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WELL-POSEDNESS FOR SOME NON-LINEAR SDES AND RELATED PDE ON
THE WASSERSTEIN SPACE

PAUL-ERIC CHAUDRU DE RAYNAL AND NOUFEL FRIKHA

ABSTRACT. In this paper, we investigate the well-posedness of the martingale problem associated to non-
linear stochastic differential equations (SDEs) in the sense of McKean-Vlasov under mild assumptions on
the coefficients as well as classical solutions for a class of associated linear partial differential equations
(PDEs) defined on [0,T] x R% x P2(R9), for any T > 0, P2(R%) being the Wasserstein space (i.e. the
space of probability measures on R? with a finite second-order moment). In this case, the derivative
of a map along a probability measure is understood in the Lions’ sense. The martingale problem is
addressed by a fixed point argument on a suitable complete metric space, under some mild regularity
assumptions on the coefficients that covers a large class of interaction. Also, new well-posedness results
in the strong sense are obtained from the previous analysis. Under additional assumptions, we then
prove the existence of the associated density and investigate its smoothness property. In particular,
we establish some Gaussian type bounds for its derivatives. We eventually address the existence and
uniqueness for the related linear Cauchy problem with irregular terminal condition and source term.

CONTENTS

1 In‘rroduc‘rloﬂ 1

: A
4.  Well-posedness of the martingale r)rob]elm

ﬁ_&lﬂmand_mglllarltv properties of the transition density 27

32

Appendix A. Proof of Propositionﬁ 36
Appendix B. Proofs of the technical resultd 72
Acknowledgments) 125
eference, 125

1. INTRODUCTION

In this work, we are interested in some non-linear Stochastic Differential Equations (SDEs for short):

(1.1) Xp=¢+ /t b(s, X5, [X{])ds + /t os, X3, [XS))dWs,  [€] = u € P(RY),
0 0

driven by a ¢g-dimensional W = (W1, ... W49) Brownian motion with coefficients b : Ry x R? x P(RY) —
R? and o : Ry x RY x P(R?) — R? ® R?. Here and throughout, we denote by [f] the law of the random
variable §. This kind of dynamics are also referred to as distribution dependent SDEs or mean-field or
McKean-Vlasov SDEs as it describes the limiting behaviour of an individual particle evolving within a
large system of particles interacting through its empirical measure, as the size of the population grows
to infinity. More generally, the behaviour of the particle system is ruled by the so-called propagation of
chaos phenomenon as originally studied by McKean [McKG67] and then investigated by Sznitman [Szn91].
Roughly speaking, it says that if the initial conditions of a finite subset of the original system of particles
become independent of each other, as the size of the whole system grows to infinity, then the dynamics
of the particles of the finite subset synchronize and also become independent.

Since the original works of Kac [Kac56] in kinetic theory and of McKean [McK66] in non-linear par-
abolic partial differential equations (PDEs for short), many authors have investigated theoretical and
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numerical aspects of McKean-Vlasov SDEs under various settings such as: the well-posedness of re-
lated martingale problem, the propagation of chaos phenomenom and other limit theorems, probabilistic
representations to non-linear parabolic PDEs and their numerical approximation schemes. We refer to
Tanaka [Tan78], Gartner [Gar88], [Szn91] among others.

On the well posedness of (LI)). Well-posedness in the weak or strong sense of McKean-Vlasov SDEs
have been intensively investigated under various settings by many authors during the last decades, see e.g.
Funaki [Fun84], Oelschldger [Oel84], [Gar88|, [Szn91], Jourdain [Jou97], and more recently, Li and Min
[LM16], Chaudru de Raynal [CdR19], Mishura and Veretenikov [MV18], Lacker [Lacl8] and Hammersley
et al. [HvS18| for a short sample.

Classical well-posedness results usually rely on the Cauchy-Lipschitz theory when both coefficients
b and o are Lipschitz continuous on R? x P,(R?) equipped with the product metric, the distance on
Pp(RY) being the Wasserstein distance of order p, see e.g. [Szn91].

It actually turns out to be a challenging question to go beyond the aforementioned framework. Indeed,
as it has been highlighted by Scheutzow in [Sch87], uniqueness may fail for a simple version of (I)):
when p=¢=1,0 =0, for all (¢,7,m) in R} x R x P(R?), b(t,x,m) = [ b(y)dm(y), for some bounded
and locally Lipschitz function b : R — R, the SDE (II)) with random initial condition have several
solutions. Note that in this case the drift, seen as a function of the law, is only Lipschitz with respect to
the total variation distance. Nevertheless, still in this setting, it has been shown by Shiga and Tanaka in
[ST85] that pathwise uniqueness holds when o = 1. In that case, one may also relax the local Lispchitz
assumption of the function b and only assume that it is bounded and measurable. Such a result has
been extended by Jourdain [Jou97] where uniqueness is shown to hold for more general measurable and
bounded drift b satisfying only a Lipschitz assumption with respect to the total variation distance and
diffusion coefficient ¢ independent of the measure argument. These results have been recently revisited
and extended to other non degenerate frameworks (allowing the diffusion coefficient to depend on the
time and space variables) in Mishura and Veretenikov [MV18], Lacker [Lacl8] and to possibly singular
interaction of first order type by Rockner and Zhang in [RZ18]. We importantly emphasize that in all
the aforementioned works, the diffusion coefficient only depends on the time and space variables and
that the Lipschitz assumption of the drift coefficient with respect to the total variation distance as well
as the non-degeneracy of the noise play a crucial role.

