,x, 2), © _ 1,, with the convention that [th,g,(o)] =
PO(t) = v, t > 0. In what follows, we will often make use of the following estimates: there exist
constant ¢ :=¢(\) > 1, C := C(T,a,b,n) > 0, such that for all 0 < s < ¢ < T, for all integer k, one has

(5.5) Y(z,2) € RY% [P @ HE) (u, 5, t, 2, 2)| < C¥(t HB (1 +— ) 2) gle(t—s),z—x)

where B(k,{) = fol(l — v) "Ry~ 1+dy stands for the Beta function. As a consequence, from the
asymptotics of the Beta function, the series (5.4]) converge absolutely and uniformly for (u,x,z) €
Pa(R?) x (RY)? and satisfies: for all m > 1, for any 0 < s <t < T and any (u, z,2) € P2(R?) x (R4)?

(5.6) |02 pm (s, 5,t,2,2)] < Ot = 5)7% gle(t — 5),2 — 2), n=0,1,2,

where C' := C(T,a,b,n) and ¢ := ¢(\) are two positive constants and for all (z,2') € (R?)2, for any
m > 1,

|6;Pm(,ua s, T, T, Z) - a;pm(,u/a S, T, LL'/, Z)|

_ 2B
6.7 < O (gl 9 =) ety =)= )} m =012
r—Ss) 2
where 8 € [0,1] if n =0, 1 and 5 € [0,7) if n = 2. We refer to Friedman [Fri64] for a proof of the above
estimate.
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Denote by ®,,(u, s, 7, t,21,x2) the solution to the Volterra integral equation
(58) (I)m(/% S, T, ta T, :CQ) = Hm(ﬂ, S, T, ta X1, :L'Q) + (Hm 0 (I)m)(ﬂa S, T, ta X1, ‘TQ)‘

From the space-time inequality (L4]), it is easily seen that the singular kernel H,,(u,s,r,t, z1, z2)
induces an integrable singularity in time in the above space-time convolution so that the solution exists
and is given by the (uniform) convergent series

(59) q)m(M,S,T,t,Sbl,SCQ) :Z%gf)(uv&ﬁt,zl,xz)
k>1

so that (5.4 now writes

(5.10) Pm (1, 8,6, 2, 2) = P (1, 5, t, 7, 2) / / P (s 8,7, 2,9) P (1, 5,7, 1, y, 2) dy dr.
]Rd

Moreover, from Theorem 7, Chapter 1 in [Fri64], for any m > 1, the map = — ®,,(u, s, r,t, 2, 2)
is Holder-continuous. More precisely, for any 8 € [0,n), there exist two positive constants C' :=
C(T,a,b,n,A), c(A\), thus do not depending on m, such that

|(I)’m(/j/a S,T,t,l’,Z) - (I)’m(/j/a S,T,t,y,Z)l
|z —y?
(5.11) SCO—— 5 {glclt=r),z —a) +glc(t —7), 2 —y)}.
(t —r)tt—=
With the above notations and properties, we prove the following key proposition whose proof is
postponed to the next subsection.
Proposition 5.1. Let T > 0. For any fixed (¢,2) € (0,7] x RY, for all m > 1, the following properties
hold:
e The mapping [0,¢) x R? x Po(R?) > (5,2, 1) = pm (i1, 5, ¢, 7, 2) is in C122([0,1) x RY x Py(RY)).
e There exist two positive constants C := C(|b|oc, [b] 1, |bloo, [D] 1, |@|oos , [a] 1, |G|, [@)a, T), ¢ =
¢()), thus do not depending on m, such that for any (u, s, z, 2, z,v,v’) € Po(R?) x [0,) x (R?)?,

(512) |8g[aupm(%57t7$»2)](v)| < #g( (t - S),Z - :C), n= 07 15

g(e(t —s), 2 — x),

(513) |aspm(ﬂa5at7xvz)| < t— s

|a:}[aﬂpm(lu” S’taxvz)](v) - a:}[aﬂpm(:u” s,t x/’ Z)](U)|
T
(5.14) Sc(t—ls)% {g(c(t —s),z —x) + glc(t —s),z — ")},

where 8 € [0,1] for n =0 and 8 € [0,7) for n =1,

Vﬂ S [07 77)) |av [aupm(ﬂa S, tv €, Z)](U) - 871 [aﬂpm(,uv S, t? z, Z)](’U/)|

lv—v'}f
7(15 )H_Bw g(c(t —s),z — x).
_ o)+

There exist C := C([bloc, (B, [bloo: (bl | Blos, [Bli, laloo, [a ]H,Ialoo,HH,lﬁlooﬂH, r) >0,
¢ := ¢(\) > 0, thus do not depending on m, such that for any (u, u',s,z, z,v) € (P2(R%))? x
[0,2) x (RY)?,

(5.15) <C

(5.16) 0 P11, 5,6, 2) — Do (4,8, 2)]| < c(()i““) olclt - s),z —a),
t— p)

where 8 € [0,1] for n =0, 1 and 8 € [0,7) for n = 2,
|a:}[aﬂpm(lu” S’tvxvz)](v) - a:}[aﬂpm(,u/a Sataxvz)](’l}”
B ’
(5.17) < C(VVQ)(% gle(t —s),z —x),
t—s)” =z

where 3 € [0,1] for n =0 and 3 € [0,n) for n =1, and for all (s1,s2) € [0,1)?,



42 P.-E. Chaudru de Raynal and N. Frikha

|agpm(:u’a S1, t,.’L', Z) - agpm(,u/a 52, t,.’L', Z)'

(5.18) <C{wg(c(t—sl),z—x)—i—wg(c(t—@),z—x)},
- (ﬁ—81)5+ﬁ (t—82)5+ﬁ

where 8 € [0,1] forn =0, 8 € [0,1—*2'71) forn=1and 3 €[0,2) for n =2 and
|8L‘[8Hpm(u, S1, t,.’L', Z)](U) - ag[aﬂpm(ua SQata ,T,Z)]('U)l

81— S8 B §1— S8 B
(519) < C{(tlsl)%g(c(t 81),7; - SC) + %g(c(t - SQ),Z — :C)} y
— 91 — 92

where 3 € [0, 2).

The proof of the above result being rather long and technical it is postponed to the subsection
Then, since the coefficients b;, a; ; are bounded and the initial condition p € Po(R?), the sequence
(P(m))mzo is tight. Relabelling the indices if necessary, we may assert that (P(m))mzo converges weakly
to a probability measure P*°. From standard arguments that we omit (passing to the limit in the
characterisation of the martingale problem solved by P(m)) we deduce that P> is the probability measure
P induced by the unique weak solution to the McKean-Vlasov SDE ([LI). As a consequence, every
convergent subsequence converges to the same limit P and so does the original sequence (P(m))mzl.

By Lebesgue’s dominated convergence, using (B.5]), one may pass to the limit as m 1 oo in the
parametrix infinite series (B.4]) and thus deduce that the sequence {pn,(u,s,t,z,2z), m > 1} converges
to p(u, s,t,x,2) given by the infinite series (BI0) for any fixed (u, s,t,,z) € Pa(R?) x [0,T])? x (R9)?
satisfying 0 < s <t <T.

Finally, the same lines of reasoning as those employed for the second and third steps in the proof of
Proposition 1] apply. To be more specific, combining (5.7)), the estimates (12) to (5I9) with Arzela-
Ascoli’s theorem yield that the mapping (s,z, ) = p(u,s,t,z,2) is C%22([0,t) x R? x Py(R%)) and
passing to the limit along the corresponding subsequence in the above estimates allows to conclude that
the estimates (3.I10) and BIR) to ([B23) are valid. One then deduces that (s,z, pu) — p(u, s, t,z,z) €
Ch22([0,t) x R% x Py(R%)) by combining the Markov property of the unique solution to the SDE (1),
inherited from the well-posedness of the related martingale problem, with Proposition Z1] applied to
p([X27¢] 5,8, X5~ M®1 2) on the interval [s — h, s]. In particular, by a similar argument as the one em-
ployed in the third step of the proof of Proposition 1] one proves that the map (s, z, u) — p(u, s,t,x, 2)
is a solution to the following PDE

asp(ua S,t,.’IJ,Z) = _Esp(,uasataxvz) on [Oat) X Rd X PQ(Rd)

with the terminal condition: limg p(p, s,t, x, 2) = §.(z) in the weak sense. Finally, the estimates (Z.16])
and [BIT) follow from the previous identity combined with the estimates (5.6]) and (3I5) in the one
hand and the estimates (BI3)) and (BI8) on the other hand. We now move to the proof of Proposition
b1

5.2. Proof of Proposition 5.1l We proceed by induction on m. For m = 1, observe that [0,) x R% x
Po(RY) 2 (s, 1) = prp,s,t,3,2) = 3 oD @ ’Hgk))(,u,s,t,x,z) is continuous, where we emphasise
from the very definition of our iterative scheme that p; and H; do not depend on the law p but only on
the initial probability measure P(®) of the iterative scheme. Hence, p — p; (i, 8,t, 2, 2) is continuously
L-differentiable with 8,p1(p, s,t, 2, 2)(v) = 0y[0up1 (1, 8, t,2,2)](v) = 0. For any p € P2(R?), (s,z) —
p1(p, s,t,z,2) € CH2([0,t) x RY).

Moreover, differentiating n-times (n = 1,2) w.r.t the variable z the relation

/dﬁm(u,S,T,I,y)‘I)m(M,S,T,t,y,z) dy: /dﬁm(ﬂ;S,T,IE,y)[(I)m(M;S,T,t,y,Z) 7(1)771(”7577"7@1'/’2)] dy
R R

’

Bl t2,2) [ (B syr) = B s, dy
R
+ (I)’m(/j/a S, rata$l7 Z)

and then choosing 2’ = z, by Lebesgue’s differentiation theorem, we get

/d Oy Pm (e, 5,7, 2, ) Pon (11, 5,7, 8, y, 2) dy = /d 0P (s 8,7, 2, 9) [P (11, 8,7, 1,y 2) — Pon (1, 8,7, 8, 0, 2)] dy
R R

FBnlsrti2) [ 0095 0) — OB o1, 0)]
R
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The n-Holder regularity of = — a(t, x, 1) and the space-time inequality (L4]) implies
(5.20)

10555 (5,72, 9) =0 P (s 5.7, y) | < Kly—a|"(r—5)" 2 g(e(r—s),y—2) < K(r—s)7= g(c(r—s),y—x)
and, from (G.IT)) and the space-time inequality (L4),

—n+8

|/d a;lﬁm(,u,s,r,x,y)[‘bm(u,S,r,t,y,z)—@m(,u,s,r,t,x,z)] dyl < K(t_r)ilJr%(r_S) 2 g(C(t—T‘),Z—.’L‘)
R

for any 8 € [0,n). Hence, differentiating (G.I0) w.r.t the variable x, from Lebesgue’s differentiation
theorem, we obtain

a;lpm(u’ S’t7$7z) = a;lﬁm(u’ S’t7$7z)

t
(5.21) b [ 0B ) [ 5,1 8,02) = B, 2)] dy
s JR4

t
b [ @nlnsrtias) [ (05 s ) - 925 (s, ) dydr, n = 1,2
s Rd

Observe that since [XS’E’(O)] = v we have that ®1(u, s, t,z,z) = ®1(r,t,x,2) and p1(p, s, 8,t,2,2) =
p1(s,t,x,z). In a completely analogous manner, one may differentiate w.r.t the variable s the relation
(EI0) for m = 1. We obtain

8sp1(/1/7 Satal'a Z) = asi)\l(sata :C)Z) - (I)l(sata :C)Z)

t
(522) +/ 8sﬁ1(s,r,x,y) [q)l(ratayaz) —(I)l(r,t,(E,Z)} dyd?"
s JRd

t
+/ <I)1(r,t,:c,z)/ [8S§?{(s,r,z,y)—8S]3f(s,r,:c,y)} dy dr.
s R4

Then, Lebesgue’s dominated convergence theorem, the inequality |9spy(s,r, z,y) — Osp7 (s, 7, z,y)| <
Cle—y|["(r—s)"tg(c(r—s),y—z) < C(r—s)" "2 g(c(r—s),y—x), derived from the space-time inequality
(T4, (5I0) as well as the continuity of the mappings (s, x, u) — ®1(r, ¢, x, 2), a(s,z, p), b(s, z, u), allow
to conclude that the three maps [0,t) x R? x Po(R?) 3 (s, 2, 1) = Oup1(p, 8, t, 2, 2), 02p1 (1, 5,1, 7, 2) are
continuous. From the previous computations, the estimates (5.12)) to (B.I7) and (&.19) are straightforward
for m = 1.

In order to derive the estimate (5.IJ]), we proceed as follows. First, observe that we may assume
without loss of generality that |s1 — sao| <t — s1 V so. Indeed, if |s1 — sa| >t — 51 V $2, then from (5.6
one directly gets

|a;lp1(ﬂaslvt;zﬂz)7821)1(#5525157:672”
= |82p1(%51 v sz,t,:c,z) - a:?pl(,LLvS? A 527t51"ﬂz)|
1 1
<CS———Fgle(t—8s1VSe),z—2)+ ————9g(c(t —S1 NS2), 2 — T
< o{ Gttt s Ve s - a) + (et s ns) - o)
(t*Sl/\Sg)ﬁ

|51 — $2|°
<O ————F—qglct—51VS2),2—2)+ ——F—
= {( ( ( 1 2)’ ) (t*Sl/\SQ)iJrﬂg

t— S1 \/82)%+ﬂg

(c(t — s, ASQ),zz)}

S1— S B S| — 5 8
SC{(l_lsil)zhﬁg(c(t_sl)az—x)+ﬁg(c(t—82),z—x)}’

for any 8 € [0,1] which is the desired bound. Hence, for the rest of the proof of (B.I]), we will assume
that |s1 — s2| <t — 51V s2.
From (&2Z1)), for all m > 1, we easily obtain the following decomposition
agpm(ﬁh s, t,x, Z) = agﬁm(ﬂﬂ s, i, x, Z)

tts
2
[T 0 ninsir ) [ s 2) = Bl 2)] dy
s R4
t+s

2
(5.23) [T ntusnitias) [ [0 s )~ 025 s, dyr
s R4

t
+/ 02D (1, 8,752, Y) o (11, 7, T, Y, 2) dy dr

t+4s d
= JR
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which in turn implies

a:pl(ﬂa s1Vsa,t,z, Z) - 8gp1(,u7 s1 A 82, t, @, Z)
=00pi(s1V s2,t,x,2) — OuDi(s1 A s2,t,x, 2)
t+512\/32
+ [821/7\1(51\/5277"75079)*821/’\1(51/\5277"75079)]

s1Vsa R4

.[(I)l(r,t,y,z) — <I>1(r,t,:z:,z)} dy dr

s1Vsa
- / 8;12/7\1(81 N S2,1,, y) |:(I)1(T, ta Y, Z) - @1(7", ta z, Z):| dy dr
S1AS2 Rd
t+s1Vsa
3

Orpi(s1 A 32,7, y) [ @(ry 1y, 2) = Da(r b, 2) | dy

t+s1Asg a
—_—s R

t+sqVsg
2

+ (I)l(T,f,(E,Z)/ {Ggﬁ%(slvs%r,x,y)—8;’]331’(51/\32,7;95,11;)} dyd’l“
R4

s1Vsa

Sl\/SQ
/ (ryt,x z)/ [8;‘}33{(51 A So,rx,y) — Onpy(s1 A SQ,T,(E,y):| dy dr
Ss1/\s2 Rd
t+sl\/52

/ (r,t,x z)/ {8;?531’(51 A s2,1,x,y) — Onpr(s1 A SQ,T,:C,y):| dy dr
t+slA52 Rd

/+ / a }/7\1(31\/82,7“,.’17,?])_agﬁl(sl/\82,T,!’E,y):|(1)1(7“,t,y,«2)dyd7“
31\/52
t+sl\/52

a ﬁl(sl A 527T7x7y)¢’1(r7t5 Y, Z) dy dr

t+s1As
é 2 Rd
9
—. n
=3 A
i=1

From the mean-value theorem and the inequality |s1 — s2| <t — s1 V $2, similarly to ([@39), we obtain

VB € [0,1], |AT| =100D1(s1,t, @, 2) — Oupi(s2,t,, 2)|

51— sol? 51— sol?
(5.24) < C[ﬁg(c(tsl),zx)Jrﬁg(c(tsQ),zz) .

Combining (5I1), (5:24) and the space-time inequality (L4]), for all a € [0,7), we get

|Ag| S /d |8;l]/7\1(51 \ SQ,T,z,y) - 82ﬁ1(51 A sz,r,z,y)||@1(7’,t,y,z) - @1(T,t,z,z)| dy
R

C |s1 — 52| |s1— s2]”
< _ _ B 1 S _ _
= (ﬁ—?‘)lJragn {(Tfsl) Ig_gg( (t 81),,2 ‘T)+ (7’782) B_gg( (t SQ)aZ !T)},
so that,
n |s1 — 50" |51 — 52|
45] < O g tpmgalet = o1z = 2) & g (elt = s2), 2 - )]

where 8 € [0,1]ifn=0,3€[0,(14+n)/2) if n=1and 8 € [0,n/2) if n = 2. For A%, similar arguments
yield

1 1
(r—s1Asp) 7z (t—r)t5z"
X gle(t —s1 A s2),2 — x)

|/ agﬁl(sl /\SQ,T,(E,y) (I)l(ratayaz) —(I)l(T,t,(E,Z) dy' S C
R4
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where we used the inequality (t —r)™! < (t —s1 Aso) Y1+ (r—s1As2)/(t—71)) <2(t—s1 Asg)™ L, for
r < s1V sy as well as [s1 — s <t — 51V sa. Hence, for all a € [0,7)

N s1Vsg 1 1
|A3| S C n—a 14 e=n
sinss (r—siAse) 2z (t—r)it—=

|81 — 82|1+%

drg(c(t —s1 A s2),z2 — )

<C gle(t —s1 A s2),z —x)

(t —S1 A\ Sg)lJF%
|s1 — 52/
(t —S1 A\ 82)%+ﬁ

For A%}, we remark that since |s1 — s2| <t — 51 V o, from (BI1)) with 8 = 0, one gets

gle(t — s1 A s2),z — x).

<C

t+312\/32 1 1
Ajl<C m drg(c(t —s1Ns2),z—x
| 4| - t+312/\52 (7" — 51 /\52)5 (t*T)l_% g( ( 1 2) )
t+s1Vso
C —3 1
S T e AeE ———g drg(c(t — s1 As2),z — x)

T (t—s1As2)2 thsinep (t—r)i—3
|s1 — s2|*

c(t—81N82),2—x
(t—sl/\SQ)%‘*‘ag(( 14 52) )

<C

for any « € [0, 1].
We proceed similarly for AZ. If |s; — s3] < 7 — s1V s2, we use the mean-value theorem, the uniform
n-Holder regularity of x — a(s, z, ;) and the space-time inequality (4] to get
[ [ps1 v sairy) — 025t A sar )]
Rd
- ’/ [8;1?5?{(81\/52,7’,1',y)*82ﬁ’f(51\/SQ,T,:C,y)
Rd

— (02 (s1 A sa,m ) — 01 (s1 A sy, )| |

1
< C/ 122l gy
0o (r—(Asy1+(1—=XN)s)tt =
C

< |s1 — 2|

(r—s1Vsy) 7Tt

for any a € [0,1]. Otherwise, if |s1 — s3] > r — $1 V s2 then one directly gets
’ / [8;’]311’(31 V sa, 1,2, y) — Onpd(s1 A SQ,T,.’I],Q)} dy‘
]R:i
= ‘/ |:6;L]/7\31/(81\/SQ,T,.’L‘,y)—a;l]/)\ff(sl\/SQ,T,:E,y)
]Rd

— (0P (51 A sa.r,y) = 2B (s1 A sa )| dy
|s1 — 52|”

<C e
(r—syVsy) = 1@

for any a € [0, 1]. Hence, we conclude

|s1 — so|®
(t -5V 82)%+a777

with @ € [0,1] for n =0, a € [0, (1 4+7)/2) for n =1 and « € [0,7/2) for n = 2. Similar arguments yield

Az < C glc(t —s1V 82),2 — ),

|51*52|1+% |s1 — 52
AV < C——————g(c(t —s1 N s ,z—x) < C oy
| 6| = (t— 51 /\82)17% g( ( 1 2) ) = (t*Sl /\52)74-04—77

g(c(t —s1 A s2),z2 —x)

and

|s1 — 52|
|A¥| < C gle(t —s1 N s2),z —x)

- (t—Sl /\82)§+a717
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with a € [0,1] for n =0, « € [0, 252) for n = 1 and « € [0,7/2) for n = 2. From (24), for any o € [0, 1]
we get

|A"|<C’/t ! [s1 = 5] gle(t —s1V s2),z —x)
81 = ey vap (t—?“)lfg (7’7 $1 \/52)§+a )
|s1 — 52|
(r—s1 A 52)%+ag(c(t —S1As)z - x)} dr
|51 — 52|
<C[ - c(t—s1Vsy),z—x
= Ol v et - nve) )
|51 — 52|

R
— 91 2

Finally, using computations similar as those employed before, for all « € [0, 1], we get
|51 — s2|®

|s1 — s g
(t -5V Sg)ngaig

(t — 51 N\ 82)%(25 -5V 82)
This last bound concludes the proof of (5I8)) at step m = 1.