We start our work by revisiting the problem of the unique solvability of the SDE (II]) by tackling
the corresponding formulation of the martingale problem. Our main idea consists in a fixed point
argument applied on a suitable complete metric space. To do so, we rely on a mild formulation of the
transition density of the unique weak solution to the SDE (ILI]) with coefficients frozen with respect to
the measure argument. This formulation may be seen as the first step of a perturbation method for
Markov semigroups, known as the parametrix technique, such as exposed in Friedman [Fri64], McKean
and Singer [MS67]. We also refer to Konakov and Mammen [KMO00], for the expansion in infinite series
of a transition density and Delarue and Menozzi [DM10] or Frikha and Li [FL17] for some extensions of
this technique in other directions.

Compared to the aforementioned results, our approach allows to deal with coefficients satisfying mild
regularity assumption with respect to the space and measure variables. In particular, the diffusion
coefficient may not be Lipschitz with respect to the Wasserstein distance which, to the best of our
knowledge, appear to be new. Let us however mention the recent work [CdR19] of the first author where
such a framework is handled for a particular class of interaction (of scalar type) and under stronger
regularity assumptions on the coefficients. Then, by adding a Lipschitz continuity assumption in space
on the diffusion coeflicient, we derive through usual strong uniqueness results on linear SDE the well-
posedness in the strong sense of the SDE (I.TJ).

Existence of a density for (1) and associated Cauchy problem on the Wasserstein space.
The well-posedness of the martingale problem then allows us to investigate in turn the regularity
properties of the transition density associated to equation (II]) and to establish some Gaussian type
estimates for its derivatives. Some partial results related to the smoothing properties of McKean-Vlasov
SDEs have been obtained by Chaudru de Raynal [CdR19], Bafios [Banl8|, Crisan and McMurray [CM17].
In [CdR19], such type of bounds have been obtained in a regularized framework for McKean-Vlasov SDE
(uniformly on the regularization procedure) with scalar interaction only. In [Banl8], a Bismut-Elworthy-
Li formula is proved for a similar equation (with scalar type interaction) under the assumption that both
the drift and the diffusion matrix are continuously differentiable with bounded Lipschitz derivatives in
both variables and the diffusion matrix is uniformly elliptic. In [CM17], in the uniform elliptic setting,
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using Malliavin calculus techniques, the authors proved several integration by parts formulae for the
decoupled dynamics associated to the equation (L)) from which stem several estimates on the associated
density and its derivatives when the coefficients b, o are smooth and when the initial law in (L)) is a
Dirac mass.

Here, we will investigate the regularity properties of the density of both random variables Xf and
Doy el (given by the unique weak solution of the associated decoupled flow once the well-posedness for
(LI) has been established) under mild assumptions on the coefficients, namely b and a = oo* are assumed
to be continuous, bounded and Hoélder continuous in space and a is uniformly elliptic. In this case, both
the drift and diffusion coefficients are also assumed to have two bounded and Holder continuous linear
functional (or flat) derivatives with respect to its measure argument. We briefly present this notion of
differentiation in SectionZI]and refer to Carmona and Delarue [CD18] and Cardaliaguet & al. [CDLIL19]
for more details. Within this framework, we are able to take advantage of the smoothing property of
the underlying heat kernel and to bring to light the regularity properties of the density with respect
to its measure argument for a coarser topology. Namely, the coefficients admit two linear functional
derivatives but the density admits two derivatives in the sense of Lions (see section 2.1 for definitions),
which appears to be a stronger notion of differentiation. As a consequence, we recover an ad hoc version
of the theory investigated in the linear case in the monograph of Friedman [Fri64], [Frill]. In particular,
we establish some Gaussian type estimates for both densities and their derivatives with respect to the
time, space and measure arguments.

Finally, the previous smoothing properties of the densities enable us to investigate classical solutions
for a class of linear parabolic PDEs on the Wasserstein space, namely

{(at F LUtz p) = f(tz,pn)  for (t,a,p) € [0,T) x RY x Py(RY),

(1.2) UT,z,p) = h(z, 1) for (z, 1) € R? x Py(RY),

where the source term f : Ry x R? x Py(R%) — R and the terminal condition h : R? x Py(RY) — R are
some given functions and the operator £; is defined by

d d

Etg(xv /L) = Z bi(ta xz, u)azig(za ,LL) + % Z Q.5 (ta xz, H)agi,xjg(% /L)
d | 1 d
(1.3 N RD SUICENNCIIENNICIIER D SRR IL MR TENNIE) I8 PR

and acts on sufficiently smooth test functions g : R? x Py(R%) — R and a = oo™ is uniformly elliptic.
Though the first part of the operator appearing in the right-hand side of (3] is quite standard, the
second part is new and involves the Lions’ derivative of the test function with respect to the measure
variable u, as introduced by P.-L. Lions in his seminal lectures at the Collége de France, see [Liol4]. We
briefly present this notion of differentiation on the Wasserstein space in Section 211 together with the
chain rule formula established in Chassagneux et al. [CCD14], see also Carmona and Delarue [CD18§],
for the flow of measures generated by the law of an Itd process. Classical solutions for PDEs of the form
(L2) have already been investigated in the literature using different methods and under various settings,
e.g. Buckdhan et al. [BLPR17| (for f = 0), [CCD14] and very recently [CM17] (for f = 0). We also refer
the reader to the pedagogical paper Bensoussan et al. [BEY17] for a discussion of the different point of
views in order to derive PDEs on the Wasserstein space and their applications.

In the classical diffusion setting, provided the coefficients b and ¢ and the terminal condition h are
smooth enough (with bounded derivatives), it is now well-known that the solution to the related linear
Kolmogorov PDE is smooth (see e. g. Krylov [Kry99]). In [BLPR17], the authors proved a similar
result in the case of the linear PDE (L2 (with f = 0) and Chassagneux et al. [CCD14] reached the
same conclusion for a non-linear version also known as the Master equation. In this sense, the solution
of the considered PDE preserves the regularity of the terminal condition. Still in the standard diffusion
setting, it is known that one can weaken the regularity assumption on h if one can benefit from the
smoothness of the underlying transition density. Indeed in this case, u(t,z) = [h(y)pt, T,z,y) dy,
y — p(t,T,x,y) being the density of the (standard) SDE taken at time T and starting from x at time
t. However, in order to benefit from this regularizing property, one has to assume that the associated
operator L satisfies some non-degeneracy assumption. When the coefficients b, a = oo* are bounded
measurable and Holder continuous in space (uniformly in time) and if a is unformly elliptic, it is known
(see e.g. [Fri64]) that the linear Kolmogorov PDE admits a fundamental solution so that the unique



4 P.-E. Chaudru de Raynal and N. Frikha

classical solution exists when the terminal condition h is not differentiable but only continuous. In the
seminal paper [Hor67], Héormander gave a sufficient condition for a second order linear Kolmogorov PDE
with smooth coefficients to be hypoelliptic. Thus, if Hérmander’s condition is satisfied then the unique
classical solution exists even if the terminal condition is not smooth. Note that this condition is known
to be nearly necessary since in the non-hypoelliptic regime, even in the case of smooth coefficients, there
exists counterexample to the regularity preservation of the terminal condition, see e.g. Hairer and al.
[HHJ15].

The recent paper [CM17] provides the first result in this direction for the PDE (L2) without source
term and for non differentiable terminal condition A using Malliavin calculus techniques under the as-
sumption that the time-homogeneous coefficients b, o are smooth with respect to the space and measure
variables. In particular, the function h has to belong to a certain class of (possibly non-smooth) func-
tions for which Malliavin integration by parts can be applied in order to retrieve the differentiability of
the solution in the measure direction. This kind of condition appears to be natural since one cannot
expect the solution of the PDE (L2]) to preserve regularity in the measure variable in full generality as
it is the case for the spatial argument, see Example 5.1 in [CM17] for more details on this loss of regularity.

Under the aforementioned regularity assumptions on the coefficients b and a and if the data f and h
admit a linear functional derivative satisfying some mild regularity and growth assumptions, we derive
a theory on the existence and uniqueness of classical solutions for the PDE (I2)) which is analogous to
the one considered in Chapter 1 [Eri64] for linear parabolic PDEs.

Organization of the paper. The paper is organized as follows. The basic notions of differentiation
on the Wasserstein space with an emphasis on the chain rule and on the regularization property of a
map defined on P3(R?) by a smooth flow of probability measures that will play a central role in our
analysis are presented in Section 2l The general set-up together with the assumptions and the main
results are described in Section Bl The well-posedness of the martingale problem associated to the SDE
(T is tackled in Section @ The existence and the smoothness properties of its transition density are
investigated in Section[Bl Finally, classical solutions to the Cauchy problem related to the PDE (L2) are
studied in Section [l

Notations: In the following we will denote by C' and K some generic positive constants that may
depend on the coefficients b and 0. We reserve the notation ¢ for constants depending on |o|s and A
(see assumption (HE) in Section B]) but not on the time horizon T. Moreover, the value of both C, K
or ¢ may eventually change from line to line.

We will denote by P(R?) the space of probability measures on R? and by P,(R?) C P(R?), ¢ > 1, the
space of probability measures with finite moment of order q.

For a positive variance-covariance matrix %, the function y — ¢(X%,y) stands for the d-dimensional
Gaussian kernel with X as covariance matrix ¢(X, z) = (2r)~ % (det £) 2 exp(—3 (X7 'z, z)). We also de-
fine the first and second order Hermite polynomials: H{ (%, z) := —(X " a); and HY? (2, z) := (27 ') (S 1z),—
(2715, 1 < i,j < d which are related to the previous Gaussian density as follows 9,,9(%,z) =
Hi(Z,2)9(%,x), 97, 4,9(5,2) = Hy? (2, 2)g(2, x). Also, when ¥ = ¢ly, for some positive constant ¢, the
latter notation is simplified to g(c, x) := (1/(2mc))¥? exp(—|z|?/(2¢)).

One of the key inequality that will be used intensively in this work is the following: for any p,q > 0
and z € R, |gc|pe_qc”2 < (p/(2qe))P/?. As a direct consequence, we obtain the space-time inequality,

(1.4) Vp, ¢ >0, |z[Pglct,z) < CtP/2g(c't, x)

which in turn gives the standard Gaussian estimates for the first and second order derivatives of Gaussian
density, namely

| Q

(1.5) Ve > 0, |[Hi(ct,x)|g(ct, ) < —g(ct,x) and |Hy? (ct,z)|g(ct,z) <

%Q(C’t, )

~
W=

for some positive constants C, ¢’. Since we will employ it quite frequently, we will often omit to mention
it explicitly at some places. We finally define the Mittag-LefHer function E, g(2) := ", <, 2"/T(an+ ),
zeR, a, 8 >0. B