[Ag| < C

—g(c(t—s1As2),z—x) < C (c(t—s1As2), z—).

Assuming that the induction hypothesis is valid at step m, we then remark that if (s,,Zn, fin)n>1
is a sequence of [0,t) x R? x Py(RY) satisfying lim,, |s,, — s| = lim, |z, — x| = lim, Wa(un,p) = 0
for some (s,x,u) € [0,t) x R? x Py(R?), then, from similar arguments as those used in the proof
of Proposition BT, namely the decomposition ([#20), in a completely analogous manner we obtain
lim,, Wa ([X;m5 ™) [x56™]) = 0, where [¢,] = pn and [€] = g, so that lim, a(t, 2., [X;5 ™)) =
a(t, x, [th,f,(m)]) and lim,, b(t, zp,, [th"’g"’(m)]) = b(t, z, [th,g,(m)])_ From the representation in infinite se-
ries (5.4) and the Lebesgue dominated convergence theorem, we deduce that the map [0, t) x R? x Py (R?) >
(s,x, ) = Pm+1(p, s, t, 2, z) is continuous.

We next apply Lemma B to the maps (s, 1) — a(r,z, [X55™)), b(r,z, [X¢™)]). Note that

from the estimate (5.12), (513) and (5.6), the map [0,7) x P2(RY) x (s,2, 1) + pm(p,s, 7, x,2) sat-
isfies the conditions of Definition 23] in particular condition (Z6). We thus deduce that (s,u) —

a(r,x, [Xf’g’(m)]), b(r,x, [Xf’g’(m)]) € CH2([0,7) x P2(RY)) with derivatives satisfying
(5.25)

8SCL(7“, €T, [Xi7£7(m)]) = //(Zi(?“, €T, yla [Xi7£7(m)]) - Ad(r’ €T, 'T/’ [Xi7£7(m)])) aspm(ﬂa 5,7, x/, y/) dy/ M(dxl)’

o Oualt,z, (X)) (v) = / @(r, 2,y [X7O)) = Gt 2,0, (X7 T)) 05 pon (1, 5, 1,0,y ) dy’
(5.26)

b [ [ @ty X)) = At () 0010, 151t )0 dy )
and similarly

9sb(r, x, [Xf’f’(m)])://(g(h:c,y', (XS ]) = b, 2,2, [XS0)) Oupin (1, 5,72 y) dy’ (da’),

(5.27)
A [0,ub(t, z, (X)) (v) = / (b(ry 2, [ X)) = b(t, 2,0, (X)) O pn (1, 5,8, 0,y ) dy’

N / / bty [ X050 = btz 2 (X0 )) 02 8pm (1, 5,1, 2y (v) dy p(da).

As a consequence, the maps [0, 7) xR x Py (ROR? > (s, z, i, v) + dsa(r, z, [Xf’g’(m)]), o oua(r, z, [Xf’g’(m)])](v)
and [0,7] x Pa(RY) x RY 3 (s, 11, 0) > 0sb(r, z, [X2™)), 07[0,b(r, z, [ X5 ™])](v) are continuous for

n = 0,1. Moreover, from (BI3) at step m and the space-time inequality (L4, one also derives the
following bound:

18:b(r, 2, [ X256 ™)| + 0sa(r, z, [X 24 M])] < K//(Iy’ —2'|T A1) |Dspm (s, 8,7, 2",y )| dy’ p(da’)

(5.28) < K(r—s)"'*2,
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Similarly, from the estimate (5.I12]) and the space-time inequality (I4]), we also obtain
010,b(t, . (X, "D)(w)] + 197 [Bat, . [X ™)) ()]

+ / / (Iyz’l”A1)|33[3upm(u,S,t,w’,y)](v)lM(dw’)dy}

(5.29) SK{UQ

14+n—n
2

(5.30) <K(t-s)~

for n = 0,1. As a consequence, the mapping [0,7) 3 s — Hpi1(p, 8,7, t, 2, 2) is continuously differen-
tiable for any (u,z,2) € P2(R?) x (R%)? with:

d t
OsHm+1(pt, 8,7, 8,2, 2) := [— Z 0sb; (r,x, [Xﬁ’g’(m)]) H;i (/ a(v, z, [X M) dv, z — x)
i=1 r

d t
_ Zbi (r,x, [Xj@(m)]) O H! (/ alv, 2, [ X5 do, 2 — :z:)
i=1 .
L
5 > (saig(ra, (X)) = Dyai s (r, 2, X4V
ij=1

L t
< H3( / a(v, 2, (X3 v,z — z)

d
1 8,&,(m 8,&,(m
(531) + 5 Z (aiaj (Ta x, [Xr7£7( )]) — Q4,5 (T, Z, [Xr’g’( )]))

ij=1

. t
X OsHy’ (/ a(v, z, [XS’E’(m)]) dv, z — z> }ﬁerl(u, s, t,x, 2)

d t
+ [— Zbi r, T, XS’E’(m)])Hf(/ a(v, z, [XS’E’(m)])dv,z —x)

=1

d
+%§:(m]rz [XE0)) — a5y, [X 60

7,7=1

t
x Hy’ (/ a(v, z, [X3 M) du, z — x) }8Sﬁm+1(u,s,r,t,x,z).

The previous expression with the previous continuity results also yield the continuity of the mapping
[0,7) x P2(RY) > (s,1) > OsHms1(p, s,7,t,2,2). Moreover, from (5.25), using either the n-Holder
regularity of « — a; ;(r,x,y, p) or the n-Hoélder regularity of y — @; ;(r, z,y, u) with (13), we get

— pln 1
|&mﬂnaujﬂwb—8wmwﬁ¢w@wﬂﬂSK{V ci N }

(7’ — S) (7’ — 5)%
so that, from (5.28) and the space-time inequality (L)), we get the following bound
1 1
A } c(t—r),z—x),
s i e Sy e e LU
for two positive constants K := K(T,a,b,\,n), ¢ := ¢()), independent of m. Then, standard computa-
tions based on the previous estimate imply the convergence of the series 3, - (’Hf:ll(@@s?-{mﬂ Y, 8,7yt 2).

Moreover, if we formally differentiate w.r.t the variable s the relation ®,,11(p, s,7,t, @, 2) = Himr1 (i, 8,7, 8, 7, 2)+
(Hm-‘rl 0 (I)m-‘rl)(/j/a 5,7, ta €T, Z)a we get

(532) |85Hm+1(H757T7t?$7z)| S K|:

8S(I)m+1(,u’7 s, 1t , Z) = 85Hm+1(,u7 s, 1t , Z) + (85Hm+1 ® (I)erl)(,u’v s,r,t,x, Z)
+ (H"H‘l 0 asq)m-i-l)(ﬂa s, T, ta x, Z)
so that, iterating the previous relation, we deduce that the map [0,7) 3 s — ®pp1(p, 8,7, t,2,2) is

continuously differentiable with

8S(I)m+1(/1/, S,T,t,.’I], Z) = Z (Hfrlfi_l & [asHm+1 + 85Hm+1 0 (I)m-‘rl]) (,U/a S,T,t,ZC,Z)
k>0
(533) = (asHm—i-l + asHm—i-l ® (I)m-l-l)(,u/a 5,7, ta Z, Z)

+ ((I)m—i-l & [asH’m—i—l + asHm—i-l & (I)m-l-l])(ﬂa S,T,t,l’, Z)
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We importantly note that from the estimate (5.32)) and the continuity of (s, 1) — dsHpmy1(y, s,7,t,x, 2)
each term appearing in the above expression makes sense and is continuous w.r.t. (s, ). We thus deduce
that [0,t) 2 s — @pp1(p, s, t, x, 2) is continuously differentiable and 95®P,,, 41 is globally continuous w.r.t
(s, ). The same conclusion holds true for [0,t) 3 s — pmi1(p, S, t, 2, z). More precisely, differentiating
the relation (5I0) with respect to the variable s, then plugging ([B.33]) and using relation (B.I0) again,
we succesively get

asperl(M; s, t,x, Z) = asl/)\erl(M; s, t,x, Z) - (I)erl(,u’v st x, Z)

t
+ / / asﬁmH(M,s,r,x,y)‘I)mH(M,s,r,t,y,z) dydr
s JRd

t
+/ / ﬁm+l(,ufvSvTvxvy)as¢m+l(u757T7t?yvz) dyd?"
s JR4

= asﬁm-i-l(ua S, ta x, Z) - (I)"H‘l(:ua S, ta z, Z) + asﬁm-i-l 0 (I)m-i-l(M, S, ta x, Z)
(534) +pm+1 0 asHm—i-l(M; S, ta €T, Z) + [(pm-l—l 0 85Hm+1) 0 (I)m-i-l](:ua 5, ta z, Z)

Again, we note that each term appearing in the above equality makes sense and is continuous w.r.t
(s,x, ). Indeed, using a similar decomposition as the one employed in (522, one gets

t
5sﬁm+1 ®(I)m+1(,u,s,t,$,z) = / / asi)\m-i-l(/j/asarawvy) |:(I)’m+1(/j/asaratayaz) _(I)m-‘rl(,uasa/ratawvz)} dydr
s JRd

¢
(5.35) Jr/ D1 (p, 8,7t 2, 2) /]Rd [8Sf)}yn+1(u, 5,7,2,Y) — OsPyy i1 (1, S,T,:c,y)} dy dr.

For the first term appearing in the right-hand side of the previous identity, we use (5.I1) to get rid off
the singularity in time induced by Ospm+1(1, s, 7, x,y). For the second term appearing in the right-hand
side of (.30]), we combine the following relation

d t
~ 1 ,J 5,§,(m fov-d
aspm-l—l(uasatal'ay) = _5 Z aiJ(s’Z’u)HQJ (/ a(r,z, [Xr7£7( )])dT‘,y - :E) pm+1(ﬂa5ata$»y)
irj=1 °
t
(5.36) +Dfy—u (/ a(r, z, [Xf»&(m)])dr)

t
. a(r,z,y, [ XS —a(r, 2,2, [ X3S Oy (1, 5,7, 2, ') dy’ pu(da’)dr
T K M M

with the n-Holder regularity of the two maps y — a; ;(s,y, 1), a(r, 2, y, 1), (GI3) (at step m) and the con-
tinuity of (s, u) — a(r, x, [Xf’g’(m)]), a(r,z,y, [Xf’g’(m)]) to deduce that (s,z, u) — 9spY, 1 (1, 5,7, 2,9) —
DsPay i1 (1, 5,7, , ) is continuous and, by the space-time inequality (L)), satisfies the inequality [0spY, |1 (1, 5,7, 2, y)—
OsDpy1 (s s, 2,y)] < Cr — s)" 3 g(c(r — s),y — x). From the representation formula (53) and
the continuity of (s,z,u) — Hpmy1(w,s,t,z,2), the same conclusion holds for the map (s,z,pu) —
Di1(p, 8,t,x,2). We thus deduce that the second term appearing in the right-hand side of (B3H)
is continuous w.r.t (s,z, ). We then conclude that the two maps: [0,%) x R? x Pa(RY) > (s,z, 1)
OsPm+1(p, 8, 8,2, 9), (OsPm+1 @ Pmg1)(1, 8,1, @, 2) are also continuous. Combining (E3T)), (E32) and
arguments similar to those previous employed, we derive in an analogous manner that the two maps
(s, 1) = Pmt1 ® OsHmy1(l, 8,8, 2, 2), [(Pm+1 @ OsHms1) @ Pry1](p, s,t, 2, 2) are continuous. We
thus finally conclude that [0,¢) x R? x Py(RY) > (5,2, 1) + OsPmi1(it,s,t,x,2) is continuous. From
the relation (521I), the same conclusion remains valid for the maps (s, x, 1) — O2pm41(1, 8, t, x, 2), for
n=1,2.

We also deduce that the mappings Po(R?) > p +— Hoy1 (i, 8,7, 1, 2, 2), f)ﬂ;ﬂ(ﬂ, s,rt,x, z), ]’5:“’,;“(#, s, t,x,2)

are L-differentiable and that R? > y +— 0, Homt1 (s 8,7, ¢, 2, 2) (y), 8Hf57y?;+1(u, s, t,x, 2)(y), 8Hf57y?;+1(u, syt x,2)(y)
are continuously differentiable satisfying for 0 < s <r <t

5.37
a0 t t
05 055712, 2)(0) = D ([ (v (XS ). [ 9y Buaton ', X)) do

and

(5.38) Oy [0 Hm+1 (1, 8,7t 2, 2)|(y) = 1"(y) + 1" (y) + 111" (y), n=0,1,
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I"(y) == {—ZH% ( [ alvz x2S,z w) o7 [0bi(r, . [Xff’(m’])](y)} P (15,7 4,2, 2)

d t
+ { =3 balr, (XSO [auH;‘ ( [ atoz B, = - )} <y>} Pt (15,72 1,,2)
I

t

d

1 eim e
+{§ Z (ai,j(r,x, [X;f,( )])_ai,j(r,z, [XT,S,( )]))

ij=1
. t
<0 0,157 ( [ atocs, 2Dz = o) | ) Brsatnsrs a2

=117 (y) + 15 (),

d t
I (y) = {—Zbi(hw, (X&) HY (/ av, z, [X3™])dv, 2 — w)
i=1 T

d t
1 o
by 2 (nslran X)) iy DA ([ a0 o,z - o)

ij=1
X 3;[3uﬁm+1(ﬂa s, t,, 2)](9)
From the above relations and the previous continuity results, we readily derive the continuity of the

mappings (s, 1,y) + 0 [0 Hmt1 (1, 8,7, 2, 2)](y) and (s, 2, 4, y) = 05 [0pPyq1 (15 8,7, ¢, @, 2)](y). From
BE30) and B37), we directly get the following bounds

14+n—n

100 [0uBY 1 (11, 5,12, 2)| ()| < C(t —8)™ 7 gle(t — ), 2 — )

and

n

(5.39) 107 [0uDY 1 (118,78, 2, 2)](9)] < Cr — 8) ™5 gle(t — ),z — ).

Combining the previous estimate with (5.30) and using the n-Holder regularity of = — a; ;(r, z, u)
with the space time inequality (I4) yield

K
T gle(t—r),z —x),
T et o)

K
(t—r)—3(r—s)

From the key identity (5.26]), the estimates (5.6), (512) at step m and using the n-Holder regularity
of & — @; ;(t,z,y, 1) on the one hand or the n-Holder regularity of y — @; ;(¢,,y, 1) on the other hand,
we get

) <

|IIIn| < 1+n—n g(C(th%Z 7':6)'

£ (m z—ax|" 1
10310, (a0 X209 — a2 (XSO )] < K4 2T
(r—s)—= (r—s) 2

so that, by the space-time inequality (L4]), one finally obtains

1 1
Tin For— c(t—r),z—x).
(T—S)TA(t—T)(T—S) 2 )g(( ) )

1| §K<

(M5

(t—r)t=
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Combining the previous estimates implies

1 1

it

- — A
(t—r)lt=2(r—s)= (t—7)(r—2s)

|837[8#Hm+1(u7SvTvt?zvz)](y” S K < an> g(C(t - T),Z - :L')

The previous estimates yield the (absolute) convergence of the two series >, -, 9y [auﬁmﬂ]@?-{gfil (,s,t,2,2)(y)
and ;5o (Pmt1 ® 0 [0 Himt1]) @ Hgﬁrl(u, s,t, 2, 2)(y) as well as their global continuity w.r.t the vari-
ables s, 2, 11,3 on [0,7) x R x Py(RY) x R,

Formally differentiating with respect to the variables p and then y, the relation py,41(u, s, t,z,2) =
ﬁM+1(:u‘7 5 t? €z, Z) + (pm+1 ® Hm+1)(:u’7 S t? €z, Z)a we obtain

0y [0upm+1 (1, 5., @, 2))(y) = 0y [OpPm+1(, 5, 8,2, 2)|(y) + (Pmt1 @ O[O Humsa]) (1, 5,8, 2, 2)(y)
+ (05 [0upmt1] ® Hint1) (1, 8,1, %, 2)(y)
so that a direct iteration yields the following key relation
(5.40)
n n ~ n k
O 0Pt (15,2, 2)) (W) = D (O3 [Bubma] + Prusr © 05 [ Hons1]) @ HO4 1 (1, 5,8, 2, 2) (), m = 0,1,
k>0

Hence, Po(RY) > p + ppy1(p, 8,t, @, 2) is L-differentiable and R? > y + 9upmt1 (i, s,t, 2, 2)(y) is
continuously differentiable and the maps [0,t) x R? x Po(RY) x R 3 (s, 2, 1, y) = Opupmt1 (i, s, t, 2, 2)(y),
Oyl0upm+1(p, s,t, x, 2)](y) are continuous. From (5.2I)) and similar arguments, we also derive the conti-

nuity of the maps [0,t) x R? x P2(R?) 3 (s, 2, ) = O2pmt1(i, s,t, 2, 2), for n = 1,2. We thus conclude
that the mapping [0,1) x R? x Po(R?) > (s, 2, 1) = pmi1(it, 8,t, 2, 2) is in CH22([0,1) x R? x Py(R?)).

We now prove the estimates (B.12)) to (BI9) at step m—+ 1. Since their proofs are rather long, technical
and relies on similar ideas and arguments, we will not prove all the announced estimates. We start with
(EI2) and will deliberately omit the proofs of the estimates (5.13), (BI4) and (B.I8]). We introduce the
following quantities for n =0, 1

W (s,1) = sup / u(de) / Iy — 2l A )|O2 [0, (115, 1, 2, )] (0)] s,

veERC
(o) = sup [ (da) [ 10710, 5,82, 0) )]
veER
and prove by induction on m the following key inequalities:

2 —n)

u” (5,1) < Crun(s,)(t — 5) 7 , o™ (5,1) < Crn(s,1)(t — 5)

with Cpyn(s,1) := Sy CHTTE, B (2, 22050 4 (- 1)) (t — 5)*=D3F | O := O(T, a,b) being a positive
constant independent of m. This result is straightforward for m = 1. We assume that the result holds at
step m. We first remark that from (537) and ([529]) there exist positive constant K := K(T,|a|co, [@] 1),
¢ := ¢()\), which may vary from line to line, such that for all m > 1

|0, [0pPmi1 (1, 5,1, 2, 2)] (V)]

1 I
s s [ 0 A B N ) i}
— S 2 s

x gle(t —s),z —x)

_(Q+4n—mn)
2

< K{

so that,
|8:} [auﬁm-',-l (,U/a S, t? z, Z)] (U)|

1 ¢ Crun(s,T) s
Ty T t— S>/s ( itn dr} gle(t ), )

r—s)z

1
)
1 1 t Crn(s,7) 0 N
SK{(YS_S)HZU i (t—S)g/s (t—r) =3 (r—s)="7 }g( (t—5), )
{ 1
)

m k+1

1 n l—n+n ) n n
— + = ZC’“HB(E,T—i-(z—l)i) (t—s)kZ}
2 - k=1 i=1

(541) <K

2
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Hence, by induction on r, there exists a positive constant K := K (T, a, b, ||, [@] #) which may change
from lines to lines but is independent of m such that

2
k=1 i=1

_(1+7217n)+7"% - nl—n+n . n
x (t—s) HB<§,f+(zl)—)

, 2
=1

m k+1
n ~ T r n 1- 7’L+77 n n
|<av[aupm+11®H£n>+1><u,s,t,xz(>|<K{1+chHB( (i 1>5)<t—s>’%}

x gle(t—s),z —x)

which in turn implies

Z| ,LmeJrl ®Hm+1)(,u75 t :Z?,Z)(’U)|

r>0

k+1
<( IiMn{lnLZCkHB( n+n+(z1)g>(ts)kg}g(c(ts),z:c)

— S

m k+1
K nl-—n+n k nl—-n+n n %
< —_— - — - — —1)= — 2
_(t_s)1+n 7 {B<27 9 >+ZC ]:[B<2, 5 +(Z 1)2) (t S)

k=1  i=1
(5.42) x gle(t —s),z — x).