WELL-POSEDNESS OF NON-LINEAR SDES AND PDE ON THE WASSERSTEIN SPACE 5

2. PRELIMINARIES: DIFFERENTIATION ON THE WASSERSTEIN SPACE AND SMOOTHING PROPERTIES
OF MCKEAN-VLASOV EQUATIONS

2.1. Differentiation on the Wasserstein space. In this section, we present the reader with a brief
overview of the regularity notions used when working with mappings defined on Py(R%). We refer the
reader to Lions’ seminal lectures [Liold], to Cardaliaguet’s lectures notes [Carl3], to the recent work
Cardaliaguet et al. [CDLLI19] or to Chapter 5 of Carmona and Delarue’s monograph [CD18] for a more
complete and detailed exposition. Unless otherwise specified, we equip the space P(R¢) with the topology
induced by the total variation metric dry defined by

drv(s ) = sup / (4 — v)(dz).
AcB(RY) J A

The space P2(R?) is equipped with the 2-Wasserstein metric

1
2

Wa(p,v) = inf (/ | — y|* (dx, dy))
TEP (1,v) R4 xRd

where, for given p, v € Po(R?), P(u,v) denotes the set of measures on R? x R? with marginals y and v.

In what follows, we will work with two different notions of differentiation of a continuous map U
defined on P(RY). The first one, called the linear functional derivative and denoted by 6U/dm, will be
intensively employed in our linearization procedure to tackle the martingale problem and to study the
smoothing properties of McKean-Vlasov SDEs. The second one is the Lions’ derivative, L-derivative
in short, and will be denoted by d,U. Compared to the flat derivative, the L-derivative requires addi-
tional smoothness and will be our central object in order to establish the well-posedness of the PDE (L.2).

Linear functional derivative.

Definition 2.1. The continuous map U : P(R%) — R is said to have a linear functional derivative if
there exists a real-valued bounded measurable function

oU

P(RY) x R 3 (m,z) — —(m)(z) € R,

om
such that for all z in R?, the map P(RY) > m ~ [§U/dm](m)(z) is continuous and such that for all m
and m’ in P(R?), it holds

U((l—=eym+em')—U(m) U

(2.1) lim . = /. 5, M)y d(m” —m)(y).

The map y — [6U/dm](m)(y) being defined up to an additive constant, we will follow the usual normal-
ization convention [o,[6U/dm](m)(y)dm(y) = 0. Observe from the above definition that for all m and
m’ in P(R?)

(2.2) vm) ~vem) = [ [ O (1= Xym ) () dm’ — m)(y) dA.

Note that the boundedness assumption of the map x +— [6U/ém](m)(x), uniformly in m guarantees the
well-posedness of the integral appearing in the right-hand side of (Z.2)).

Remark 2.2. (i) Such a notion of derivative was introduced in [CDIS], see also [CDLL19|, with
P(RY) being replaced by P2(RY), equipped with the 2-Wasserstein metric. In this case, the map
[0U/dm](m)(.) is assumed to be continuous but allowed to be of quadratic growth, uniformly on
bounded set K C P2(R?).

(i) If a map U admits a flat derivative in the above sense then one may deduce an additional regu-
larity property with respect to the total variation distance. Observe indeed that as [6U/dm](.)(.)
is bounded, then from (22)) it is readily seen that for all m and m’ in P(R%)

2.3 Um) = U< sup 130 ")()oe ey (m ).
mreP(Rd) OM

Therefore, if the map U admits a linear functional derivative in the sense of Definition 1] then
it is Lipschitz continuous with respect to the total variation metric.
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With the above definition in mind, one may again investigate the smoothness of m — [6U/dm](m)(y)
for a fixed y € RY. We will say that U has two linear functional derivative and denote [62U/dm?](m)(y)
its second derivative taken at (m,y) if m — [dU/dm](m)(y) has a linear functional derivative in the sense
of Definition Il As a consequence, for all m and m’ in P(R?) it holds

U, U LU , , , ,
= _ = - 21— _
W) = 5o mw) = [ SR (= Nm e ) ) dln’ — (') i
and if P(RY) x (RH2 3 (m,y,y’") ~ [62U/6m?)(m)(y,y’) is continuous then [§2U/dm?](m)(y,y’) =
(62U /6m?)(m)(y',y) for all (m,y,y’) € P(RY) x (R?)2. Again, for more details on the above notion of
derivative, we refer to [CDLL19] and [CD18]].

The L-derivative. We now briefly present the second notion of derivatives that we will employ as
originally introduced by Lions [Liol4]. His strategy consists in considering the canonical lift of the
real-valued function U : Py(R?) > p + U(p) into a function U : L > Z — U(Z) = U([Z]) € R,
(Q,F,P) standing for an atomless probability space, with € a Polish space, F its Borel o-algebra,
Ly = Lo(Q, F,P,R%) standing for the space of R?-valued random variables defined on © with finite
second moment and Z being a random variable with law p. Taking advantage of the Hilbert structure
of the Ly space, the function U is then said to be differentiable at p € Po(R?) if its canonical lift U is
Fréchet differentiable at some point Z such that [Z] = p. In that case, its gradient is denoted by DU.
Thanks to Riezs’ representation theorem, we can identify DI as an element of L2, It then turns out that
DU is a random variable which is o(Z)-measurable and given by a function DU (u)(.) from R to R,
which depends on the law p of Z and satisfying DU (p)(.) € L2(R%, B(R?), u; R?). Since we will work with
mappings U depending on several variables, we will adopt the notation 9, U()(.) in order to emphasize
that we are taking the derivative of the map U with respect to its measure argument. Thus, inspired by
[CD18], the L-derivative (or L-differential) of U at y is the map 9,U(u)(.) : RY 3 v = 9,U(u)(v) € R,
satisfying DU = 0,U (u)(Z).

It is important to note that this representation holds irrespectively of the choice of the original
probability space (9, F,P). In what follows, we will only consider functions which are C!, that is,
functions for which the associated canonical lift is C! on IL2. We will also restrict our consideration to the
class of functions which are C! and for which there exists a continuous version of the mapping P2 (R%) x
R > (u,v) — 9,U(p)(v) € RE Tt then appears that this version is unique. We straightforwardly
extend the above discussion to R%-valued or R? ® R%valued maps U defined on P2(R%), component by
component.

Remark 2.3. Let us point out the link between this notion of derivative and the regularity property with
respect to the Wasserstein metrics of order one and two. Observe indeed that if a map U is continuously
L-differentiable and if the Fréchet derivative of its lift DU is bounded in Lo then for all g and g’ in
Pa(R?) it holds

U () = U ()| =

< ||DUHL2W2(,U/3MI)5

/1 E[0,U(AX + (1 = MX'DAX + (1 — N)X')(X — X')]dA
0

thanks to Cauchy-Schwarz’s inequality and where above X and X’ denote two independent random
variables in Lo with respective law p and p/. In comparison with Remark [Z2] more precisely the
estimate (Z3)), if one now assumes that the L-differential 0,U, viewed as the map Py(R%) x R? 3
(i, y) — 0,U(p)(y), is bounded in supremum norm then, from the above computations one readily sees
that
Up) =U@W)l < sup [J0.U ") )llooWa g, 1).
M//EPQ(Rd)
Linear functional and L-derivative, link and examples. As underlined in Proposition 5.48 of
[CD18], the following relation holds between the linear functional and the L-derivative. If a map h :
Py(R?) — R admits a linear functional derivative dh/ém (see Remark (i)) such that for any p in
Py(R?), the map v — [§h/dm](u)(v) is differentiable and its derivative is jointly continuous in v and u
and at most of linear growth in v uniformly in y for any u in bounded subset K of Py (R?) then it holds
a.h 19) Oh
(2.4) uh(1) () = Oul5 =1 (1) ().

Below are some examples of functions admitting linear functional. One can thus, under an additional
regularity assumption, deduce its L-derivative.
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Example 2.4. In the following, h denotes a map from P(R?) to R. We can straightforwardly consider
their multidimensional version.

(1) First order interaction. We say that h satisfies a first order interaction if it is of following form:
for some bounded and mesurable function i : R? — R, it holds

h(p) = /Rd h(y)(dy).

(2) N order interaction. We say that h satisfies an N order interaction if it is of following form: for
some bounded and mesurable function A : (R4)Y — R, it holds

= [ ) ) )

(3) Polynomials on the Wasserstein space. We say that a function h is a polynomial on the Wasser-
stein space if there exist some real-valued bounded and mesurable functions hq, --- , hx defined
on R? such that

o =T [ haentaz)

(4) Scalar interaction. We say that a function h satisfies a scalar interaction if there exist a continu-
ously differentiable real-valued function h defined on RY with bounded first order derivative as
well as some real-valued bounded and mesurable functions A1, - - - , hx defined on R? such that

) = ([ Tnt uta) - [ ixnian).

(5) Sum, product and more generally any smooth composition of N order interactions, polynomials
on Wasserstein space or scalar interaction.

Smooth maps defined in the strip [0,7] x R? x P»(RY) and associated chain rule formula. In
order to tackle the PDE (.2) defined in the strip [0,7] x RY x P3(R9), we need a chain rule formula
for (U(t, Yz, [Xt]))t>0, where (X¢)i>0 and (Y2)i>0 are two Itd processes defined for sake of simplicity on
the same probability space (2, F,F,P) assumed to be equipped with a right-continuous and complete
filtration F = (F;)¢>0. Their dynamics are given by

t t
(25) Xt:X0+/ b5d5+/ O'SdWS,X()GLQ,
0 0

t t
(2.6) Y; =Yy + / ns ds + / ~vs AW
0 0

where W = (W,);>0 is an F-adapted d-dimensional Brownian, (b;)i>0, (t)i>0, (04)i>0 and (v:)i>0 are
F-progressively measurable processes, with values in R?, R?, R? ® R? and R%*¢ respectively, satisfying
the following conditions

T

T
(2.7) VT > 0, E[/ (|be|* + |o¢|*) dt <ooand]P’</ (|77t|+|%|2)dt<+oo>1.
0 0

We now introduce two classes of functions we will work with throughout the paper.