We now come back to the decomposition (5.38)) of 97 [0, Hm+1 (1, s,7,t, 2, 2)](y). From ([E.29) and the
induction hypothesis, we directly get

I/)\erl(Ma T, T, Z)

17 (y | ZHl (/T v, 2, [Xﬁ’g’(m)])dv,z - x) 0, [a#bi(ﬁza [er,g,(m)])] (y)

Next again from (5:29) and the space-time inequality (I4]) we have

d ¢
L) = ‘— >, (X200 0,871 ([ a0 o,z = o) | 0| Bsaerito2)
lz—a| [ 11+ (v—s) T un(s,0)) L
< K(t—r)Q (/T o —S)M% dv) gle(t—71),z — 1)
1+ t—r)t ft Crnn(s,0)(v — s)% dv)
K r e c(t—r),z—1x).
< i o) gle(t —r) )

Hence, one concludes

(14 Crmn(s,r)(r —s)2 + (f —r)” I&Lg’”’"(s’ v)(v = )* dv) gle(t —r),z —x)
(t—r)2(r—s)" =

1 1
= ((t—r)lg(r—s) " (t—r)(r_s)1*2">

x (1+cm,n(s,r)(r—s) —l—(t—r)_l/Tt Conon(5,0) (v —5)? dv) gle(t — 1),z — ).

vy eRY I"(y)| < K

wls
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We now estimate II" which is the tricky part of our computations. Since p — a(r,x, 1) belongs to
(CS), 117 (y) can be written as

7 (y) = { > HyY (/ a(v, z, [X2€™])dv, z:c)

7,j=1

x 9y |0, [ [ X0 = s 2, XS (s y'>dy'] } (y>}
lv=p

<Pl
A ([ ot 050z ) % 3 .,
7,7=1

On the one hand, using our induction hypothesis and the fact that z — @; ;(r, z,y, i) is n-Holder, one
has

i)l = @)

o | [ st X0 = s XD s |

lv=p

<K { [z = el A0 .1

n / / (I — 2" A )| @b (15, 7,271 (9)] dy’u(dw’)}

(5.43) < K%(l + (r— s)HTnv%(s,T))

On the other hand, from the definition of p,, and Fubini’s theorem, one gets the following decomposition

Ji,j (y) = 637 |:al/ |:/{Zil,_7 (T, z, yla [X’f,f,(m)]) - Zil,_] (T, 2, y/a [Xﬁ7§7(m)])}pm(ya S, T, y/) dy/:| :| (y)

lv=p

9y |0, U /{Ei,j(hx,y',[Xf’é’(m)]) — i (r, 2,y (X)) b (11, 8,7, w’,y’)u(dw')dz/] }(y)

[ri=p

000 | [ [ @t IO s 1 XDyl | )

[v2=p
[// G j(r, o,y [X2OU]) = G (2,2 [ X5 0M))

+

(5.44)

= (@ (2 X)) =y 2,07, (XS OI)) L3 [0 (1 5,2 )| () ) dy']
+ {/{(Ei,j(ﬂz,y', (X3S0 — @ 5 (r, @y, (X5 0M]))
= gl XS] = 02, X EOUD) YO o) |
which in turn by our induction hypothesis yields

(545 R

Consequently, combining the estimates (5.43)) and (5:45), we obtain

(5:46) i) < K { i N } (14 (=) “F g (o) + (= 8) F 00 (5,7).

Hence, from the previous estimate and the space-time inequality (L)), we deduce
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) < <(iz__§1|; A (rsi”’%”> (14 Con(s,7)(r — 5)3) glelt — 1), 2 — 2)
< K <(t—r)1g1(r—s)HTn A (tr)(rls)H"T"> (14 Crun(s,r)(r —s)%)g(c(t—r),z—x).

We now turn to estimate IT5. From the very definition of H3’, (5.29) and noticing that for any
differentiable map P2(RY) > v +— %(v) taking values in the set of positive definite matrix one has
0y[0,(27 1 (1))11(y) = —=(E7H W)y O EW] W) E ™ ()i = =0y [, oy (BT (1)) ks (B()) ey ke (57 (1) ko lv=1e (9),
we get

o0, [ ([ atorz. 05— )| )
< i (B2 o x| [ gty o2, S O
gK(ié—f)lj ) (Lt (=) o G5, 0)(0 = ) )

(r—s) 2

so that, from the space-time inequality (I4]), we clearly deduce

%,

n |z — 2t |z — a7 1+ (t—r)t f:Cm,n(s,U)(v—s)% dv) ot — ) s
)] < K( (t—r)? - (t—r) ) (r — s)—HZH7 gle(t =), )
K K n
< n pE— 14+ (t—r)"t Cmn(s,v)(v—25)2dv)g(c(t —r),z —2
re gm0 T [ Ol - et -z

1 1 ! n
K = = | (1 t—r)7t Crmn(s,v)(v—15)2 dv
B ((t—r)lg(r—s)T : (t—T)(T—S)T) 1+ ) /T (s, )( )? dv)

x g(c(t—1),z — x).
Hence, gathering estimates on II7 and II3, we get for all y € R?

) < K <(t —r)lgl(r — 5 " (t— r)(rls)H"Tﬂ> 1+ _7”)71/ Conn(,0) (v = 5)7 dv)

x g(c(t—r),z — x).
Finally, for r # s, from the relation (5.37) and the estimate (.29), we get

3;[8#ﬁm+1(u, st x, 2)](y)| < (71_8%(1 +(t—r)"t / Crnn(s,v)(v — S)% dv) gle(t —r),z — x)

so that
1 1

14+n

" <K
| (y)|— ((tT)l_%(TS)T /\(tfr)(T*S

x gle(t—r),z—x).

)MTTI>(1+(1€—T)_ /T Crun(s,v)(v —s)2 dv)

Gathering the previous estimates together, we finally obtain

1 1
ay a,u,Hm 1 81ty 2 <K 7 Tin A Ttn—n
10y [0 1 (1 ()] <(t_r)1§(r_s)7 (o= )
(5.47) X {1 + Cryn(s,7)(r — s)% + (t—r)_l/ Crun(s,v)(v — s)g dv

x gle(t—r),z —x).

Now, our aim is to establish an upper-bound of the quantity py41 ® 0 [0y Hm+1](p,7,t,2,2). The
estimate (5.47) allows to balance the singularity in time induced by 9;'[0,Hm+1]. Indeed, assuming first
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that r € [s, £52], one has t —r > (t — s)/2 which directly implies

/ |pm+1 (:U/a s, T, T, yl)| |a; [aHHm'i‘l (:U/a S, T, tv yla Z)] (y)|dy/

<o S)(Tfi = (1 + Con(s,7)(r — 8)% + (£ — 5)" /: Can(,0)(0 — 8)3 dv)

x gle(t —s),z — x)

so that

t+s
/ /|pm+1< 5,2, YO0 O Mo (157, £, 2)) (9) '

B 1 m 1 t C (S T) - B
K{(ts B /5 (r—s)lén— dr} gle(t = s),2 —x)
K{B 11j: n ! n t C (S T) Ttn dr}

(tfs (t—8)5 s (t*S)l (7’75) 5 N

x g(c(t —s),z — x).

Then, assuming that r € [£2,¢], one has r — s > (t — 5)/2 so that

/ |pm+1 (:U/a s, T, Z, yl)| |a; [auHm'i‘l (:U/a S, T, tv yla Z)] (y)|dy/
K

< 7 — i 7«)17% (14 Copn(s,r)(r—s)2 +(t—1)" /T Crn(8,0) (v — )2 dv)

— 5
x gle(t —s),z — x)

which in turn, by Fubini’s theorem, directly yields

t
L o e e [0 s

K t 1 " /! 2
Sm/% m(l-FCm,n(S,?“)(T—S) +({t—r) /TCmm(s,v)(v—s) dv) dr

x g(c(t—s),z — x)

B(L%) 1 ¢ Cn(s,v) s

—5) "2 (t—s 2(v—28)"2
S%{B@lnﬂ) chﬁB( "”wl)g)(ts)k%}

Gathering the two previous cases, we clearly obtain

|pm+1 X a;[auHm+1(ﬂa S, tv z, Z)](y)|

k+1
b M (p (3 e S T (35 ) o)

k=1 i=1
x gle(t —s),z — x)




WELL-POSEDNESS OF NON-LINEAR SDES AND PDE ON THE WASSERSTEIN SPACE 55

so that
> i1 @ [0 Hm 1)) @ HE (15,1, 2,2) (1)
r>0
K n l—n+n M n+77 n 2
SW{B@’ ) ZCkZHB< +(11)§>(ts)k }
(5.49) x gle(t —s),z — x).

The estimates ([5.42]) and ([5.49) together with the representation formula (B.40) imply that there exist
two constants K, ¢ such that

|a; [appm-i-l (,U/a S, tv z, Z)] (y)|

k+1
K n n+n k nl—-n+n n ko
Siunn{B(_ai)Jrzc HB( oyt Dg (-9
(t*S) 2 2 - k=1 i=1 2 -
Xg(C(t—S),Z—ZE)
so that
m k+1
K n1l— n+77) k (771 n+n 77) o
Upy1(8,t) L ————< B , ———— | + C B — 4+ —=1)= | (t—5)"2
(o) (H)i_n{ (35 2l -2 -

and similarly,

vﬁlﬂ(s,t)gﬁ{]g(gvl n+77) chjﬁl3<n 1—n+77 (z‘l)%)(ts)’“%}

Since the constant K does not depend either on the constant C' appearing in the definition of Cy, ,, (s, )
or m, one may change C' once for all and derive the induction hypothesis at step m + 1 for uy, ,; and
v+ 1. This completes the proof of (B.12).

The estimate (B.I3)) at step m~+1 follows by combining the relations (5.34)), (531)), (5.30) with estimates
analogous to the one established above while the estimate (B.I4]) follows from the representation formula
(540). The remaining technical details are omitted.

In order to derive (B.I3) at step m + 1, we proceed similarly. We introduce the quantities

Um, (8, 1)

= sup
(y,y")ER)2, yA£y’

Um (8, 1)
0y10 m\MHs 7t7 ) " -0 m\MH t
:: sup /M(dx,)/l y 0P (1, 8,1, %, y")] () I/yﬁ[ pPn(pt 80t 2 NG g
(y,y")e(R)?, ys#y/ ly — vl
for any 8 € [0,7) and m > 1. We prove by induction the following key inequalities:

/M(dﬂﬂ/)/ﬂ "_ ,|7,/\1)|3y[3#pm(u,s,t,x,y”)]( Y) — [0y[0upm (p: s, 2, y")](y')] dy”

ly —y'|?

U (8,8) < O (5,) (¢ — 8)"OF2"M and  om(s,8) < Cm(s, £)(t — s)~ I+,

with Gy, (s, ) == Sr, C* ], B (ﬂ 128 4 (i —-1)% ) (t—s)*=D3 C = C(T,a,b, |d|se, [aw, |bloo, [b] 1)
being a positive constant independent of m. The result being straightforward for m = 1, we assume that
it holds at step m. By direct computations, we first remark that the following decomposition

t
Oy 01 (1 5,7, 1,2, 2)) () — 0y OBy 1 (1o 5,71, 2, 2)] (W) = Dfy ( / alv, 2, [Xs’fw])dv) |
(5.50)
t
/ { / [0, 2,9/, [X2E)) — G0, 2,0, XS] 02 (11,5, 0,3, 5") — 02wt 5, 0,37 5"y
/ / 0,2y XSS G0, 2, 2!, XS]

: (ay [aﬂpm (,LL, S, U, .’,E/, y//)] (y) - ay [aﬂpm (,LL, S, V, xlv y//)] (y/)) dy” M(dl'/)} d’U

holds for any 3 € R%.
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We split the computations into the two following cases: |y —¢/|? <v—sand |y —y'|> > v —s. In the
first case, we choose yo = y. From ([B.7) with n = 2, 8 € [0,7) and the space-time inequality (4]), we
get

| / [@(v, 2,9/, X)) = alv, 2,0, (XS D]O7pm (15,0, 5") = Ozpm (s .0,y dy”

SKlyy’lﬁ/%{g(C(vS),y”y)Jrg(C(vS),y”y’)} dy"

<Kly—y° / m {Iy” —yl"g(c(v—9),y" —y) + (" =y/'["+ [v = 5| )g(c(v - 5),y" — y’)} dy”
(5.51)
ly—y'|°
(v—ys)
Otherwise, if |y — ¢|> > v — s then from the Hélder regularity of 3’ ~ a(t, z,%/, 1), (56) for n = 2 and
the space-time inequality (IL4]), we get the same inequality. Plugging the previous bound in (&50) yields

R R .8 t 1
0,012 2))) = 0,0, st 2] < KLY e

<K

t—r

(5.52)

+ //(|y” — :C/|77 A 1) |a71 [aﬂpm(:u‘? S, U, xlv y”)](y) N (?'uﬁ[aupm(ﬂ, S, v, I’/, y//)](y/)|
ly — v/
X g(C(t - T),Z - 1')
for any g8 € [0,7) so that, from the previous inequality with » = s and the induction hypothesis,

|0y[0uDm-t1 (s 5,82, 2)](y) = Oy [OuPima (s 5,8, @, 2)] (4)]

1 1 L Chl(s,r
gKlyy’lﬁ{ S /( (5:7) dr}g<c<ts>,zx>

(t—s)t t—s r—s)H%*”
—_ |8 1 1 t Cm(s,7) r c(t—s),z—x
= Ky =yl {(ts)l—%“ +(ts)%/s (t_r)lf%(r 5)1+3 = }9( (t=9)z-w)
_ ly — y| kk+1 nn-p B P
(5.53) 7K7(t—s)1 — 1+Zc HB( +( 1)~ )(ts) 2\ g(e(t—s), 2 — ).

Introducing the notation A0 [aupm(,u,s t,z,2)|(y) = 0y[0ubm (i, 5, t, z, 2)|(y) =0y [0ubm (1, 5, t, , 2)](Y'),
by induction on r, there eX1sts a positive constant K := K (T, a,b) (which may change from lines to lines
but is independent of m and C') such that

|(Ayaya,uﬁm+l & 7'[57211)(% S, tv €z, Z)(y)|

- T -5 (n=8)
SK’”Iyy’I"{H;OkI[lB <g,"T+(z'1)g> (tg)k%}(tS)lJr 128) 42
xHB<——+(zl)g> gle(t — s),z — )

which in turn implies

Z| A 0 a,uperl ®Hm+1)(%57t,$»z)(y)|

r>0
|y y'|’3 m kkJrl o
<K—Y JV E | | B nn—pg 11 _ 2
< — 1+k IC I (2, 5 + (i 1)2>(t s) }

(t_s)li(n;?)
x gle(t—s),z —x)
— P kil
s o250 ey e
(5.54) x g(e(t —s),z — x).

vl
—
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-0 [8uHm(Ma5,7’,tv~’C Z)](yl)
=1'(y) —I'(y) + 11" (y) — II'(y/) + 1IT* (y) — 1T (¢/)
=L(y) - L)+ 13(y) - L) + 1 (y) — () + 15(y) — I5(y)

Then, from (G5.38), we write
Y

Oy 0y Hom (1 5,7, 1, 2, 2] (1)

+ 11T (y) — I ()
and prove approprlate estimates for each terms. With our notations, one has

ZHl (/T v, z, [ X)) dy zx)
{a [0y, X240 () = 0 (Dbt (XS] () } B Gt 2, 2)

Il

Moreover, from (.21, one gets
Oy [0ubitr,, XN () = By [Bubi(r,, (XS]] ()
/(b (ry, 2, [ X0 0]) = bi(r, 00, (X0 )) (0o (11, 5,7y, 2) — Do (11, 5,7,y 2))d

// (r, 2, 2, [X20 ] — by (r, 2, 2!, [X25™)]))
[aﬂpm(ﬂas t 'T Z)](y) _av[aﬂpm(:uasatawlaz)]( )) dz:u’(d‘r)

(5.55)
which is valid for any vy € R?. Hence, using (57)) and the uniform n-Hélder regularity of z +— b;(r, z, z, i)
as well as similar arguments as those employed in order to establish (5.5I]) for the first part appearing

B—n)
ﬁZT’ um(S,T):|

in the right-hand side of the previous equality, we get
Vg€ 0.m), 10y [0ubilr,w, X2 (1) = By |Bubilr,w, (XS]] ()]
e
|y Yy | |:1 + (T o S)1+

(5.56) = K(r EAYESEED
which in turn implies
ly—y'|° )
1)~ B < K Sy 1 = 9 (s (et =),z =)
—r)2(r—s
y—y'|° 2
L [+ Gt = 9]t =)
S 2

<K—
(t—r)k(r—

dv

Next, we proceed similarly
t
1) - 30/ = | bt 2 {0, (0,11 ([ a5 a0 ) | )
i=1 r
t
0, {8 H; (/ (v, 2 [XS’E’(m)])dv,z—x>] ! }‘ﬁm(u,r,t,x,z)
9 [a ai,j(’U,Z, [X;g (m)])]( )

[Baij (v, 2, [X35 ™)) (y)

K t
< 5 / max
(t — 7“)5 r J

x gle(t—r),z —x).
From (5.26) and similar arguments as those employed to establish (5.56]), that is, the decomposition

(555) with the maps a; ; and @, ; instead of b; and b;, in a completely analogous manner, one gets
0y [Buai (0,2, X)) (9) = 8y [Buas (0,2, X34 ()
ly—y'l° 2
< 4 Cate e - )

(5.57)
for any g8 € [0,n), so that we obtain
— |8 t
v =y /C s,v)(v—s)fdv) (c(t—1),z—x)

’
<K N
(th)i(Tfs)l—i_(B n)

[13(y) — Ta(



58 P.-E. Chaudru de Raynal and N. Frikha

Gathering the two previous estimates, we conclude
1 1 ly — yl|’8 1 1 ! 1
' (y)-T'(y")| < K =) (1+Cm(s,r)(r—s)5+(t—r)_ / Cm(s,v)(v—s)i) gle(t—r), z—x).
(t—r) =2 (r —s)t 2" r
Still using our notations, we have
d

mo) -me) = X {m(f (o2 (XSO, 2 - 2) % Gig ) = 3 )} P (ot 2.

i,j=1

On the one hand, using (B.44) (with n = 1), the induction hypothesis and the fact that z —
@i j(r, x,y, 1) is n-Holder uniformly with respect to the other variables, we obtain

el aly =y
(r— s)l"'g

On the other hand, similarly to (544, one gets the following decomposition
Jij(y) = Jis(y') = //{(Ei,j(ﬁxvy"v CRE]) = (2! (X5 0V]))
= (@i (2" (X0 = (2,0, [X60) ) )
|0 Oupm 115,72 5] W) = 0,[0,pm 5,2y ()] dy” (da’)
b [ { a0 D) — 0, X))

- (Zil,_] (T, Z, y”a [X'f’g,(m)]) - Zil,_] (T, Z,00, [X'f’&(m)]))}

Tis() = Ji; ()] < (14 (r — 8)" T v (s,7)).