Definition 2.5. (The space CP22([0,T] x R? x Py(R%)), for p = 0, 1) Let T' > 0 and p € {0,1}. The
continuous function U : [0, T] x R x Pa(R9) is in CP22([0, T] x R x Pa(R9)) if the following conditions
hold:
(i) For any p € P2(R?), the mapping [0,7] x RY > (t,x) = U(t,z, p) is in CP2([0,T) x R?) and the
functions [0, T] x R? x Pa(R?) 3 (¢, 2, p) = XU (t, z, ), 0.U(t, z, ), O*U(t,z, p) are continuous.
(ii) For any (t,7) € [0, 7] x R%, the mapping P2(R?) 3 p + U(t,z, ) is continuously L-differentiable
and for any p € P2(R?), we can find a version of the mapping R? 3 v — 9,U(t,z, u)(v) such
that the mapping [0,7] x R? x Py(R?) x R? > (t,2, p,v) — 9,U(t,z,n)(v) is locally bounded
and is continuous at any (¢, x, 4, v) such that v € Supp(u).
(iii) For the version of 9,U mentioned above and for any (¢, z, u) in [0, 7] x R% x P (R?), the mapping
RY > v+ 0,U(t,x, u)(v) is continuously differentiable and its derivative 8,[0,U(t,z, u)](v) €
R¥* is jointly continuous in (t,z, i, v) at any point (¢, z, i, v) such that v € Supp(u).
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Remark 2.6. We will also consider the space C1'P([0,T] x Pa(R?)) for p = 1, 2, where we adequately
remove the space variable in the Definition More precisely, we will say that U € C11([0, 7] x Pa(R%))
if U is continuous, t +— U(t, u) € C*([0, 7)) for any p € P2(RY), (¢, 1) = ;U (t, 1) being continuous and
if for any ¢ € [0,T], p — U(¢, ) is continuously L-differentiable such that we can find a version of
v = 0,U(t, pu)(v) satistying: (¢, p,v) — 0,U(t, p)(v) is locally bounded and continuous at any (t, u, v)
satisfying v € Supp(u).

We will say that U € C2([0,T] x P2(RY)) if U € CH1([0,T] x P2(R?)) and for the version of 9,U
previously considered, for any (t,u) € [0,T] x P2(R?), the mapping R? 5 v — 9,U(t, u)(v) is contin-
uously differentiable and its derivative 9,[0,U (¢, n)](v) € R4*? is jointly continuous in (¢, u,v) at any
point (¢, u, v) such that v € Supp(u).

With the above definitions, we can now provide the chain rule formula on the Wasserstein space that
will play a central role in our analysis.

Proposition 2.1 ([CDI§|, Proposition 5.102). Let X and Y be two Ito6 processes, with respective
dynamics (Z35) and (Z0), satisfying (7). Assume that U € C1%2([0,T] x R? x Py(R%)) in the sense of
Definition such that for any compact set X C R? x Py(R?),

(28) s [ 00 @F i+ [ 100,00 0F s} <.

(t,z,n)€[0, TIXK

Then, P-a.s., Vt € [0,T], one has

Ut Yin [X,]) = U(0, Yo, [Xo]) + / 0,U (5, Y, [Xs]) e dVV,
(2.9) +/0 {c’)sU(s, Y, [Xs]) + 0:U (s, Ys, [Xs])ms + %Tr(c?iU(s, Y, [Xs])%vf)} ds

t o o~ o~ 1~ S o~
+/0 {E[ZLU(S,YS, [XS])(Xs)bs] + §E [Tr(av[a,uU(sa}/Sa [XS])](XS)G’S)] } dS

where the Itd process ()Zt,gt,&vt)ogtST is a copy of the original process (Xi, b, 0¢)o<t<T defined on a
copy (€, F,P) of the original probability space (2, F,P).

2.2. Smoothing properties of McKean-Vlasov semigroup. One of the central feature of our anal-
ysis relies on the smoothing properties of a non-degenerate McKean-Vlasov semi-group. In our current
setting, this effect translates into a weakening of the topology with respect to which maps are, a priori,
smooth. In particular, the composition of a flat differentiable map with a non-degenerate and smooth
flow of probability measures allows to achieve a stronger form of differentiability, in the sense that such
composition is now differentiable in the sense of Lions.

In order to foster the understanding of the key idea, let us consider a map h : P(R?) — R which is
assumed to admit a linear functional derivative dh/dm. Recall importantly from (Z3]) that this implies
that the map h is Lipschitz continuous with respect to the total variation distance. Consider the simplest
version of (LI)) (i.e. withd=¢=1,b=0 and o = 1 therein) that is the process X* = ¢ + W;, where
(€] = 1 € P(RY) and recall that W is a Brownian motion independent of €. Observe that, the law [X?]
only depends on ¢ through its law pu.

Let us first show how the noise regularizes the map g — h([X?]) in the sense that it is now Lipschitz
with respect to a weaker topology and differentiable in a stronger sense (i.e. in the sense of Lions).
Note first that in that setting, p — h([X]) rewrites s h(i* g¢), g+ being the Gaussian density with
variance t and where % stands for the usual convolution product that is for all A in B(R?), (ux g¢)(A) =
[ J49¢(y — ) dydp(z). From (Z2), for all probability measures p and z’ in P(R?), it holds

h(IXP]) = h(IX]) = h(ux g) — h(u*gt)

/ /Rd g (e (1= ') * ge)(y) gie(y — ) d(p — p') () dydX

(2.10) = [ 2 Ot (- )+ 000 Bl — )~ € i

where & and &’ have respective law p and p'.
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On the one hand, we readily obtain from the previous identity and the mean-value theorem as well as
(CH) that for any ¢ > 0

’ (Sh _1 .
W(XE]) = (XD <C sup == (m")()]ot™? _ inf /{lw —yl A 1}dr(z,y)
m’” €P(RY) om well(m,m’)

=0 s I ) oot~ Edl ),
m’eP(RL) OM
where TI(u, /) denotes the set of probability measures 7 € P(R? x R?) with y and p’ as respective
marginals. Hence, starting at time 0 with a map h being Lipschitz in total variation distance, we end up
at any time ¢ > 0 with a map which is Lipschitz w.r.t. the distance d defined above, which is well seen
to be less than the total variation distance and the Wasserstein distance Wj.