(02pm (. 5,7, 9,y") = Ozpm (. s,y y") dy”

which is valid for any vy € R%. Now, using the fact that p + a(r,z, 1) belongs to (CSy) namely the
fact that y — a; (¢, z,y, 1) is n-Holder, we get that the first term appearing in the right-hand side of
the above decomposition is bounded by K|y — 4'|%u,(s,7). For the second term, one has to consider
the two disjoint cases: |y —y/| < (r — )% and |y —y/| > (r — s)2. In the first case, one selects vy = y
and uses the estimate (5.1) (with n = 2), the n-Holder regularity of y” — @; ;(r, z,y", 1) as well as the
inequality |y —y|7 < |y —y/'|" + (r — s)2. In the second case, that is, [y — /| > (r — s)2, one directly
uses (B.8). To be more specific, one decompose the second term as the sum

/[Ziivj (7“, x, y”a [X:’g’(m)]) - ai,j (T, T, Y, [Xi7€7(m)])]a§pm(ua 57 Y, y”) dy”

+ /[Zild (T, Z, ylla [X:’&(m)]) - a:i,j (T, Z, y/a [X:’&(m)])]aipm (,U/, S, T, yla y”) dy”

and bound each term using (5.6), the n-Hoélder regularity of y — @; ;(r, z,y, 1) as well as the space-time

B=n
2

inequality (IC4)). In both cases, one concludes that the second term is bounded by K|y —y'|?(r—s) =~
We thus finally obtain

—y'|? B=n)
9is0) =@ < K A (1 (9 5 )
r—s 2

Combining the two previous estimates yields

ly—y'|? ly—y'|?
v yay/) € Rd)Qa IIl y) — IIl y/) S K n A -n
( ( 113 (y) — I3 (") ESTEE YRR Ay

X [1 + C(s,7)(r — 8)7 | gle(t — 1),z — x)

for any 8 € [0, 7).
Using (5.57), for all 8 € [0,7) and for all (y,y’) € (R?)?, one gets

z— |t gt
1)~ 113001 < K2 [ 040000, [XEVDI0) = 00,0150, (XTSI do

x gle(t—r),z —x)

B ¢
“K ly —v/| - {H(tﬂrl/ Cin(5,0) (v — 8)3 dv] g(e(t — ), 2 — @).
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Finally, for the last term, from (552) and the induction hypothesis, we obtain

B € [0,m), Y(y,y) € (RY)?, [T (y) — TIT' (y))]
1 ~ ~

< Kmmy[awmﬂ(% 8,7, 4,2, 2)|(y) — Oy[0uPm+1 (s 5,78, 2, 2)|(y)]

ly—y'I°
(t—r)—F(r—s)

Gathering all the previous computations, we finally conclude

ly y/|ﬁ ly y/|ﬁ
AyOy |0y Hon stz 2)|(y)] < K ~ A —
’ Yy y{ w +1(p ):|( )’ {(t 7’)1_5(7’—8)1"'% (t T)(T 8)17%

<K e [1+/:C’m(s,v)(vs)g dv} glc(t—r),z —x).

X [1 + Cp(s,r)(r— )% +(t—r)"" /Tt Con(s,0) (v —5)7 dv}
x glc(t—r),z —x)

for any (y,y’) € (R4)? and for any 3 € We again separate the space-time convolution into the two
t+s

[0,7).
disjoint cases: r € [s, 2] and r € [2£2,¢]. Skipping technical details, we obtain
[Pmt1 @ By 0y [0 Homta (1, 5,1, 7, 2)](y)]

(e p(1aBY, L[ Caneonf
< Kly -y <(t_8)1+@B<2’ 2 >+(t8)g/s (t—r)t- _(T—S)Hw—zn)d)
x gle(t —s), 2 — )

i (o (330) S o (3232 n2) o)

x gle(t—s),z —x)

so that
Z| Pm—+1 ®A a 0 Hm+1)®%m+1(ﬂas 3 x,z)(y)|
>0
ly—y'|? n -5
. < 5 Ty
(5.58) _K(t— )1+(Bfn) (B 27 9
k+1

k nn—pr _ k2 _ _
+ZC HB( +( )2)(15 s) )g(c(t 8),z — ).
Now, combining (5.54) and (558)) with the following representation
Ay Dy Oupmss (1, 5,82, 2))(9) = D_[AyOyOubms1 + Prst ® A0 Hns1] @ Hirhy (1, 5,7, 2) (1)

>0
we deduce that there exist two constants K, ¢ (independent of C' and m) such that
ly—y'1°
(t o 3)1+ (B;ﬁ)

x{B(— —)+chkﬁl3( B—I—(i—l)g)(t—s)k
x glc(t — 5), 2 — x) -

um+1(s,t)§(t_s)++§n{3 <g —ﬂ> chfﬁl3<— —ﬂ+(z—1)2)(t—s)k }

and similarly,

vm+1<s,t>s(t_s)%{ (2 —5)+ZO’“I:1+TIB( 5+(i—1>§)<t—s>k%}.

2

1Ay 8y [0upm1(p, 5., 2, 2)](y)| < K

vl
—

so that

s
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Since the constant K does not depend either on the constant C appearing in the definition of C,, (s, t)
or m, one may change C once for all and derive the induction hypothesis at step m for w;,4+1(s,t) and
Um+1(8,t). This completes the proof of (E.I5).

We now establish the estimates (5.I6) and (5I7). We first prove that there exist some positive
constants K := K(T,a,b), ¢ := c¢()\) such that for all m > 1, for all u, u’ € Pa2(R9)

W(X li
(559) Yo € [0.1], [t 5.6, 2) — pr(p 5,12, 2)] < K%w e(t =),z — ).
t—s) 2
We first remark that if Wa(u, 1/) < (t — 5)1/2, then for any €, &’ € L2 such that [¢] = pu and [¢] = ¢/,
one has

1
pm(M,S,t,SC,Z)*pm(,U,S,t,SC Z / 8)\pm(ﬂl+A(‘U,7’U,/)7S7T7:C,Z)d)\
0

1
= /O E{aupm(u, 5,17, T,y Z)\V:;L’Jr/\(,uﬁu’)(g + )‘(E - 5/))(5 - 5/)} dA

so that, using (B.12)) and optimising over joint distributions with u as first marginal and u' as second
marginal

W ! Wa !
Dot 5,7, 2) — pp,my e, 2)| < KU oy gy oy < g VEULID)

(t— 5 (t—5)
Otherwise, if Wa(p, ') > (t — s)/2, we directly get

W3 (p, pt")
Wg(c(t

vm Z 13 |pm(,uasa/rax72) _pm(ulasaraxazﬂ S K - S),Z - (E)

so that, from (HR)(ii), for any m > 1 and any « € [0, 1]
|ai;(r, 2, [Xs& (m)]) = a;;(r; 2, [X&g (m)])l
<| [ [ Austromf XL X ) () )

(5:60) b [ [ sz XSO X0 = A 2, P26 0, (€000

X (Pm(p, 8,7, 2", y") = pm (1 5,7, 2", y')) dy' 1’ (da”)

W (p, g’
<K {7( 2 )J +/(|y' — &[T A D) |pm (5,7, 8" y") — (W s,y 2"y | dy' i (da”)
r—s) 2

W3 (p, 1)

<K e
(r—s)=

where we used the fact that 2’ — [ A, ;(r, 2,7/, [X x2&m=) 1x 5’5/’(7"_1)]) m (8,7, 2"y )dy' is a-Holder

with modulus bounded by K (r — s)*=". The previous bound and the mean-value theorem thus yield

|ﬁm(,ua Sataxvz) - ﬁm(:u’/a s,t,, Z)'
t

< A [ a2 (X3S0 D]) — a2, (XD dr gleft — 5), 2~ )
— [ ma
(6% A
< KM’fﬁg(cu R
(t—s) =

More generally, differentiating « — D, (1, 8, t, x, z), from the mean-value theorem and (G.60), we also
obtain

W3 (p, 1)

(5.61) Va € [0,1], [07Dm(p,s,t,x,2) — Opm(p, 5,1, 3, 2)| < K()iww
t—s)” 2z

gle(t —s),2 —x)

for n = 0,1,2. Now, using the decomposition p,(u, s,t,x,2) = pm(p, $,t, 2, 2) + R (i, 8,1, x, 2) with
Rn(pt, 5.4, 2) := Yoy P @ HW (1, 5. 1, , 2) satisfying [Ro (1, 5,8, 2, 2)| < K (t—3)"?g(c(t—s), 2 —x),
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still in the case Wa(pu, it/) > (t — )%, we obtain

|pm(:ua S,t,ZE,Z) _pm(ﬂla S, t,l’, Z)' S |I/)\m(ﬂa S,t,l’, Z) - ﬁm(:u/a Sata :E?Z)| + K(t - S)gg(c(t - S)’ Z = ‘T)
W3 (1, 1)

<K —
(t—s)=

gle(t —s),z —x).

This last estimate concludes the proof of (559). We now make use of the following decomposition

Honr1 (8,769, 2) — Hma1 (0, 8,7, 6,9, 2) = T+ 11+ 111+ IV
with

d t
L= = 3 iy, (X4 0D]) = bir,y, (X3 00)) 1] ( / a(v, 2, [ X5 ])dv, z — y) D1 (b1, 5,7, 8,9, 2),

i=1

d t t
- Zbi(rvyﬂ [Xﬁf/’(m)]) |:H{ (/ a(v, 2, [Xiygy(m)])dvv Z = y> - H{ </ a(v, 2, [Xi,ﬁl,(m)])d07 Z = y) :|
i=1 r T
X ﬁerl(u,s,r,t,y,z),
1 d
L= 2 37 (@i, [X790V]) = g (2, (X400

ij=1

L t
g X)) a2, DO 5 ([ X ) B 8.2,

d
1 S m S m
IV = 52_:a”7°yXE()])—a”(rz[XE()]))
. t o t ,
[ ([ oo Lpe o an,s -y ) = 1 ([ a2z = ) | B st 2),
d ) t
V== bi(r,y, (X3 HY < / a(v, z, [X3& ™)) dv, 2 — y) AP (b 8,7, y, 2)
=1 T
d N t
2 D gy (X)) — a2, X0 ( / a(v, 7, (X3 *<m>1>dv,zy>
’Lj 1 T

X Auﬁm—i—l(ua s,r,t,y,z).

From similar arguments as those previously used, for all r» # s and for all « € [0, 1], we get

W (u, 1!
1)< KT g ) 2 )
t—r)2(r—s) 2
WOt
| < K i(”’“) = 9(c(t =),z —y),
(t—r)2(r—s) 2

11| gK{ - - —
—r)'T2(r—8)%  (t—r)(r—s)"2

o

(t—r)l_%(rf s)%

V| < K = T;’Yi(l(‘;/ﬂ)s) = olelt =12 ).

)< K— W) oy,
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We only prove the estimates on I and III and omit the remaining technical details. Since each b;
satisfies (HR ) we get

K ,
1| < m /Bi(r; Y, 2, [er’g’(m)]v [er’g ’(m)])(pm(ﬂa 8,7, 2") = pm(pt's 5,7, 2")d2"| g(c(t —7), 2 —y)
_ K 5,&,(m 5,6 (m
< (tfr)% //Bi(hy,zl, [X;f’g’( )],[X,Jg o( )])pm(u,s,r, 2,2 dY (ufu')(dz')’g(c(tfr),z—y)
_ K 5,&,(m 5,6"(m
ot [ [ it D2 O X O 15,1 ) = 5 )

xg(e(t —r),z —y)
W (s 1)

R C o
(t—r)i(r—s)"
where we used the estimate ([L.61]) with n = 0 and also the fact that, since 2’ — B;(r,y, 2/, u, v) is n-Holder
uniformly w.r.t the other variables, the map x — [ B;(r,y, 2/, [er,g,(m)], [Xf’E ’(m)])pm(,u, s,rx, 2 )dz" is
a-Hélder, for any « € [0,1] with a modulus bounded by K(r — s)*z , K := K(T,a,b) being a positive
constant independent of m. From the following identity

h(y) = aig(ryy, [X90]) = i (ry, [X40M])

<K

1
- / Onas (1., [X3ENEEL0D]) 4
0

1
= / E[au[/ai,j(r, y7y/’ [Xif-i-/\(ﬁ—ﬁ )’(m)])pm(,u, s, 7, yl)dyl)]‘#:[£+)\(£7£/)] (€ + )‘(€ _ E/))(E _ €/)i|
0
and the n-Holder regularity of y — @, ;(r,y, z, 1), we deduce
< K |y - Z|n E !
(5.62) h(y) = h(z)] < K=——=E[l¢ = £']].
(r—s)z
Taking infimum over all joint distributions of the random variables £ and &’ with marginals p and p’
respectively and plugging the corresponding bound in |III|, we get
Wa(p, 1) W (, 1)
(t—r)'"2(r—s)3 t—r)=2(r—s)%
when Wa(p, 1) < (r — s)2. If Wa(u, i/) > (r — )%, we directly get
1 W3 (p, ')
(t—r)'=2 (t=r)'=2(r—s)3
Then, similarly to I, using that each a; ; satisfies (HR), we get
Wi (p, 1)
2 — g(c(t—r).z —y).
(t—r)r—s)=
This last bound completes the proof of the third estimate. Gathering all the previous estimates
together, we thus obtain

] < K gle(t=r),z—y) < K gle(t=r),z —y)

I < K glc(t—7r),z —y) < K gle(t—1),z —y).

1| < K

Va € [05 1]5 |Hm+1(,u’7 SvTvta Y, Z) - Herl(,u/v S,T,t, Y, Z)|

(5.63) <K { T A } W 1) gt — 1), — ).

Hr—s5)%  (t—r)(r—s)"
For r = s, using a similar decomposition as the one employed above and omitting the remaining
technical details, we also obtain
W3 (p, 1)
—=——g(c(t —s),z —y).
el =92 )

For a fixed pi/ € P2(R?) and m > 1, we introduce the following notations

(564) Va € [0777>5 |%m+1(ﬂ,5,t,y,2> 7Hm+1(ﬂl,8,t,y,2>| <K

A}Lﬁm(ﬂa Sa t,SC, Z) = ﬁm(ﬂa Sa t,SC, Z) - ﬁm(ul, Sa t,SC, Z)

and proceed similarly with other quantities. Hence, for example, A, Hp, (1, 8,1, %, 2) := Hum (11, 5, t, 2, 2) —
Ho (1, 5,8, 2,2), Du0u0u[Dm (1, 5., 2, 2)[(v) = 0u0ulPm (1, 5,1, 2, 2)](V) — OuOu[Pm (1, 5,1, 2, 2)]| =y (V)
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and so on. With the previous notation and our computations, by induction on k, it follows that for any
a € [0,1]

k
~ n—a) n - .
(A1 @ HE (s b, 2)| < KW (ot = )74 T] B (g R R 1)3)

x gle(t —s),z — x),

k
(=) -« )
(P ® DyHnin) @ Hylhy (s, b, 2)| < KPWS )t =)= T ] B (g L5+ (i 1>§)
i=1
x glc(t —s),z — x).
From the representation in infinite series of p,,+1, the following relation holds
A,uperl(,uv S, t? z, Z) = A,uﬁerl(,uv S, t? z, Z) +pm+1 ®A#Hm+1(ﬂ, S, tv €, Z) +A,upm+1 ®Hm+1(l’[’ﬂ S, tv &€, Z)
which in turn by iteration yields
(5'65) A,uperl(,Uv s,t,x, Z) = Z {Auﬁerl +Pm+1 ® AuHerl} ® ’H%f) (Ma s,t,x, Z)
k>0
Moreover, one may differentiate the infinite series (5.60) with respect to « so that for n =0,1,2
- k
(5'66) aZA,uperl(Ma s,t,x, Z) = Z {(%?Auperl + 8g?perl o2 AuHerl} ® ’anzrl(ﬂ, s, t, x, Z)
k>0

In order to make the previous formula rigorous, we study the iterated kernels that appear in the
previous series. From the estimates (.61 and (.G3) we get

-~ k
|8IA;me+1 (%9 anll(u,b’,t X Z)|

< KEWE (py i) (t — 5) 372k HB (5 5+ T+(i—1)g) gle(t —s),z —x)

|(OePm+1@A, Hmy1) ® Hmﬂ(u, s, t,x, )|

k
1 — 1 -
<KMW (o i) (8 — ) FHET R I,_IB (g gty - 1>§) gle(t—s),z — )

for any a € [0, 1] and

|02 Pim+1 ®7—[7(:Zrl(u,s t,x,2)|

< KFWg ()t - 5) 127 HB (325 G- 0F) ottt = 5).2 -0

for any o € [0,7). On the one hand, if r € [s, (t + s)/2], from (G.63)), we get
W3 (1 1)

(t —7)(r — s)t+7"
W3 (ks 1)

(t —s)(r —s)' T2

/d 02D (11, 5,7, 2, Y) | Ay Hom (1, 5,7, £y, 2)|dy < K gle(t—s),z —x)
R

glc(t —s),z —x)

so that for any a € [0,7)

W(l I
(5.67) / [ o8 (5,2 dy < 6T Rttt )2 ).

On the other hand, if r € [2£2, ], again from (E.63), we get

W3 (p, 1)

/Rd 102D (1t 5,7, 2, Y) || Hon (11, 8,78, y, 2) | dy < K(t - r)ﬁ%(r —s)te gle(t —s),z — )
W (p, 1)

a K(t - T)lig(t —s)tTs glelt = 5),2 = )
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so that

W& I
(5.65) / L1t a, (u,s,r,t,y,zndydrSK(t_j%g(cus>,z:c>.

Combining (5.67) with (5.G8)), we finally conclude

Wa
Va € [0577)7 |(a£pm ® AuHm)(%Svtaz»Z” < K(t_s()ilf:i)ng( (ti S),Z - :L')

so that, by induction on k, we obtain

(©2Pm ® A Han) @ HE (5,1, 2)| < KW () (8 = )71 ”*’“"HB(Q i >g>

x gle(t—s),z —x)

for any « € [0,n). From the asymptotics of the Beta function, we conclude that the infinite series
appearing in the right-hand side of (5.66]) is absolutely convergent in the two following cases: n =0, 1 for
any « € [0,1] and n = 2 for any « € [0,7n). Moreover, there exist two constants K := K (T, a,b), ¢ := c¢())
such that for any u, ' € P2(R9)

W(I li
(569) |5;me(,u, S,t,ZE,Z) - a;lpm(//a s, t, :C?Z)| < K(tQ()ilun’ﬁa)n g(C(t - S)’ Z = ‘T)a n=20,1,2.
—§) =

This completes the proof of (G.I6).