On the other hand, coming back to (ZI0) and restricting our considerations to initial conditions with
law in Po(R%) (i.e. £ and ¢ are now assumed to belong in IL2), one can choose ¢’ = ¢ 4 €Y for some Y
in Ly and € > 0 and we have, from the dominated convergence theorem, continuity of the integrands in
the right hand side and then Fubini’s theorem, that for any ¢ > 0, it holds

ti = (B([XT]) = n([X09))

) 1 5h
_ hm/o /Rd%((Amm+(14>[§1>>*gt><y>

0

XE[/O (—Hi-g)(y = N(€+eY) — (1 = N)(g)) - YdX]dydA

= 2 |( [ Frtead) gl Ody) v |

where we importantly used the boundedness of the map (m, z) — [dh/dm](m)(z) together with the fact
that lime o dov (g * g, (A[§ + Y]+ (1 — AN)[€])) xg¢) = 0 for any A € [0, 1] and any ¢ > 0. Thus, the map
w— h([X}']) is L-differentiable for any ¢ > 0.

Let us eventually conclude this illustration in view of the relation (Z4) between the flat and Lions
derivatives. We readily have from (ZI0) and the previous computation that for any ¢ > 0

Ou[h([XEDI(0) = O[5 [R(XED] (1) (v) = g—h([Xf])(z)(—Hl “91)(z —v) dz
Rd 0T
so that, for any p € P2(R?) and any ¢ > 0, the map v — [6/0m](h([X}]))(1)(v) is clearly a smooth
function with bounded derivatives of any order and v — 9, [h([X{])](v) is also a smooth and bounded
function. This immediately gives that u — h([X}]) is Lipschitz continuous with respect to the 2-
Wasserstein metric.

From the above simple but quite enlightening illustration, it is then naturally expected that such
regularizing effect along smooth flows of probability measures holds in a more general way. Let us recast
the above discussion in our framework with the following Proposition which will play a major role in our
analysis.

Proposition 2.2. Assume that the continuous map h : P(R%) — R admits a linear functional derivative.
Consider a map (t,z,u) — p(u,t,T,2,2) € CH22([0,T) x R x Py(R%)), for some prescribed T > 0,
2z p(p,t, T, x, z) being a density function, such that the probability measure given by (p(u,t, T, ., dz)tu)
belongs to P2 (R%), locally uniformly with respect to (¢, ) € [0,T) x P2(R?), i.e. uniformly in (¢, u) € K,
K being any compact subset of [0,7") x Po(R?). Assume additionally that the mappings R? > v
Joa 103 [0up(p, ¢, T2, 2)](v) | dz, [ou |OET (0, t, T, v, 2)| dz, for n € {0,1}, are at most of linear growth,
uniformly in (¢, 4, z) in compact subsets of [0,7) x Po(R?) x R? and such that for any compact set
K' C[0,T) x Pa(R?) x (R?)?, and any n € {0,1}

(2.11) / sup {107 p(p,t, Ty, 2)| 4 | 8, " pls t, Ty, 2)| + 103 [0up(p, 8, T, , 2)) (v)] } dz < o0
R (t,p,xz,y)EL’

Consider the map © : [0,T) x P2(R%) — P2(R?) defined by

O(t,1)(d2) = (P, 1. T, 2i) (02) = | plp,t. 7., 2)(d)
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Then, the following statements hold:

e the map h(O(.,.)) € CL2([0,T) x P2(RY)),
e Its L and time derivatives satisfy for any n € {0, 1}

arlouheE mw) =3[, /}W (Ot ) plv 1. T, 2) dzv(dn)] ()
(212) = [ [ (@m)) ~ 5o (Ot )] 02l . 7.0, ds
v /) (4. 10)E) = 3 (Ot 1)) ()| OF Byt T2, ] (0) d (),
OOt m) = / S OGP T )]
(213) - /() [§—Z<e<t,u>><z> D Ot ) (x)] Auplan 1. T, 2) dz ().

Remark 2.7. o Importantly, we note that in the above proposition we do not impose the intrinsic
smoothness (i.e. smoothness in the sense of Lions) of the map h but only require the existence of a linear
or flat derivative. In this regard, the composition with the smooth flow (¢, u) — O(t, u) of probability
measures of Py (R?) allows to regularize the map h, the regularity being understood for a coarser topology.
As already mentioned before, in what follows, the map © will be the one generated by the unique weak
solution of the SDE (IT)), i.e. we will be interested in the smoothness of [0,7) x Po(R?) > (¢, )
h([X75))-

o For functions h : P(RY) — R? and h : P(R?) — R4 we will straightforwardly extend the previous
proposition to each component and still denote [§h/dm] : P(R?) x R — R and [6h/ém] : P(R?) x RY —
R¥*4 the corresponding maps.

o The second equalities in [Z12) and (Z.I3) are related to cancellation argument. Such arguments play
a key role when investigating the regularity property of a map h : P(R%) — R? composed with a smooth
flow of probability measure satisfying the above assumptions when the linear functional derivative of h is
further assumed be Holder continuous in space uniformly with respect to its measure argument. This will
be a crucial tool in our analysis of the regularity of the transition density associated to a non-degenerate
McKean-Vlasov diffusion process.

Proof. The proof is divided into two steps: we first prove continuity of [0,7) x Pa(R?) > (¢, pu)
h(©(t, ) and then its differentiability.