In order to obtain (5.I7) we proceed as for the previous estimates. To lighten the notations, we
introduce the quantities

up (s,t) == // " — 2 |"AT)
(Y, )GR"’X Pz(Rd 2, uAEp
y 10 [0upim (11, 8,8, 2, y")(y) — 0y [Oupm (1, 8, 2,y )] (y)]

d n ! d /
W ) v
OO, pm (u, s, t, 2,y — 0" 0upm (1, s, t, 2, y"
U%(S,t) — sup //l y[ Mp (/j/ Yy )](y)a y/[ Mp (/j/ Y )](y)l dy” /J/I(d(EI)
(yopsa”) ERY x (P (RY))2 iy’ W (s, ')

for a fixed n =0, 1, « € [0,1] for n =0 and « € [0,n) if n = 1. We prove by induction the following key
inequalities:

1+nto (1+n+a—n)
2

u” (5,1) < Cn(s,)(t — 5) ¢ D and WP (s,1) < Con(s,t)(t—s)" (T2 ),

with Cpy n(s,t) := > e, C* ]_[Z B (%, m—_a +G@E-1)3) (- s)*=13  The result being straightfor-

ward for m = 1, we assume that it holds at step m. We first claim

Va € [05 77)7 |ag[aﬂﬁm+1(ﬂa S, T, tv €, Z)](y> - ag[aﬂﬁm+1(ﬂla S, T, tv &€, Z)](y>|

1 1
(570) < KWQQ(M’ M/) <{ Ttnta—n 1{7“:5} + Ttnta—n 1{r>s}}
(t—s)" = (r—s)— 2
1 t
; / up (s, v)dv) gle(t —71),z — ).
—r ),

In order to prove the previous inequality, we make use of the following decomposition:

A0y [0uPmr (1, 5,7, 1,2, 2))(y) = 1(y) + T(y) + (y) +TV(y),
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with
I(y) == {sz_m (/t a(v, z, [Xj’f’(m)])dv) ~Df, 4 (/t a(v, 2, [ngﬁ/*m)])dv)}
[ @t ) =20, ) v
[t [0, X o XSO0, o v, )
I(y) == Df.s ( / t a(v, z, [Xff/*(m)])dr)
|/ t { (@, X5 0z X )0 0,
@0 XY = 0.2 X DO 50,50 ) = O o v,/ ) | o
0= Do [ otz 0600
s [t 06 D0 B N
[y [ @z XG0 = o X DO, N o

IV(y) := Df,_, (/ a(v, z, [X2€0M)) dv) // (da') / (@(v, 2,9/, [ X2 M) —a(v, 2,2/, [X2€ ™))

(a;l[aﬂpm(ﬂa S,’U,ZE Y )](y) - y [au[pm(:u’ ’S’Ual' Y )]( ))dyld’l}

From the mean-value theorem and the estimates (5.60), (5.6) and (B.I2), there exists a constant
K :=K(T,a, b) independent of m such that

[Hy)l < maXlau(U 2 (X0 )) = a0, 2, (X)) dv
(
X </ {(v - s)f(lein) + (v— s)f(lein)fg} dv> gle(t —r),z — x)
< (tf{wz (VUV2($“T> do % [(t— ) g+ (- ) (r—s) lg(e(t — 1), 2 — )

1 1
—1 =S8 +ﬁl r>s Ct_/r ’z_‘r
S)1+g+a7n {r=s} (T_S) Lfnta _, {r> }1 g( ( ) )

(t -

for any « € [0,1]. From (CS.)s, similarly to (5.60) with the map Zz] instead of A, ;, one gets

< KWg(u, ") [

(5.71) Va € [0,1], [a(v, z,y", [X300M]) = a0, 2,y", (X3N] < K Wk (/) (v = 8) "7
and by (B.6) we obtain

~ , Wo , /
| @02 X0 = o DX DO v | < K

(v B S) 1+n42»a77]

and, from (5.69), the n-Holder regularity of y — a(v, z,y, 1) and the space-time inequality (4), one has

‘/(E(U,z,y”,[XS’§ )y — (v, 2y, (X IO (11, 5,0,y y) — O (1 8,0, 9, y"))dy”

o W, 1)
(v—2s) e

for any o € [0,1] if n = 0 and for any « € [0,n) if n = 1. Combining the two previous estimates, we
finally obtain

1 1
(y)| < KWs(u, p') Wl{rzs} + ml{r>s} glc(t—r),z —x)
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with @ € [0,1] if n = 0 and « € [0,7n) if n = 1. From the representation in infinite series (5.40), we derive
that  — 0} [0upm (1, s, t, 2, 2)(y) is a-Holder continuous, with o € [0,1] if n =0 and « € [0,7) if n = 1.
More precisely, for any z,2’ € R? and for any m > 1, one has

0 [Oupm (s 8, 2, 2)|(y) = O [Oupm (11, 5, I’vz)](y)’

%{g( (t—s),z2—x)+g(c(t—s),z—2")}.

(t—s)
The previous estimate in turn implies that 2 — [a(v, z,y", [Xi’“m)])a" [0upm (1, 8,0, 2, y")](y)dy" =

J(@(v,z,y", [Xi’g’(m)]) a(v, z, 0, [X5© (m) )02 [0pm (1, 5, v, 2,y (y)dy", xo € RY, is a-Holder, with a
a

(5.72) <K

modulus bounded by K(v—s)~ +Z+a) 1. K being a positive constant independent of m, where a € [0, 1]
of n=0and a € [0,n) if n =1. We thus deduce

| [ [ X ) 00, .0 N @) (1 ) ()] < K
From (590) and (.12), we also obtain

| / / A0, 2,4, (XSS (0, 2,y [X € )O D1, 5,0, 2 )] (y) dyf i (da')] < K

W3 (e, 1)

m'

W3 (1, 1)

m

for any « € [0,1]. Consequently, combining the two previous estimates, we conclude
1 1

#17“25 +#1T s gCt—T,Z—.’I]
(t—S)H; 7 { } (T—S)H; 0 {>}} (( ) )

for any « € [0,1] if n = 0 and for any « € [0,7) if n = 1. Finally, one has

K / // T2 A DAL O pm (1, 8,0, 2y (0)| dy” dv W (da') g(e(t — 1),z — ).

Gathermg‘ the estimates on I(y), II(y), III(y) and IV(y), we obtain

II(y)| < KW3 (u, 1) {

[IV(y)

N 1 1
|AL0y [0 Pm1 (5,75t 2, 2)](y)| < K {Wg (1, 1) {Wl{us} + Wl{ws}}

(5.73) /// DI By 5, ) ' |
x glc(t—r),z —x)

for any a € [0,1] if n = 0 and for any « € [0,n) if n = 1. This completes the proof of (G.170). As a
consequence, from the induction hypothesis, we directly get

|80, [0upmta (p; 8, 1, 2, 2)] ()]

1 1 t Conm(s.7 §
SK{(ts>Lf"+ /< ’1(+++3ndT}W2<“’u’>g<c<ts>,zz>

t—s r—s)
K n 1— n+a M nl-n+n—-a
< k .
S = {B<2, )+Zc }'[B( 5 +(i—1)
X W' (p, 1) gle(t = ), 2 — x)

which in turn yields

S 1AL2 0P @ Hopyy (1, 5,t,2,2) (V)]

VRS

)(ts)k%}

r>0
s —n — n
gK{B (g%) +ZC’“HB( %—i—(i—l)g) (t—s)kf}
(5.74) ; Wf;fﬁf;'ﬁn glelt — ), — ).

From (B38), we easily obtain the following decomposition
DOy [0 Hims (1, 8,708y, 2)|(v) =A+B+C+D+E



WELL-POSEDNESS OF NON-LINEAR SDES AND PDE ON THE WASSERSTEIN SPACE 67
with

A::A1+A2+A3a

d t
Ay == N0, [0,bi(r,y, [ X)) (v) Hj ( / a(v', 2, X35 dv' 2 — y> P11 8,75 6,y, 2),

=1

d t
Az = =37 0,[0bi(r,y, X3¢ ])] (v) A, Hj ( / a(v', z, [Xsf(mmdv',zy) P11 5,7, 6,y, 2),

=1

d t
Ag == 0,[0,bi(r,y, X3¢ ]))(v) Hj < / a(v', 2, [ X5 M))do 2 — y) A Bt (115,751, 9, 2),
1=1 T

B ::Bl +B2+B3a

By = Z NuBo[Bulai g (r,y, [XESUI]) — g (r, 2, XSS (0)

1,j=1

t
x Hy? ( / a(w', z, [ X5 <’”’1>dv',zy) Pria (11, 5,7, 4,9, 2),

d

By = % Z lai g (ryy, (X280 0M]) — g 5(r, 2, [ X0 (0)
( [t o
d

Ba = § 32 00, 550 = 5 1)

t
X H;,] (/ a(v Z, [ng (m)])dleZ _y) Auﬁm-‘rl(uasaratayvz)a
C::01+Cg+03,

d t
Crm =3 Aubilry, (XS0 0, [@H{ < [ att = x <’">]>dv',zy>] (0) P (15,741, 9, 2),

=1
d . t
Co = — 3 il [X2€ ™)) A0, [@H; ( [ at= [XS“’”’])dv',zyﬂ (0) P (1 5,7, 6,1, ),
=1 T
d . t
Cs = — 3 bl y, [XEM) 0, [auH; ( [ atz i <m>]>dv',z—y)] (0) Dyross (1 5,7, 6,9, ),

i=1

DZ:D1+D2+D3,

D = Z A (a”(r Y, [ng(m)])fa”(r z, [ng(m)]))

1]1

t
< d, [auH;ﬂ ( [ atn s har s - y)} () Brs1 (15,7, 8,1, 2),

d
Dy =g 2 (o1 (X)) 2 (X5
- t
% A0, [@H;*j < [tz X pa s - yﬂ (0) Prosr (15,72 1,9, 2),
1 & , T ,
Dy = 2 3 (@ (roy, XI5OV)) — a2, [X2E00)))
7,j=1

. t
X 0y |0, Hy’ a(v, z, ng (m) dv',z—y || (V) AuPma1(p, s,7,t,y, 2),
Aty i
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and
E = E1 + E2 + E3
d ) t
Br == 3 A [ D ([ X5 D5~ ) | 00 5.t ),
i=1 r

d ¢
1 - .
— = y €M) _ . 5,€,(m) i / SEMN gy 2
Es = 5 E AW Kam (r,y, [X; ) —ai;(r 2 [X; ])) H; </T a(v',z, [ X, Ddv', = y) }
X av[auf)\m—i-l(ﬂa S,T,t,y,Z)](U),

d t
By im { St Lz ([t X s - )
i=1 r

d t
1 1,7 s m
+5 30 (s D) = e X0 157 ([t (X5 ez - )

i,j=1
X A,uav [auﬁerl (Ma 5,1, t,Y, Z)] (’U)

e Estimates on A:
In order to deal with A;, we use the following decomposition

Ay [0bi(r,y, (XS D](0) = T+ T+ T+ 1V + V
with

Lim [Gilr, 20 XS] = i, (X 0) 02 7,0 2)
0= /@l(r, y, 2, [ X0 = by(r,y, 0, [XEE TN (02D (1, 5,7, 0, 2) — O2pm (W 5,750, 2)) dz,
L= [ [ Bl 66 0) 0By o 2)) () de (1~ ) ),
Vi [ [ Bt X)) = Bl 05 ) 0By 5.7, 2] 0) i (),

Vim [ @l X260 = Bt (X2 ))

(Ou[0upm (1, 8,7, 2", 2)] (V) — Do [Oppm (1, 8,7, 2, 2)](v)) dz @' (da”).
We now need to quantify the contribution of each term appearing above. From (CS; )2 and (G.69)
(with n = 0), similarly to (5.60) with B; instead of A;_;, we directly get 1bs(r,y, 2, [Xf’g’(m)])—gi(r, Y, 2, [Xf’§ ’(m)])| <
KWE (/) (r — s)=B=m/2 50 that
B ’
I < KM.
(r— s)l"‘%

From (5.69) and the n-Holder regularity of z — gi(r, x, z, ), we also obtain

Wy (1, 1)

| < K )
(r—s)ttz=n

Using the fact that x fgi(r, Y, 2, [Xﬁ’g’(m)])[?u [0upm (1, 8,7, T, 2)](v) dz is f-Holder, € [0,n), with
modulus bounded by K (r — s)~(1+%-7 we get
Wy (1, 1)
(7’ — 5)1"'%_”.
Similarly to I, from ([E.69) (with n = 0) and (BI2) (with n = 1), one has
Wy (1, 1)
(T — 5)1"‘%_”.

1| < K

V| < K
Finally, for the last term, one has

VIS K [ [ =217 A D100 5,10 ))(0) = OOy 57,8 2))(0)] d ()
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Gathering the previous estimates and using the induction hypothesis, we finally obtain

1
+up(5,7)) W5 (1, 1)

82,0, XS] < K (o

so that

M) € e e (U o) = ) W ) gl )2 =)

For A,, from (B.29) and (B.12) one gets ([B.30) so that
(5.75) 100[0,bi(r, y, (X)) (0)] <

_ K
(r—s)i=32

and, from the mean-value theorem and (5.60), for any « € [0, 1]
¢
a8 ( / a(v/,z, [Xsf<m>]>dv',z—y)ﬁm+1<u,s,r,t,y,z>
-t / maxag; (v, 2, (X3 0) = as (02 XD glet — 1), 2~ )

W“’”Hg( (t—r).z—y)

<K 1
(t—r)2(r—s)z

so that
Wi (ps 1)
(t—r)2(r—s)lts—n

For As, from (.60) and the mean value theorem, one similarly gets

Va e 0,1, |As <K

g(C(t - T),Z - y)

R Wo , /
(5.76) Bufmealp ot 2) € KRS el =), )

which in turn, with (&.73]), directly imply
W (s, 1)
(t—r)2(r—s)tts—n
Combining the previous estimates, we finally obtain
K n @
1 a—n (1 + Cm,n(sa T)(T - S) 2 ) W2 (:ua MI) g(c(t - T)a = y)
(t—r)z(r—s)tt =
e Estimates on B:
For By, we employ a similar decomposition as for A,8,[9,bi(r,y, [Xf’g’(m)])](v), namely

D00 Ot g (ry, X4 U]) = i (r 2, (XS] (0) = Ly + iy + 1y + 1V + Vi

Vae[0,1], |As]<K

gle(t =r),z —y).

Al <

with

Ly im [ [Gustrow X)) = G2, 26 07)

= (@i (s 2 0] = g (1,2, 2, X)) | 02 (0, ) 2
iy im [ [Gaslr 2 X 0) = T 2,2, (X200
= @0, X)) = G (2,0, (X )] @2t 5,70, 2') = i 5,7,0, )

iy [ [ [/ D00 2221 XS 0410, 15, )] 0) ' 1= ) (),
IV, = / / Gy 2 (X)) = 2,21, (X))
(. 02, X)) = i, 2,21, (XS )] 04 0 (15,7, )] (0) 42/ (0,
Vij = // ai,j(rayazla[Xf’El’(m)])—Ziz',j(razaz'a[Xf’gl’(m)])—(Ziz',j(hyax'a[Xf’gl’(m)])—Ei,j(razaxla[Xf’gl’(m)]))}

O [Oupm (1, 5,7, 2, 20)](0) = Do [Oppm (W', 5,7, 2", )] (v)) d" i/ (d').
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As previously done, we quantify the contribution of each term in the above decomposition. First,
using condition (CSy)s for the map u +— a; ;(r, z,y, u), similarly to (5.60) with the map Zi,j instead of
A; ;, we directly get

W3 (p, ')
(r — )57 .

Otherwise, using the n-Hoélder regularity of « — @, ;(r, z, z, 1), we get

Va € [05 1]5 |Ii,j| <K

_ o[n
L] < Ku

r—s

Hence, combining both estimates with the space-time inequality (I4]), we deduce

t
Vo € [O, 1], Ii,j X H;J (/ a(vla 2, [Xi’ygy(m)])dvlﬂ Z = y) ﬁm-‘rl(:u’ 5,1t y, 2)}

Wit (u, 1) 1
(5.77) =k { -5 2 G- F(r ) } glelt =),z =)

Now, if Wa(p, i) > (t — r)'/2, then, from the previous bound, we directly get

. . t .
Va e [0,1], [Ty x Hy( / a(v', 2, [ XNV, 2 = ) B (15,7, 9, 2)]
W5 (p, 1)
(t — )T (r — s)
/2 then from (5.77) with o = 1, for any 3 € [0,7),
t

L x HY ([ a2, (XS5 Do, 2 = y) P (7, 8y, 2)]

T

<K gle(t —7),2 —y).

Otherwise, if Wa(p, p') < (¢ —r

~—

Wy (s ')
< ng(c(tﬂ),%w
B /
<K W2 (Uvﬂ) g(C(th),Z*y).

(t =)+ (r - s)

Gathering the three previous estimates, we finally obtain

t
Va e [0,n), |L; x Hy( / a(W, 2z, [XS5 TN 2 = ) P (7 1y, 2)|

< K{ ! — A ! } W3 (1) g(e(t — 1), 2 — y).

(t—r)(r—s)t™2 (t — )2 (r — 5)
Again, from (5.69) and the n-Holder regularity of y — a; ;(r, y, z, 1), we obtain
|y _ Z|n A1 a

W3 (p, 1)

Va € [0,n), | <K -
0, Iis] < Ko Py

From (5:72), the map &/ +— [ (@ (r,y, 2/, (X250 =i (r, 2, 2/, [X )0, [8pm (1, 5,7, 2! 2')) (v) d2’

(a—m)

is a-Holder with a modulus bounded by K(|y — z|7 A1)(r —s)~!=7= so that
— A1
Va € [Oan)a |HIi,j| < K%W;(M,ul).
T — S) +=3

Using similar arguments as those employed for I; ;, we get

Wi lp )y —=I" }

R L AT

so that, considering the two cases Wa (i, p/) > (t — )= and Wa(u, p/) < (t — ) as previously done,

Yo € [0, 1], |IVi,j| < C{

o t
Vae [0, Vi, x HE ( / a(v', 2, (X3S 2 y> Brsr (1,1, )

< K{ ! a—n A 17n
(t—7r)(r—s)t™3 (t—r)1T7= (r—s)

} W3 (p, 1) g(e(t — 1), 2 = y).
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For the last term, using the fact that g — a(r, z, u) is in (CS4.), more precisely, the n-Holder regularity

of  — @; ;(t,z, z, u) on the one hand or the n-Hoélder regularity of z — @; ; (¢, x, z, ) on the other hand,
as well as the induction hypothesis, we get

Vil < K {up,(s,r) Ay — 2|, (s,7)} W (p, 1)

Gathering the previous estimates and using the space-time inequality (L4]), we finally obtain

1 1 U (8,7) U (8:7) ol
|B1|§K{{(tr)(rs)1+“2"A(tr)1+%(rs)}+{ t—r A(tr)l‘%}}%(”’“)

xgle(t—r),2—y)

for all a € [0,7n). For Bg, from (546) (bounding (r — s) e ul (s,r) and (r — s)%vﬁl(s, r) by K), one
gets

(5.78) 100 [0 ]as; (ry, [X2 ™)) — a4 (r, 2, [X2E )] (v)] < K { |Zr:g{g|" A e i)l }

s

and, by the mean-value theorem and (B.60)

t
A HY ( / a(v', 2, (X3 2 y> P (1,7, 2)|

K K S m S ! m
(6.79) < ﬁ/ max fas; (v, 2, (X35 V]) = ass (0, 2, (XS Do g elt — r). 2 — )

Wt (ps 1)
<K —g(c(t—r),z—y)
(t—r)(r—s)Tg( ( Y

so that

1 |z —y|" W (p, 1)
[B2| SK{(T—S)lg A (r—2s) } (

— c(t—1r),z—
==t )

1 1 )
SK{(tr)(TS)1+%_” A }Wg(ﬂau)g(c(tr)azy>'

(t — )1 =3 (r — s)1 T

For Bs, from (5.76) and (5.78), we get

. 2 — y|n W (s, p')
Bs| < K{(t—r)(r—s)lg : (tT)(TS)} (r—s)=

gle(t =r),z —y)

1 1 o ,
S K{(t?")(r s)i+s—n A (t—?‘)lfg(r _ S)lJr% } W3 (p, 1) g(e(t =), 2 — y).

Gathering the previous estimates on By, By, B3 and using the induction hypothesis, we finally deduce

1 1 U (5,7) v (s,7) af,
Bl SK{{(zﬁ—r)(r—s)praf7 " (t—r)“r%(r—s)} +{ t—r " (tr)l_%}} WE i)

xgle(t—r),2—y)

1 1 .
<K — N = 14+ Chpn(s,r)(r—s)2
{(t—r)(r—s)”T (t—r)lJrT(r—S)}( (5,7 )?)

x W3 (p, ') gle(t —7),2 —y).

e Estimates on C:

For Cy, from (HR ) and (5:69) (with n = 0), similarly to (L.60) with the map b; instead of a; ;, one
has

« !
(5.80) Vae 0,1, |Aubiry, X360 < K WEUL)

(r—s)z
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and, from ([B.29) (with n = 1) and (5I2) one gets (530) (with n = 1), so that

v {GMH{ (/ (U 2, [XS S (m)])dvlaz - y) }(U)ﬁmﬁ-l(ﬂarat’yaz)
K max 9y [Dai; (v, 2, [X50))(0)] dv’ g(e(t —r), 2 —y)

(tfr)% o B

K
= (t—7r)2(r—s)=% gle(t—r7),z—y).

Combining both estimates, we obtain

(5.81) <

W3 (1, 1)

|01|§K 1 o
(t—r)2(r—s)tta=n

g(C(t - T),Z - y)

From similar computations as those employed for the term A,0,[0,.b;(r,y, [Xﬁ’g’(m)])](v), in a com-
pletely analogous manner, we get
1

(v — 5)

so that, from the mean-value theorem and the induction hypothesis

K
|Ca| <
(t—

(5.82) 18 0u[Bai s (0,2, XS] (0)] < K g (5,0) ) W (g, )

t
/ max [0, a0, 2, (X3S VDI @)l glelt = 7).z~ )

K -1 t s,0)(v —8)7 dv > Nale(lt —71),z—
< e (1 [ a0 92 ) WG patett =2 )

For Cs, from (576) and then (5.81]), we obtain

W2 M, ‘LL max a 3757(7”) v ,UI clt—17r).z —
ICsléK(t_r) i 2)° / |00[0ai; (v, 2, (X D]()] dv' g(e(t = 1), 2 = y)
W2 (NaM)
(t—r)3(r—s)it5-n

g(C(t - T),Z - y)

Gathering the previous estimates on C;, Co and Cs, we get

K t
o p— = (14007 [ Gl ) WG gtelt = 1), =)
(t—r)2(r—-s) r
e Estimates on D:
In order to deal with Dy, we first remark that from (5.62) and the computations shortly after, distin-
guishing the two cases Wa(u, p') > (r — s)2 and Wa(u, p') < (r — 5)2, we get

S m S m | |
o 0,1], 18 (s, X)) = a2, (XSO0 ) £ K =S W o k)
From (B.60), we also get
$,&,(m) s,&,(m) Wél(lu”ul)
Va € [0,1],  |Auai;(ry, [X75" D]+ | Auai;(r, z, [XP50])] < KW
r—s) 2
Gathering the two previous bounds, one obtains
(5.83)
[z —y|" 1

Vo e 0.1], 1A, (s (g, (XSS a0 (2 XSS | < K !
ael0,1], | H(G,J(Ty[ , ) —aij(r, 2z [X; ]))|_ oE T

Moreover, similarly to (581]), one has

t
|av |:8MH;7J (/ G/(’U Z, [Xs A (m)])dvlaz - y):| (U) ﬁm-ﬁ-l(ua Saratayaz)l

(5.84) S / a0, D01, 2, (X550 (0) d! glelt — 1),z —y)

K
(t—r)(r— s)l_%

IN

gle(t =r),z = y).
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From the two previous estimates we thus conclude

1 1 « /
D1 | SK{(t—r)l oy =/ (tr)(rs)1+%—n}w2 (i, 1) g(e(t — 1), 2 — ).

“2(r—s)

For Dy, we handle A9, [0, Hy” (f a(v', z, [Xi,’g’(m_l)])dv’, z—y)](v) like A, 8,[0,H} (f: a(v', z, [Xi,’g’(m_l)])dv’, z—
y)](v), that is, from the mean- Value theorem and (B.82), one gets

el= @—L) max [ 8,00 [0uai 5 (v, 2, (X5 D))o glet = 1), 2 =)
- (tr)l—%(I: — ) (”“‘”_1/ Cmvn“’”)@—s)gdv) WS (1) (et = 1), 2 = ).

To deal with D3 we employ (G.76]) and (5.84). We get

Pl = Ij = [ max (0410055 2, X)) d glelt = 1),z < )
<K W2 (Uvﬂ) g(C(t*T),Z*y).

T (t—r) I (r—s)ttEm

Gathering the previous estimates on D1, Do and D3, we get

1 1 ¢ n
DI <C = N e 14+ (t—r)"t Cmn(s,v)(v—s)2dv
Dl {(tr)(rs) 2 (tr)1+T(rs)} < ( ) /r (50 ) )

X W3 (p, 1) gle(t — 1), 2 — y).

e Estimates on E:
For E;, we proceed as for the previous terms. To be more specific, from ([G.80), the mean-value

theorem and (5.60) as well as (541)) (bounding the sum by K), we have

For Eg, from (5.83), (539) and then (579), we get

|Eg| < K{(t—?‘)l_(j‘ —s) o1 A (tT)(TlS)l-{-%—n}W;(Uvﬂl)g(C(tT)vz —y).

For the last term E3, from (B.73]), one obtains

|Ei| < K

IEs| < K{ Wé‘(uw’)
(t—r)lfa(r—s)
= I ) [ S I P
glelt =r),z —y)
< (t—r)lg(lj_s)u% <1+ (tr)l/rt Conn(5,0) () — )2 dv’) Wy (1, 1) g(e(t — 1), 2 — y).

Gathering the previous estimates, we finally deduce

Bl (K = (1 H =) [ Conls )0 - 9) dv') W (i) glelt — 1),z — ).

We now collect all the previous estimates on A, B, C, D and E. We finally obtain the following bound

|AH(9U [8#7'[7714»1(#; S, T, tv Y, Z)](’U)|

1 1 1 t ’ /*Sg ' « Nalelt — ). 5 —
SK{(t—T)(T_S)lJF%/\(t_r)lJr%(r—s)}(lth—T/r Cn(s,0") (v )2 d )W2 (e, ") g(c(t ), y)
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which in turn, after a space-time convolution with p,,1, implies

|pm+1®Apav[auHm+1(Masat €T, 2)](U)|

K m—1 k+1 .
(a3 R e T3
(tis) 2 k=1 =1

x W3 (p, 1) gle(t — 5),2 — x)

s

VRS

) )
+s

where we again separate the time integral according to the two disjoint intervals: [s, 2] and (=, ¢]
in order to balance the time singulairity. From standard computations, we deduce that the series

Zkzo (Prm+1 ® Dp0y0pHimy1) @ Hf:ll(u,s,t,x,z)(v) converges absolutely and uniformly. Moreover,
there exist positive constants K := K(T,a,b), ¢ := ¢()\) such that for any o € [0,7)

Z ’(pm-i-l ® Aua'uauHm-i-l) ® H,(,]fll(u, s,t,x,z)(v)‘

k>0
(5.85) §6:§39{3< >+§:diTBQ_——+<n@u@%}

x W' (s pt') g(e(t = s), 2 — ).

From (563)) and (BI2) (at step m + 1), separating the computations into the two disjoint intervals

[s, 2] and [2£2, 1] as in (5.67) and (G.63), we get

Va € [0577)7 |(aﬂaﬂpm+1 ®A#’Hm+1)(u,s,t,z,z)(v)| < W;(uvﬂl) g(C(t*S),Z*:C)

so that
(5.86)
(k) K
Va €[0,n), Y 1(000upmi1@A Hm i1 )OH (15,8, 2) (v)] < =5 E W3 (1, 1) g(c(t=s), z—x).

k>0

Similarly, from the estimates (B59), (547) (bounding C), , by a constant K), separating the time
integral into two disjoint intervals as previously done, we get

Va € [0777>ﬂ |A#pm+1 ®aﬂaﬂ7_[’m+1(u757t?z7z)(v)| < WQQ(:UvM/) g(C(t*S),Z*:C)

(EDEexd
which in turn implies
(5.87)

Va € [0,7), Z| Aypm4+1®0,0 Hm+1)®Hm+1(ﬂa5 t,z, z)(v)] <
k>0

K

(C—s)F5 W3 (p, 1) g(c(t—s), 2—).

If we differentiate with respect to the measure argument (and then with respect to the variable v)
the relation P41 = Pmt1 + Pmt1 © Hmt1, we obtain 0,0upm+1 = OuO0uDm+1 + Pmt1 @ OpOpHmi1 +
avaupm-i-l ® Hm+1 so that

B[P (15,122, 2)](0) = Dy Oy (15,62, D)) + P © Aol Honsr (15,2, D))
+ Auperl o2 8vauHm+1(Ma s,t,x, Z)(”) + 8vauperl o2 AuHerl(,Uv s,t,x, Z)(U)
+ Auavaupm-i-l ® Hm—i—l(ﬂ; s, t,x, Z)(’U)

Iterating the previous relation, we obtain the following representation

A0 [0uPms1 (5,2, 2)(0) = D [AuD0,Binss +Ponir @ 000, Honi
k>0

+ ApPm+1 ® OuOuHmr1 + 00upm+1 @ Ay Hmi1| @ H,(ffll(u, s,t,x,2)(v).
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Gathering the estimates (2.74), (2.85), (&.86) and (B.87), we deduce that the above series converges
absolutely and satifies

Va € [0,77), |A Oy [ ,uperl(,u'vS 3 :ZZ,Z)](’U)|

K [e3
< ey W) glelt = ),z — x)

(t—s)
)+chkﬁl3(

*ﬁ{lg(

x W3 (p, 1) gle(t — 8), 2 — )

gﬁ{3< )+chlﬁ3<——+(1)g>(ts)%}

x W3 (p, 1) g(c(t — ), 2 — x)

so that

k+1

UZ@H(M)S@_S)%%”{B (" 77_0‘) +chlHB(” ”‘a+(¢_1)g) (t_s)k%}

and similarly,

noa(st) < K B<
v, S, S o
m+1 (t_s)lJr =

Since the constant K does not depend either on the constant C' appearing in the definition of C, ,,(s,t)
or m, one may change C' once for all and derive the induction hypothesis at step m + 1 for u]), and v},
This completes the proof of ([E.IT).

We now prove the estimates (5.I8) and (5.I19). Since the proofs are rather long, technical and use
similar arguments as those employed before, we will limit ourself to (E.19) and will omit some technical
details. The proof of (B.I8) follows from the relation (5.23) and similar arguments as those developed
below. We remark that if [s; — s3] > t — 1 V 89, the estimate (BI9) follows directly from (EIZ). We
thus assume that |s1 — sa| <t — 81V 5o for the rest of the proof. To make the notations simpler, for any
fixed (s1,s2) € [0,1)?, we write Agf(s) = f(s1V s2) — f(s1 A s2) where f is a function defined on [0, ).
In particular, Agpm, (i, $,t, 2, 2) = pm (i, 1V S2,t, 2, 2) — pm (i, $1 A S2,t, 2, 2). We first claim

> ch:ﬁl3<” - (¢1>g)(ts)k%}.

VB e [0,1],Ym > 1, |Aspm(p,s,t,x,2)]

|s1 — 5" 3 B
(5.88) <K 5 gle(t—s1),z—x)+

In order to prove the above statement, one has to consider the two cases |s1 — s2| >t — s1 V 52 and
|s1 — s2| <t — 51V s2. In the first case, it directly follows from (B.6) with n = 0, while in the second
case, it follows from the mean-value theorem, (5.13) and the inequality (£ —s1V s2)™! < 2(t—s1 Asa) ™t

We now start from the representation in infinite series (B.40) and write the following decomposition

Ag 8 [aﬂpm-l-l(lu’as L, Z)]( ) Ag a [aupm-l-l(:uas 2 Z)]( ) + As(pm-i-l ® 83[8HHW+1])(Ma s,t,w,z)(v)
(589) + A (a [auperl] ® q)erl)(M, S, t , L, Z)(’U)
+ As((Pm+1 ® 0y [OpHint1]) @ Prnt1) (1, 8, ¢, 2, 2)(v).

We investigate the first term appearing in the right-hand side of the above identity and make use of
the following decomposition

250y [Oupm+1 (s 5, 2, 2)](v) = 1(v) + 11(v) + M) + 1V (v),
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with

t t
I(v) := {szm (/ a(r, z, [Xflvs2’£’(m)])dr) - Df,_, (/ a(r, z, [Xfl/\sz’g’(m)])dr>}
S1Vsa S1/A\S2

t
R L e e ) A N

1Vs2

// a(r, 2 y X&l\/éZa& (m)]) (7“ 2, 7! [X51V327£7(m)]))817}au[pm(u’Sl V 89,1, x/,y')](v) dylu(dl‘l)} dr,
II(v) :=Df,_s (/ a(r, z, [X;”Asz’é (m)])dr)
EEWAY:-D)

t
/ {/(5(7“,2;,3/, [XfIVS21£1(m)]) —Zi(r,z,y [XSIASQ ok m)]))alJrn (/%31 vs2aravay/) dy/

1Vs2
+ / (@(r, 2,9/, [X Vo0 0]) = (r, 2, 0, [X71 Vo2 500)))

(0L "D (11, 51V 82,7,0,9') — O " P (1, 81 A s2,7,0,y'))dy' } dr,

II(v) := Df,_s (/t a(r,y, [XflASZ’E’(m)])dr)

1/\S2

/ {// a(r, Xs1VSz 3 (m)]) —a(r,z,y, [Xfl/\527§7(m)]))a;’}l[aﬂpm(ﬁh 1V sa,r, 2,y (v)dy p(dz')
s1Vsa
// Tz, y X51/\sz £, (m)]) o E(r, va/, [Xfl/\SQ,g,(m)]))
(0210upm 51V 272" 9 ](0) = Db 51 A sz.ra’ )] (0)) dy e } .

t
V) =D ([ atrz Lxpreremar)

51 /\S2

s51Vsa
/ {/(E(Tv 2,y X)) =G, 2,0, (XS, (0, 51 A s2,7, 0,y )y

51 /\S2

+//(Zi(r, zy [ X2 M)y _ G, 2, 2 [XflASZ’g’(m)]))@f[8Hpm(u, 51 A Sa,T, x’,y')](v)dy'u(dm')} dr.

From the mean-value theorem, (HR)(ii) with (5.88)), (512) and (G5.6]), we get

K ! |81 — 82|ﬂ } 1-n+tn
Vg e |0,1], T —— 4|51 —s —|—/ —dry(t—s1 Vs E
pelodl )l < (t —s1Vs2)? {| 1ol sivsy (17— 51V s2)P72 ( 1Y)

x gle(t —s1 A s2), 2 — )
|51 — 52|°
(t -5V 82) 1+721'7n+ﬁ

<K g(c(t —s1 A s2),z2 —x)

where we used the inequality |s; — 2] <t — 51V s2 for the last line. From (CS; )2 with (5.88) and the
n-Holder regularity of z — A(t,xz, z,2', v, u), one gets

|51 — 52|”
(r—s1Vv SQ)ﬁ’g

(5.90) a(r, 2,y (X328 —G(r, 2, ¢/, [X2 20 M) < K

which, together with (56), (BI8) both with n = 1, 2 and the n-Hélder regularity of y — a(r, z,y, p),
imply

K ¢ — 59P
)< —— | sl (et — 1 A s2)y 2 — )
=51V sy s1Vsa (T*Sl\/Sg)T+'B
_ B
<K |31 = s glc(t —s1 N s2),z—x)

(t — 851 \Y 82) 1+37W+B
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where 3 € [0, +32) for n = 0 and 8 € [0, 2) for n = 1. From (5.90), (GI12Z) and (CS4 )1, we get

|S1 - SQ"B 1 /t // " /
11T < K{ + -2 |"A1
| (U)| - (t — 5V 52)—12" +B—n t—s1 /NSy 51V (ly o | )

|03 [0 (11, 51 V 82,72,y (v) = Oy [Oppm (11, 51 A 82,7, 2",y )] (v) | dr dy”u(dx’)}g(C(t — 51\ s2),2— )

where 3 € [0,(3 +n) A1) for n = 0 and B € [0,n) for n = 1. From (G6), (5I2) and the n-Hélder
regularity of y — a(r, z,y, pt), we finally obtain

|s1 — so/”
(t — 81 V 82) 1+27W+B

IV(v)| < K gle(t —s1 A s2),z—x)

where 8 € [0, ﬂ) forn =0and 3 € [0, 3) for n = 1. Collecting the above estimates, we finally obtain

|AO [OpPme1 (1, 5,8, 2, 2)] (V)]
|31 — 52|ﬁ 1 /t // 7z ’
5.91 gK{ AN y" — 2" A1
( ) (t751\/52> +2 1+ t— 351N\ S2 s1Vsa (| | )

X |00 [0upm (s 51V s2, 1,2,y (v) — O [0ppm (s 51 A s2,7, 2", y")] ()] dy”,u(dx’)dr}
x gle(t — s1 A s2),z — x).

As we already did before we introduce the quantities

AO) m (i, S, b,
u?n(815823t) = sup // |y $|7] A 1 | [ Mp (lj/ S, ; x y)]( )l dyu(dx)
(s1,82,v)€[0,t)2XR9,51#52 |51 — 82|
A0 Oupm (1, 8, t,
U’r”}l(sl) SQat) = sup // | Hp lu’ S, 5 T y)]( )| dy M(d(l))
(s1,82,v)€[0,t)2XRE,51#52 |51 — 52|

for any fixed u € P2(R?) and any fixed 8 € [0,1/2) for n = 0,1. We prove by induction the following
key inequalities:

(14n)
Up (81, 82,1) < Cpyn(s1V 82,8)(t — 51V s2)~ = _'B"'",

v (81,82,t) < Cyn(s1V 82,8)(E — 51V s2)7 <1zn>7ﬁ+g,

with Cpyn(s,t) == > e, CF Hz VB(2, 55 By (i~ 1)8) (t — s)~D32. The result for m = 1 being
straightforward, we assume that it holds at step m. With the above induction hypothesis applied to

(E3I), we get

— B 1 t C V
|AO) [0pDmt1 (i, 5, t, 2, 2)|(v)| < K{ |1 821|+n7 / 'm,n (51 jzn, r) dr}
(t—s1Vsy) 2 t8  t—=51AS2 Jgvs, (r—s1Vsy) 2 A7
(5.92) X gle(t —s1 A s2),2z — x).

From @, 11(, 8,7, 8,2, y) = Hmt1 (6, 8,76, 2, Y) + Him41 @ Py (1, 8,1, ¢, 2, y), we obtain the following
relation

Asq)m-i-l(ﬂa S, T, ta x, y) = ASHWH-I(,U/’ S, T, tv z, y)

t
(5.93) +/ /AS”Herl(u,s,r,v,:z:,z)@erl(u,sl V s2,0,t, 2z, y) dvdy

t
+/ /Hm+1(u,sl A So, 10,2, 2) Ag @1 (1, 8,0, 1, 2, y) dv dy.
T

We claim
(5.94)
|A5Hm+1(ﬂa s, T, t,x,y)| S K{

|1 — s9/” |1 — 59"
(t—r)'"2(r—s1Vsa)P  (t—r)(r—s1 Vsl 2

}g@@ﬂww}

In order to prove the above statement, we use a similar decomposition as the one employed for
AHHerl(:u” $,7,t, T, y)’ na‘mely

AHpmi1(py syt 2,y) =T+ T+ T+ IV 4+ V
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with

d t
[i=— ZASbi(Tvxv [Xﬁygy(m)])Hi </ a(v,z, [X51V52,E,(m)]) d’U,Z - SC) ﬁerl(,qul \ SQ,T,t,Z',Z),

=1
d t
= =3 bir,a, X6 0D)) A, B ( / a(v, 2, (X34 dv, 2 :c) Bt (s 51V 2,7, 2, 2)
i=1 r
1 & [
Il := o > Adaij(rx, [XP00]) — a; 4(r, 2, [X 20| Hy? (/ a(v, z, [X2Ve2 M) dy, 2 — z>
i,j=1 T
X Dmt1(p, 51V s2,7,1, 1, 2),
d t
1 .
V= 5 Z [aiJ (T, z, [Xfl/\S%E’(m)]) — Q45 (T’ 2, [Xil/\S%E’(m)])]ASH;’J (/ a(U’ 2, [Xi,g,(m)]) dv,z — ‘T)
i,j=1 T

X Dmt1(, 81V 82,7, 1,2, 2),

d t
Vi=— Zbi(r,.’ﬂ, [X51A82,§,(m)])H{' (/ a(v, Z, [XS1/\52,§,(’m)]) dU7 z— :L') Asﬁm-ﬁ-l(ﬂa S,T,t,l’, Z)a
i=1 T
1< . t
b3 D langran (X0 — i (xS DY ([ (o X dos - o)
i=1 v
X AsDm+1(p, 8,7, t, 2, 2).

From (HR)(ii), (5.88) and (513), following similar arguments as those employed for A, H 41 (1, 8,7, ¢, 2, y),
the following estimates hold: for all 8 € [0, 1],

|s1 — s9/”

|I|§K n g(C(t—T),y—,CE),

(t—7)3(r—s1Vs9)P—2

|s1 — s2|”

|II| SK n g(C(t*T%ny'),

(t—7)2(r—s;Vsg)P~2

1 1
III| < K A 51— s9|? c(t—r),y—=x),
I} < {(tr)l_%(r<91\/52)ﬁ (tr)(rsl\/SQ)ﬂ—g}' ! 2l” g(el )y )
_ o8
S1 S9
Vi< K= ey ),

(t—r)1=2(r —s; Vsg)l 2

V| < K |51 = s2l”

(t—7r)=3(r —s1 Vsp)P~3 gle(t =),y — ).

We only prove the estimates on I and III. The estimates on II, IV and V are obtained by following
similar lines of reasonings and the remaining technical details are omitted. From (HR)(ii) and (&.88),
similarly to (5.90) with B instead of the map a, we get

|s1 — s2/”
(r—s1Vv 52)5’%

(5.95) |Asbi(r,z, [X5 )| < K

which in turn directly yields the announced estimates on I. In order to deal with III, we consider the two
disjoint cases: |s1 — sa| > (r — 51V s2) and |s1 — s2| < (r — 51V s2). In the first case, from the n-Holder
regularity of x — a(t,z, u) and the space-time inequality (4], we directly obtain

|s1 — 52|”
(t— T)l_g(T — 51V $2)

1
VB e [0,1], HI| < K————g(c(t—r),z—z) < K
(=1
In order to obtain the other part of the estimate, we combine (HR)(ii) with (5.88]), similarly to (.95,

we get |Asa; ;(r, z, [Xf’g’(m)]ﬂ < K|s; — s2|?(r — s1 V 52)?~% which in turn readily implies

ﬁg(c(t —r),z —x).

|s1 — so/”
(t—r)(r—s1Vs2)

(5.96) Vg e [0,1], IIT] < K 577 glc(t—r),z —x).

We thus derive the announced estimate on III in the case |s1 — 2| > (r — 51 V $2). We importantly
observe that (5.96)) is still valid in the case |s; —s2| < (r—s1V$2). Now assume that |s; —s2| < (r—s1Vsa).
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Then, from the mean-value theorem and Fubini’s theorem, one gets
= a; ;(r,z, [X V526 (m)]y — ai j(rx, [X1526 (m)])
/ //a” P,y [XOS1Vs A NsiAs 6 (m)])
X s (p, As1 V 82 4+ (1 — N)s1 A so, 1,2’ 4" ) (51 V 82 — 51 A s2) dy” p(dx’).
The previous identity together with the n-Holder regularity of « — @; ;(r, z,y, ) and (GI3) yield

|51 — so/”
V3 € [0,1], |h(z) — h(y)| < K A1

5 € 0.1) hie) = )] < Kly =l A )22
which, combined with the space-time inequality (L4 directly imply

|51 — 52|
(t—r)=2(r — 51V s2)

Vg e [0,1], I < K ﬁg(c(t —r),z —x).

This last estimate concludes the proof of the announced result on ITI. Gathering the previous estimates
allow to conclude that (5:94) holds. With the previous result, we derive an estimate for the second term
appearing in the right-hand side of (@93)). From (&94), one gets |AsHpmt1 (1, 8,7, 0,2,2)| < Klsp —
5ol (v — 1)~ 3 (r — 51 Vs2) Pg(c(v — 1), 2 — x), so that, after some standard computations, we get

|51 — $2|°
(t—r)l=n(r—s1V sy

t
|/ /ASHW-‘,-I(M)Saravv‘r?z)q)m-i-l(,uasl\/SQaUat)Z)y)dUdy| SK )ﬁ g(C(t—T),y—fE)

which in turn, from the identity (B.93)), the estimate (5.94)) and a direct induction argument, yield

|1 — so|”

5.97 V E 0,1, As(pm 999 7ty ) SK n
BN VBED) Ao sty < Kot

5 9(et =r),y — ).
From (0.38) we obtain the following decomposition

A0y [0y Hms1 (1, 5,78, 0, 2)|(y) =T+ T+ T +1V + V

with

d t
=3 80510 XL ([ a2 XN o ) BV st )

i=1

d t
o Z a;[aﬂbi(ra xz, [Xafl/\sz,&,(m)])](y)AsHi (/ a(’U, 2, [X;7€7(m)]) d’U, Z = :E) I/)\m-i-l(ﬂa s$1V S§2,T, ta €, Z)

i=1

d t
- Z 0,y [0bi(r, x, [X 517828 (M) () HY (/ a(v, z, [X 5175280 dy, 2 — :I:) Aspm1(p, 8,7 t,x, 2)

i=1
=1 +1 +15,

d t
= Z Asbi(ra T, [X:,S,(m)])a;j [aHH% (/ a(v, 2y [X51V82,§,(m)]) dv, z — ‘T)](y) ﬁm-l—l(:u” 51V s2,1,t, 4, Z)

i=1

d t
= b, (XSO A2 (0, H] ( / a(v, 2, [X6)) d, 2 — x)]<y>@n+1<u, $1V 5,71, 2)

i=1

d t
- Z bi(r, @, [X?Asz,&,(m)])a;}[a“H% (/ a(v, z, [XSIASQ’&(W)]) dv, z — .T)](y) Aspm+1(p, 5,7, 7, 2)

=1
= IIl + IIQ + 113,
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t
111 = Z A0 ai (r 2, [XS M) — ay j(r, 2, (XS]] (y) Hy? </ a(v, z, [XilVSZ’f’(m)])dv,zz>

1]1

X ﬁm+1(u, 51V sg,1,t,x,2)

t
5 Z@ aa (e, X326 (2, [XA52 60| ) A HE (/ a(u,z,[xﬂfvf*m])dv,z—x)

1,j=1
X pm+1(u, s1V so, 1t x, 2)

. t
+3 LS OBl X)) s 1,2, [ O ( [ ate= [X;M”f*m])dv,z—x)

,j=1
X Asperl(ﬂ; s, 1t x, Z)
=: III; + III, + III3,

V= L5 Aoy 055 — a2, (S ap10, 5 ([ ate s, (e s 2
i,j=1 T
X ﬁjn_ﬂ(u, 81V 82,1, t,2,2)

LS o (X (XS A0, [l (K =Y
i,j=1 r
;ﬁm+1(u, s1V so, 1t x, 2)

L o D) a5 g0, 15 ([t (K s 2
ij=1 r

X Asl/)\erl(M; 8,1, tv Zz, Z)
=:1V; + IV, 4+ 1V3,

and finally

t
ZA (s (XD ([ a2, X5V do s = 2 ) 10410, (51 Vs, 2] 0)

d

+5 20 Adlasg (X0 — g XD ([ a0 X oz 2 )]

’Lj 1
X 0y [0pPpm+1(p, 51V 82,7, 1, 2)|(y)

t
" {‘ > o g o] ([t [ oz

i=1
1 o t
45 D0 lonsran D) = g XD ([ oo, (X300 o )

ij=1
x A0y [0uPm+1(1, 8,7, 7, 2)] (y)
=: V1 4+ Va+ V3.

From similar arguments as those employed for the proofs of the estimates appearing in the decompo-
sition of A,0,[0, Hm+1(1, s,t, 2, 2)](v), we obtain the following bounds:

1 1
[[<K TTme + —ul (s1,80,7) ¢ |s1 — s2|? g(e(t — 1),z — ),
1= {(t—?“)%(r_sl\/%) 5B (t—1)3 (51,52 )}|1 2|” g(c( ) )

1 1 .
|II| < K{(ﬁ 7")%(7" s1 Vs )1+gfn+ﬁ + (t T)% / um(515527v) d’U} |51 - 52|ﬁg(c(t77’),z 7':6)7
_ — 81 2 — r
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1 1 n n
I < K _ — A I vm(SbSlza:’) A upy, (51, 52,1)
(t—r) "2 HB(r — s Vea) 5 (t—r)(r—sp Vsy) 2 th  (t—r)i72 t—r

X |s1 — sa|® gle(t — 1),z — x),

1 1

— +
(t—r)1"3(r— sy V)58 (t—r

t
[v| < K{ = / up (81, 82,0) dv} ls1 — sal? gle(t —7), 2 — 2),

and
1 1
V| <K . e
(t—r)"3(r—s1Vsy) 2z T8 (t—r
where § € [0, 1] except for III where 8 € [0,7/2). We only prove the estimates on I and ITI. The estimates

on II, IV and V follow from similar lines of reasonings and technical details are omitted. In order to
prove the announced estimate on I, we proceed as follows. For Iy, we use the following decomposition

AOMOubi(r,z, (XS )](y) =T+ I+ I +1V + V

t
)2_%/ u”m(sl,SQ,v)dv}|sl52|ﬁg(c(t7’),zx)

with
I:= /As@(hw,y”, (X3S0 O py (1, 51V 2,7y, ") dy”,
H;=/@xnaycuf“&f“mb—E0w4hufwwf“mnAxﬁM@AM&nywwdyc
III := //Asgi(r, z,y", [er,g,(m)]) ag[a,upm(ﬂa 51V sa,ma’,y")](y) dy” p(da’),
Vim [ [ ity 032050 = B!, (X275 00) A0 Oy ) (0) ),

From (HR)(ii), (5.85), similarly to (5.95) with the map b; instead of b;, and (5.0), we get
|51 — 52|

<K -
(r—s1V sp) 52 H8

For II, we use (B.I8) and the n-Holder regularity of z — Ei(r, X, 2, 1)

|51 — so|”
1fn_on

(r—s1Vsg) 5248
For III, similarly to I, using (B.12) instead of (G5.6]), we get

| < K

|51 — so|”

I < K Tin .
(r—s1Vsg)= tA—m

Finally, for the last term, from the n-Holder regularity of x’ — gi(r, y, ', i), one has

uwSK//m“wwAmm%@@mwmfymmwwmmv

Gathering the previous estimates and using the induction hypothesis, we finally obtain
1

(r—s1Vsa)

1805 10,bi(r w, X2 E)) ()| < K (

e — Jru”m(sl,sQ,T)) |s1 — 52|ﬁ
2

so that

1 I
|Il| < K { (t 7‘)%(7“ sV s )1+72lfn+ﬁ + (t T)%um(slas%r)} |51 - 52|ﬁg(c(t77"),z 7':6)'
- — o1 2 -

From the mean-value theorem, (HR) and (B.85), we get

t
At ([ alo 2 XTSI do.z = o) B 51 Vs,

< Kls1 — so|?(t — r)fé(r — 51V s9) P Egle(t — 1),z — )
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which with (530) imply
|51 — 50|
(t—1)5(r— sV sg) o A=
Finally, from (HR), (5.89), similarly to (5.95) with the map a instead of b;, and the mean value
theorem, one gets |Aypr1(p, 5,7t 2, 2)| < K|sy — s2|%(r — 51V 82) " PT3 g(c(t — r), z — x) which with

(530) imply

L <K glc(t —7r),z — ).

|51 — 52|°
(t — r)%(r — 351V 52)%”3*”
Gathering the previous estimates, we obtain the announced estimate on I. In order to deal with III;,
we make use of the decomposition

A0 [Oplaij (r, 2, [X29]) — a5 (r, 2, (XSS (y) = Ty + 15 + 1L + 1V,

IIs| < K

glc(t —7),z — ).

Ii,j = / As[aivj (T’ €T, y”a [X?E’(m)]) - 2ii,j (T, 2y y//a [X?E’(m)])] a;Jrnpm (:u’ s1V 82,1, y//) dy“a

iy im [ (a0, X)) = Gy, (X5
[ (r, 2,y X)) Tz, (X)) A (5, dyf”,

I j = //As[ﬁi,j(ra%y"a (X390]) =@ (r, 2,07 XS] 00 10upm (1, 51V s2,m, 27, y")](y) dy” p(da’),

Wiy o= [ [ X500 — 0, [ o)
_ (5@3‘(7“, PR [Xil/\521§1(m)]) — Uy (r,z, ), [X’;“’SIASZ,6,(m)]))]‘ASa'Zl[aupm(M) 5,7, y//)](y) dy”u(d:n').
From (HR)(ii), (5.89), similarly to (5.95) with the map @, ; instead of b;, and (&.06), we get |I; ;| <

K|sy — s9|P(r — s1 V s2)~ g

, (1+n) . . L .
obtain |I; ;| < K|z—z|"(r—s1Vsa)~ = From the two previous estimates and the space-time inequality
(T4), we thus obtain

~# while, employing the n-Hélder regularity of  — a; ;(r,z,y", i), we

t
v e[0,1], L jHyY (/ a(v, z, [ X3V 80 dy, 2 — :I:) D1 (p, 81V 82,7, 8, 2, 2)|

1 51— 89|
(5.98) §K{ = A |31 = 52| 1+nn+ﬁ} gle(t—r),z —x)

(t—r)'"2(r—s1Vsy) 2 (t—7)(r—s1Vsy) 2

We now consider the two cases |s; — s2] > t — 7 and |s1 — s3] < t — r. In the first case, from the
previous bound, we directly get

t
L ; Hy’ </ a(v, z, [lev‘”’&’(m)]) dv, z — :c) Dmt1(p, 81V sa,7,t,x, 2)]|
s

|s1 — so|”

< - —g(c(t —r),2 —x)
(t—r)'=2t8(r —s; v 32)%

while, in the second case, using (2.98) with 3 = Z € [0, 1] and the inequality |s; — s2| <t — 7, we obtain

t
L ;H3’ </ a(v, z, [Xilvsz’g’(m)]) dv, z — x) Dm41(lt, 81V 82,7, 1,2, 2)|
T

|s1 — 50"

< —g(e(t—1),2 — x).
(t*T)l_gJ’_ﬂ(T*Sl\/SQ)% (el )

We thus conclude
t
L ; Hy’ </ a(v, z, [lev‘”’&’(m)]) dv, z — z> Dmt1(p, 81V s2,7,t,x, 2)]|
r

1 1

<K — A —
{ (t—r) =3B (r — 51 Visg) B8 (t—1)(r — sy V sg) T3 HB

} [s1 — 52|B gle(t—r),z —x)
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where § € [0,4). From (5.I8) and the n-Hélder regularity of « +— a; ;(t, z,y, i), we get
|51 — 52/
(r—spVsg) 2 th

while employing the n-Holder regularity of y — @, ; (¢, z,y, 1), we get

L ;| < K(ly — 2|7 A1)

|s1 — s2|”

1L ;| < K =
v (T—sl\/52)1+2 L+h

so that

t
I, , 13 ( / alv, 7, [X3Vo60m)]) dy, 2 :c) Bs1 (151 V 52,7, 1,2, 2)|

_K{ ! A ! } |s1 — s2|? g(c(t — 1), 2 — ).

(t—r)l_%(rfsl\/SQ)HTn"'ﬂ t—r)(r—s VSQ)M%+ﬂ

We now distinguish the two cases r € [HS%, t) and r € [s1V s, %] in the previous inequality.
In the first case, we bound the minimum appearing in the right-hand side of the above inequality by the
first argument and use the inequality (r — s1 V 52)'8 > (t— T)B, while in the second case, we bound the

n_ n_

minimum by the second argument and use the inequality (r —s; V s2)2 ~# < (t —r)2~#. We thus obtain
t
|11, ; H5? (/ a(v, z, [X51V528M]) dy, 2 — x) Dm+1(tty 81V 82,7, 1,2, 2)|
T

<K 1 A . 51— sal glelt =), = — 2)
— n n [ S1 — 82| glelt — 1),z —x).
(t—r) =3B (r — 5y Visg) B8 (t—1)(r — sy Vsg) T tB

We deal with III; ; similarly to I; ; except that we use the estimate (5.I2) instead of (G.6]). Skipping
technical details, we obtain

t
|III’LJH§J (/ a(v, 2, [X51VS21£1(m)]) dU, z = SC) I/)\m+1(ﬂa 51V 82,7, ta €T, Z)|

1 1
SK{ = A } |s1 — s0|? g(c(t — 1), 2 — ).

(t—r) =3B (r — 51V sp) 7 (t—1)(r — 51V sg) "5 +8

For IV, ;, in the one hand, from the n-Hélder regularity of x — a; ;(t, x,y, 1), one gets IV, ;| <
K|s1—s2|°|z—x|"7 (s1, s2,7) while, in the other hand, from the n-Hélder regularity of y + a@; ; (¢, z,y, 1),
one gets |1V, ;| < K|s1 — sa|Pu? (s1,s2,7). Hence, from the space-time inequality (), we conclude

t
IV, HY < / alv, 2, (X550 dy, 2 ) Boss (1 51V 52,731, 2)|

n n
< K{Um(sl’SQ’T) A um(sl,SQ,r)} |s1 — s2|P g(c(t — 1),z — x).

- (t—r)t—2 t—r
Gathering the previous bound, we obtain
L | < K ! A ! 4 Um(st82,7) g (s1,82,7)
- (t—1)"3HB(r =51 Vag) 2" (t—1)(r—sy Vep) T4 (t—1)l7F t—r

X |s1 — sa|P gle(t — 1),z — x)
for all 3 € [0,2). In order to deal with IIIy and III3, we employ (5.46) (note that we can bound
(r— s)mTfnu”m(s, r) and (r— s)HTnv,’}l(s, r) by K) to bound the quantity ;[0 [ai ;(r, z, [XﬁlASZ’g’(m)]) -
a; ;(r, z, [XTSIASZ’E’(m)])]](y) = Ji,;(y) as well as the mean value theorem and (.95) with the map a; ;
instead of b; to bound AsHé’j (f: a(v, z, [XS’E’(m)]) dv, z — x) and A ppy1(p, 8,1, t, 2, z). For both quan-
tities, we obtain

1 1
Ils| + 11| < K ., n
S {(tr)l_g-w(rslv‘”) Ea (t_r)(r_81\/32)%+ﬁ’7}

x [s1— 52| gle(t — 1),z — x)

for all 8 € [0,1]. Gathering the three previous estimates on 111, III; and III3 completes the proof of the
announced estimate on III.
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The induction hypothesis allows to conclude

|Asag[auHm+1(Ma 5,7, ta €, 2)](U)|

<K ; 1 A 1 -
(t—r)'= 2B (r — 5y Vo) 7 (t—1)(r — 81V 89) "5 2H5
1 1
(5:99) * = =
(t=r)"F(r—s1 Vo) T E A (=) (r— sV sp) AT
1 t .
me,n(S1\/82,T)+7n/ Cm,n(sl\/52,1))(?}—81\/52)_(%)—54'776%}
(t—r)2"2 J,

X |s1 — sa|? gle(t — 1),z — x).

With the above estimates at hand we can now provide upper-bounds for the different terms appearing
in the right-hand side of (5.89). The first estimate is given by (5.92)). We thus consider the quantity
As[07[0uPm+1] ® ®Prmg1](p, s,t, x, 2) and use the following decomposition

D07 0u[Pm+1] @ ®Prg1](p, s, t, 2, 2)(v) =14+ 1T 4111
with

t
1= / / A [0, Bres (5,72, )] (0) B (1, 51V 50,7, 2) dy .
s1Vsa

t
IT:= / /ag[auﬁm-i-l(ua AN §2,T,7, y)](U)As(I)m+1(M, s, T, ta Y, Z) dy d?",
s1Vsa
and

s1Vsa
III := —/ /33[5uﬁm+1(,ua 51N 82,7, 2,Y)] (V) Poy1(p, 51 A 82,7, 1, y, 2) dy dr.

1/\Ss2

From (5.92) and using the fact that v +— Cy, n(s1 V S2,v) is non-decreasing we derive

|s1 — so/”

I| <K —
| | (t—Sl \/82)%443777

glc(t —s1 N s2),z—x)

¢

Cron(81V 82,7)

+K|51752|B/ : - drg(c(t —s1 A s2),z — x).
sives (E—m) 173 (r— s V 52)%""6_77

From (5.97) and (541]), one gets

|51 — 50|
vgelo,1, |l <K
[ ] | | (t*Sl\/SQ>§+’B_n
Finally, using (541) together with the fact that 8 € [0,232) if n = 0 and 8 € [0,7/2) if n = 1, one
obtains

g(c(t —s1 N sa),z —x).

l1—n+4mn
|s1— 52| 2 |51 — 52/
I < K————g(c(t —s1 ANsa),z—x) < K — c(t—s1Ns2),z—x
[} < (t—sl\/sQ)l‘%g(( 1 A s2) ) RTINS 5, 9(c(t =51/ 52) )

where we used the inequality |s1 — sa| < ¢ — s1 V s3. Gathering the previous estimates finally yields
|51 — 52/

A2 O [Pr1) © ) (5,8, 2, 2) (0)] < K -
[0} 0u 1) © B ol £ Ko St

glc(t —s1 N s2),z—x)

t
Crn(s1V 82,7)
5.100 + Kls1 — s '8/ . s drg(c(t — s1 A s2),z — ).
( ) 51 2 s1Vs2 (tfr)l_g(r—sl\/SQ) ] (e ! 2) )

We now turn our attention to the term Ag(ppm41 ® 9 [0pHm+1])(1, 8,1, x, 2)(v) and make use of a
similar decomposition, namely

As(pm+1 ® O [OuHma]) (1, 5,1, @, 2)(v) =T+ 1L+ 111
with

t
I:= / /Aspm-i-l(:ua s, T, T, y)all[au%m-i-l(ﬂa s1V 52,7, ta Y, Z)](U) dy d’l",
s1Vsa
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t
IT:= / /pm+l(ﬂa s1 A 52,1, T, y)Asa»g [a,u,Hm+l(,u‘7 S, T, t? Y, Z)(’U) dy dT,
s1Vsg
and
s1Vsa
Il := — / /pm+1(ﬂ; s1 A 52,71, T, y)ag[aﬂHm+1(Ma s1 A 52, T, tv Y, Z)](’U) dy dr.

1/A\S2

From (547) (bounding Cp,, by K) and (G.88), breaking the time integral into the two intervals
[s1V s2,(t+ s1V s2)/2) and [(t + s1 V s2)/2,t] to balance the time singularity, after some standard
computations, we obtain

|s1 — so|”
(t— SQ)WT*MB

|1 — so|”

———g(c(t — 51),2 — ) +
(t751>1+g n+ﬂg( ( 1) )

VB € [0,1], |I|§K{ g(c(tsz),zz)}.

To deal with II, we employ the estimate (5.99)). For the first term appearing in the right-hand side
of (599), we break the time integral into two intervals similarly to the previous estimate in order to
balance the time singularity. For the second term, we bound the minimum of the two terms by the first

one, namely (¢ — T)_1+g (r—s1Vsa)~ = p while for the third term we use Fubini’s theorem. After
some standard computations, we obtain
1 K Crn(s1Vsa,r
VB e (0,2), I <K g / e
2 (t—s1Vsg)— 2z 15 sivey (E—7)172(r — 51 Vsg) 2 A

X |s1 — 52|ﬁg(c(t — 851 NS82),2 —x).

Finally, using (5.47) (bounding Cy, » by K) and breaking again the time integral into two intervals,
we get

N — 59|8

s§1—8 s$1—8

|TIT]| §K| :ffsf|\/52 glc(t —s1 N s2),z—x) SK(t | i/ )21|+nn+ﬂ gle(t —s1 Ns2),z—x)
—S81V$82) 2

for all g € [0, 2). Gathering the three previous estimates finally yields

|A5(pm+1 ® 817 [aﬂHerl])(Ma s,t,x, Z)(v)|

|s1 — 52|° |51 — 52|°
(5.100) S P ek o S N et A S
(t*51>1+2 +8 (t*Sg)lJrZ +8
¢
Cmn \/ )
+K|51—52|ﬁ/ - (51V 52 7’)1+n dr g(e(t — s1 A s2),z — x).
sives (E—1)172(r — 81 Vsg) 2 tA7

For the last term, namely As((pm+1 ® 9y [0 Hmt1]) @ Prus1)(p, 8,1, 2, 2)(v), as previously done, we
decompose it as the sum of three terms I, IT and III in a completely analogous way as the previous term.
We make use of (BI01), (5.97) and (548). Skipping some technical details, we obtain

|As (P41 © 0y [0 Hm41]) ® Prng) (s 5,8, 2, 2) ()]

|1 — s2|°

|51 52|ﬁ
5.102 <K —————g(c(t —s1),2 — ) + —————F———

t— Sl)%Jrﬁfn

g(c(t — s2),z — z)}

¢ Cm,n(sl \Y 52,7’)

+ K S1 — So '8/ n
| | $1Vs2 (tfr)l_g(r—sl\/SQ)%"'B_”
Coming back to (5.89) and gathering the estimates (5.92)), (2.100), (5.I01) and (G.102) finally yield
|80y [0ppma (1, 5,8, 2, 2)] (v))]
<K([ |s1 — sa]? |s1 — sa|? /t Crn(s1V s2,7)
- (t—s)"F 48 (t—51)% Jovsy (E—7)178 (1 — 51 V sg) 2 AN

_ B _ Bt C N
+ [ |51 lfitn + [s1 32|TI / nm,n(81 Sa, T)IM dr} gle(t —s2),z — x))
(t—sy) 2 7 (t=52)2 Jovs, (t—7)172(r — 51 Vsg) 72 TA77

dr g(c(t — s1 A s2), 2 — x).

dr}g(c(t —51),2 — )
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so that

1 t Cmon(s1V s2,71)
W (s1,52,) < K _ +/ : D e dr)
m (t—s1 Vo) 2481 Jovs, (E—r)1=8 (1 — 51 Vsg) 2o HED

K 1-—
S 1+n B Ea n_ﬁ+77
(t — S1 Vv 82) 2 +B-n 2 2

m k+1
1—-n+ . n
ST (B e 8) )

k=1 i=1

and similarly

K nl—n
” t) < B = — B+
varl(Sle?’ ) h (t—Sl V82)1+27U+5 { (27 2 ﬂ 77)

wls

m k+1
n l—n+n . n k
+E CkIIB - B4+ G—-1)=)(t—s51V
k=1 i=1 (2’ 2 i )2)( )

} |

In a completely analogous manner as for the previous estimates, we thus derive that the induction
hypothesis remains valid at step m 4+ 1. Coming back to (589) and bounding each term using our
estimates combined with the two previous bounds, from the asymptotics of the Beta function, we deduce
that (BI9) is valid at step m + 1. The proof of the proposition is now complete.

6. SOLVING THE RELATED PDE ON THE WASSERSTEIN SPACE

This section is devoted to the proof of Theorem B.I0l Thanks to the regularity properties provided
by Theorem B9 we are able to tackle the Cauchy problem (L2) on any strip [0,7]. We first start with
the following Proposition.

Proposition 6.1. Under the assumptions of Theorem 310, the mapping [0, T] xR x Py(R?) > (t, x, p)
U(t,, u) defined by (B:28)) is continuous, belongs to C1:22([0,T) x R? x Py(R%)), satisfies ([3:27) and for
any (t,z,v,p) € [0,T) x (R?)? x Py (R9)

(6.1) 10, (t,x, 1)) (v)| < C(T — 1)~ exp(k[a[?)(1 + o] + Mg (), n.= 0,1,

where C := C(T, |bloos [b]#, [bloos [D]2: [@lses [@] i |@loe, [@] 1, A7), k := k(T, A, ) are positive constants.
Moreover, U is a solution to the Cauchy problem (I2) on the strip [0, T].

Proof. We first remark that if (u,,),>1 is a sequence of P2(R%) and if (¢,),>1 is a sequence of [0,7) both
satisfying lim,, |t,, —t| = lim,, Wa(pn, 1) = 0, for some (¢, 1) € [0,T) x Pa(R9), then, by weak uniqueness,
([XtT"’E"])nzl weakly converges to [X%f], where [€,,] = pyn, and [€] = p, so that, passing to the limit in the
parametrix infinite series (BI0) and using the relation (Z14), we deduce that [o. |2[*p(pin, tn, T, 2) dz —
Joa |212p(p,t, T, 2) dz which in turn yields lim, Wa([X3*"],[X3°]) = 0. We thus deduce that the two
maps [0, 7] x Po(R%) 3 (t, 1) = h(z, [X55]), 0,5] x Pa(RY) 3 (t, 1) — f(s,z,[X5€]) are continuous so
that the mapping [0, 7] x R% x P2(R?) 3 (¢, 2, 1) = U(t,z, p) is also continuous.

We now prove that Po(R?) > (z,u) — U(t,z,u) € C*2(RY x Py(R%)), for t € [0,T) and that
[0,T) x R x Po(R?) > (¢, 2, u) — L,U(t,x, ) is continuous, where the operator £; is defined by (L3).

From Theorem 33 and the relation (314, the map Po(RY) > 11+ p(u, t, T, 2) is partially C2(P2(R?))
(see Chapter 5 of [CD18] for a definition of partial C2(Py(R?)) regularity) with derivatives given by

OM0up(u, t, T, 2)](v) = 0L " p(u, t, T, v, 2) —|—/ Oy [0up(p,t, T\, 2)|(v) p(dx), n=0, 1.
Rd
From assumption (HST), we thus deduce that the two maps Pa(R%) 3 pu — h(z, [X55]), P2(R?) 3

p s f(s, 2, [X5€]) are partially C2(P2(R9)) for any fixed T, s > t and z € R?. Moreover, by Fubini’s
theorem, their Lions derivatives are given by

0110, XEDI0) = [ B (XD O p(p . T, 0,3 dy

(62 [ T XD 9210000 T, )]0 dy )
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and by Lemma (2.1

9y [0uf (s, 2, [Xﬁ’g])](v):/ [F (5,29, [XDE]) = Fls, 2,0, [XED)] 03" pl1a, £, 5, 0,y) dy

Rd
(6.3) 4 / F(s, 20, [X5€]) 02 (0,011, t, 5,7, )] (v) dy u(dr).
(R4)2

We may break the integral appearing in the right-hand side of (G.3]) into two parts J; and J2 by
dividing the domain of integration into two domains. In the first part J;, the dy-integration is taken
over a bounded domain D containing v such that |y — v| > 1 if y ¢ D. Using the n-Holder regularity of
T :fv(s, 2,9, [X5¢]) on D, ([3I2) and the space-time inequality (L)), we get

—l—n+4n
2 .

|J1| S C(S — t)
As for Jg, for a < ¢ := ¢(\), where ¢ is the constant appearing in [B12), from (B2H), the space-time
inequality (L4) and noting that M ([X5]) < C(1 4+ My(u)), we obtain

|2

1 < Coxp (al3) [ m(s—t)*(l+|y|2+M§<u>>g<c<s—t>,y—v>dy

2
< Cexp <a%) (sft) (1+|v|2+Mq( )).
Also, from B.I5) and B25), we derive

f 2 —1l—-n+n
‘ /}Rd)2 f(s, 2y, (X)) 07[0,up(1, t, 5, 2, 9)] (v) dy u(dm)‘ < Cexp (a%) (s —1)

(14 M5 (p))-

Gathering the previous estimates, we obtain

(6.4) 0218, F (5, 2, [XED)(0)] < Cexp (a%) (5 — )72 (14 o + ME ().
From (6.2), 3I2), (320) and similar computations
(6:5) 0L [XEDI )] < Coxp (a5 ) (7= 075 (L4 bl + 38

The estimates (3.12)), (315) and (6.4)) allow to conclude that the map (z, u) + U(t, z, u) is in C%2(R9 x
Py(R?)) with derivatives given by

OOt wl(0) = [ WX O 0uploet T )(0) o+ [ OL10, M [XFDI0) plont. T 2)
(6.6) / [ 0010 o2 XDl 2) d s
5 KD 20t 2 =

forn =0, 1 and

OLU(tzon) = [ e [XE) Ot T, ) s
Rd

(67) = [0 XD — o XD 22t .2 s

for n =0, 1, 2. Note that we may break the last integral appearing in the right-hand side of (67 into
two parts by dividing the domain of integration into two domains as we did before. Then, using the local
Holder continuity of z — f(s, z, 1), 8.24)), the estimate (B12), we get

|2 X80 = s (XD Ol 5., 2)

< O(s — == {Adea?zg<c<st> 2 —a)dz+ T }(1+MQ< )

—1— TI+77 k T\

<C(s—t) T (1 + M3 ()
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where we used the fact that the constant « is sufficiently small, namely o < ¢, ¢ being the constant
appearing in ([B.I2) and the inequality: for any a > 0, € > 0, there exists a positive constant C' := C(«, )
such that for any (z,z) € (R%)?,

(6.8) alz)? — (a+¢)|z — z)* < Clz .

The previous estimate as well as ([6.4]) and (3.I5]) ensure that the integrals appearing in (6.6]) and (G.7])
are well defined if « is sufficiently small. We thus conclude from (6.6) and (6.7) that [0, T) x R%x Pa(R9) >
(t,x, 1) — LU(t, @, 1) is continuous.

Finally, from (BII) and (G.8]), we get

|U(t,z, p)| < C’{/}Rd exp (a%)g(c(T—t),z — ) dZJr/tT /Rd exp (a%)g(c(S—t),z — ) dzds}
(14 MI(s)

< Cexp (klef?) (1 + ME(w)).

The proof of (61)) follows from (G4), (6.5) and (6.6).

Let us now prove that U is in C12:2([0, T') x R% x Py(R%)). From the Markov property satisfied by the
SDE (1)) (which is inherited from the well-posedness of the associated martingale problem) we obtain
the following identity for all A > 0

Ut = hya 1) — B [U(t, xihen (xt=h€y [0 g xt-hen [X:-hf])dr] .

t—h
From BI2), we clearly get |0,U(r,z, u)| < C(T —r)~/2 so that, combining Proposition [E1], especially
the estimate (6.1), with the chain rule formula of Proposition 2] (with respect to the space and measure
variables only) we get

t
E [U(t,Xtt—h’l’“, [Xf—’“f])} =U(t,z,p) +E [ LU (t, XEmmm, [X,‘E_h’f])dr] .

t—h

Hence
t

F U= ha) - Ut = 32|

(LUt XM X)) — f(r, XEho, (X)) dr]
—h

and letting h | 0, from the boundedness and continuity of the coefficients, we deduce that U is left
differentiable in time. Still from the continuity of the coefficients and f, we then conclude that it is
differentiable in time with

8tU(ta €L, ,LL) = 7‘CtU(t7 €, M) + f(ta €L, ,LL)
Hence, the map U solves the PDE (B.26]). O

In order to get the uniqueness result, first fix any 0 < ¢ < s < T and consider any solution V' to
the Cauchy problem (2] satisfying (Z4]) on any interval [0, T"], with T’ < T, as well as (B827). We
apply the chain rule formula of Proposition ZIlto {V (s, X1*#, [X1¢]), ¢ < s < T} and use the fact that

(O + L)V (L, 1) = f(t, @, ), for (8,2, 1) € [0,T) x RY x Py(R?) to get

V(s X0 [X0) = Vi) + [0 X000 (X0 dr
t

s d q
+ / Z Z Oi,j (7’, Xi7x7#7 [X;E,f]) aziv(r7 X:,z,,u, [X:,E])dBi
=1 j=1

The local martingale appearing in the right-hand side of the above equality is in fact a true martingale
since V (s, XE®# [XEE]) and [ f(r, XE®#, [ X]]) dr are both square integrable if the constant « and k
appearing in the two conditions 324 and ([B27) are small enough, that is, a and k strictly less than
¢/2, ¢ := ¢(X\) being the constant appearing in (1T is sufficient.

Hence, taking expectation in the previous equality, then passing to the limit as s T 7" and using the
continuity assumption at the boundary, we obtain

T
V(t @, p) = E[M(X7"", [X75]) —/t Fr, X5m1 [X04]) dr]

which completes the proof of Theorem B.10
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7. APPENDIX

7.1. Weak existence for the SDE ([I). We here provide a simple proof based on a compactness
argument which allows to establish the existence of weak solutions to the SDE (ILI]) under assumption
(HR). We consider the sequence of probability measures (P("™),,>o on C([0, 00), R?) introduced in the
beginning of Section I} namely for any P(9) € C([0, 00), P(R%)), we let P("+1) be a probability measure
induced by a weak solution to the SDE with dynamics

t t
(7.1) x5 — e 4 / b(r, X&) PO (1)) dp + / o (r, XE0HD POV (Y)W,
0 0

Note that the above SDE admits a weak solution since the two maps Ry x R? 5 (t,z) > b(t,z) :=
b(t,x, P (1)), 5(t,x) = o(t,z,P™)(t)) are bounded and continuous under (HC). Since ¢ is square
integrable and the coefficients are bounded the sequence (P(m))mzo is tight. Relabelling the indices if
necessary, we may assert that (]P’(m))mzo converges weakly to a probability measure P*°. Our aim is
to prove that P> is a solution to the martingale problem of definition Bl For every continuous and
bounded function f defined on R?, the weak convergence of (P(m))mzl to P> gives

e [f (O] =l B U] = [ Swula)
so that P>°(y(0) € I') = u(T'), I € B(R?). It remains to prove that

Eeee | (£((5) = £(y(5))

- /S (Z %aid (T, y(r), P (T))aﬂﬂulgf(y(r)) + bi(T, y(r), P (T))aﬂczf(y(r))dr))g(y)} =0

4,
for any bounded F,-measurable function ¢ : C([0, o0), R?) — R. For every m > 0, the fact that P(™+1)
is the probability measure induced by a weak solution to the SDE ([Z]) gives

Epen | (£(0) = £(y(s))

[ (2 s ) P )0, ) 4 bl (). P 7)), Fa)ir) )9 )] =

By weak convergence of (P("™)),,~1, one gets

Ep | (f(0(t) = F(&NG W) = Tim Eeo [(F(0) — f(y(5)% W)

and

Epoe [/ » lai,j (ry(r), B (r)) Oy £ (5 (1) + bi(r, y(r), P (r) e, f (y (1)) dr)¥ ()]

— 2
1,3

= i B [ [ (30 5005 (ry(r) B2 (01000, £ 00) + B (). B (1), F(0r))d)) 4 0) |

m—0o 2
7

so that, since ¢ is bounded, it suffices to prove
. ‘ 1 0 (m)
(7.2) JHm Bpenin [ Z S(@i (roy(r), P (r)) — a; ;(r,y(r), P (r)) O,z £ (y(1))

< 2
+ (bir,y(r), P (r) = bi(r,y(r), P (r)))0z, f(y(r))
By weak convergence of (P("™)),,>0,

limsup P(™) (y : [y(r)| > R) <P¥(y : |y(r)| > R)

m—o0

dr}:O.

and choosing R large enough the right-hand side of the previous inequality is smaller than /2. Moreover,
under (HC), again by weak convergence, for any s’ € [s, ], one has

sup aij(r, 2, P(s) — ai;(r, 2, P () + sup  [bi(r, 2, P(s)) = bi(r, 2, POY(s)| <
|z|<R,s<r<t |z|<R,s<r<t

DN ™

for m large enough. We thus conclude that (Z.2)) is valid. This completes the proof.
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7.2. A technical lemma.

Lemma 7.1. For all h € Cp(RY) and all (t,z, ) € Ry x R? x P(R?), one has

lim h(z)p*(u,t,t + 7,2, 2) dz = h(x).
TJ,O Rd

Proof. We remind the readers that p*(u,t,t + r,z,2) = g( sl a(s, z, [XE9%))ds, 2 — :c), where £ has

law p. It is important to note that in the previous expression the law [X%¢*] also depends on the
terminal point z at which the diffusion coefficient is frozen. We introduce the density function z —

p(p,t,s,2) = [g (f a(r,z, [XH6%)) dr, 2 — x’) p(dz') of the random variable X% given by X16% =
&+ [ o(r,z,[X557]) dW,.. On the one hand, thanks to (HR)(ii) and Fubini’s theorem, one gets

max |a; (s, z, [X24%]) — a; j(s, 2, [X 7))

2,

’/ szy [Xt£Z] [Xtiz])( (,u,tsy) p””(,u,t,s,y’))dy’
< / (A(s, 2,3/, [XDE2], [XEE0)) — A(s, 2,0, [XEE2], [XE6]))
R4)2

x (p*(u,ty s, 2" y') — p(p, t, 8,27, y")) dy’ p(dx’)
< CO(s—t)"/?

where we used the fact that y — A(s, z,y,u,v) is n-Holder uniformly with respect to the other vari-
ables as well as the space-time inequality (IL4)). On the other hand, again from (HR), one derives
la(s, 2, [X557]) — a(s, z, [X057])| < C(|z — |7 A 1). Hence, taking advantage of the two previous esti-
mates, from the mean value theorem and the space-time inequality (I4)), we obtain:

1D (st t + 1y, 2) — PO (.t t + 7,2, 2)|

<o [ ot 15 = a) o
o [ ate s 155 s 2 ) o

t+r
<—/ s—tg+(|z—x|”/\1)}dsg(cr,z—x)

t+r _
a(s, 2, [X55%))ds, 2 — z) ‘

t+r _
als,a, [XE))ds, 2 — ) |

< Crigler,z — ).

Finally, from the previous inequality, we easily conclude

/h(z)ﬁz(“’t’”?’a%z)@:/ h(z) P (s byt + 7y, 2) dz + O(rF).
Rd R

Passing to the limit as r | 0 in the previous equality concludes the proof. (I
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