Step 1: Continuity of the map [0,T) x P2(R?) > (¢, ) = h(O(t,pn)). Let (tn, fn)n>1 be a sequence of
[0,T) x P2(R?) satisfying lim,, |t, — t| = lim,, Wa(un, 1) = 0. In order to prove that [0,7) x Pa(R%) >
(t, 1) = h(O(t, p)) is continuous, it is sufficient to prove that lim,, drv (O (tn, in), O(t, ) = 0. Let h be
a bounded and measurable real-valued function defined on R? satisfying ||, < 1. We use the following
decomposition

(5Ot pa)) = (1006 0) = [ FIplnsta, T 2) o) = [ BE)pla T, 0,2 )
= A,h + B,h

with

>I

A= [ Bt T2, 2) delp (),

Buhvi= [ BBl T, 2) — st T 2,2) dop(d)
(Re)?
Let us note that from condition (ZII)) and the dominated convergence theorem, one directly gets

lim,, supjz <1 |B.h| < f(Rd)2 lim,, [p(ten, tn, T, 2, 2) — p(p, t, T, z, 2)| dzp(dz) = 0, where the supremum

on the left-hand side is taken over all bounded and measurable real-valued function h defined on R¢ such
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that |h|e < 1. Then, we decompose A, h as the sum of two terms namely
ahi= [ o BT, ) — ) ),
ahi= [ o FEn 10, T, 2) 2 (= ) — ) )

where ng, R > 1, is a non-negative smooth cutoff function such that 0 <nr <1, ngr(x) =1 for |z| < R,
nr(z) = 0 for |z| > 2R and |VnR|oo < C, C being a positive constant independent of R. Observe that
the map fR:RY> x — Ja M(2)p(pin, tn, T, 2, 2)nR(x) dz is continuously differentiable with a first order
derivative uniformly bounded by

[V iEloo < C(l —|—/ sup |0xp (e, t, Ty, 2)] dz>
Rd (

t,p,x)EXLXBagr

where K is a compact set of [0,T) x P2(R?) containing the sequence (%, ftn)n>1 and Bag is the closed
ball of radius 2R around the origin. From the Monge-Kantorovich duality principle, we thus get

sup ALKl < C(l —|—/ sup |02p(u, t, T, x, 2)| dz) W (s 1)
|h]oo <1 Re (t,u,2)EXX Bar

which clearly yields lim,, sups < |ALA| = 0.
Now, from the boundedness of h and the weak convergence of (tn)n>1 towards u, we obtain

limsup sup |AZh| < (hmsup/ un(dx)Jr/ ,u(das)) < 2/ wu(dz).
" |hles<1 n Jlz|zR || >R || >R

which in turn, by letting R 1 oo, implies lim sup,, supjz__ <1 |A2h| = 0.
Combining the previous arguments, we eventually obtain

lim (Ot ) O(t, 1) = lim sup[{F, ©(t, 1) — Ot p))] = 0.

" |hle<1
This concludes the proof of the first step.

Step 2: Continuous differentiability of the map [0,T) x Po(R%) 3 (¢, 1) = h(O(t, 11)). We start this step
by proving the continuous differentiability of [0,T) 3 ¢ + h(O(t,u)) for any fixed u € P2(R?). Let us
set O A (t, 1) := (1= N)O(t, u) + AO(t + ¢, ), for a fixed (¢, u) € [0,T) x Po(R?) and & > 0 small enough.
Then,

hO(t +e,u)) — h(O(t 1))

et o o)l o) i

(2.14)
[ (st ~ SO @)} i+ 7). )] )

where for the last equality we used the fact that the two maps y — p(u,t +¢,T,z,y) and y +—
p(p,t, T, x,y) are density functions. Observe that dry (O (t, 1), O(t, 1)) < f(Rd)Z Ip(p,t +¢&,T,x,y) —
p(p,t, T, x,y)| dyu(dx) so that, by (ZII]), the continuity of [0,T) > t — p(u,t, T, z,y) and the dominated
convergence theorem, passing to the limit as € | 0 clearly yields lim. o dry (©c 1 (t, 1), ©(t, 1)) = 0 which
in turn, by continuity of m — [dh/dm](m)(y), implies lim, o[0h/dm]|(Oc A(t, 1)) (y) = [0h/om](O(t, 1)) (y).
Hence, dividing on both sides of ([2.I4]) by ¢ and letting & goes to zero yields that ¢t — h(O(t, u)) is right-
differentiable and also continuously differentiable since the limit is continuous on [0,7). Moreover, the
identity (ZI3) follows. The continuity of the map [0,7) x Po(R%) > (¢, 1) +— 0:h(O(t, 1)) then follows
from the relation (ZI3) and arguments similar to those employed previously in step 1 of the proof.

We now prove that p — h(©(t, 1)) is continuously L-differentiable for any fixed ¢t € [0,T). Let us
introduce for convenience the probability measures O, »(t, u) := (1 — N)O(t, 1) + AO(t, (1 — &)y + ep)
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and ey = (1= M)+ N[(1 — &) + ep'], for a fixed (¢, pu, 1') € [0,T) x (P2(R%))%. Then,
WO, (1 — o)+ enl)) — WOt 1)

/ /Rd Ocn(t, )W) {p((L—e)pu+eu,t,T,y) — p(u, t,T,y)} dydX
- / / s (@t M) (1~ )t 21,72, )[(1 )+ 2p) ) — (.1, T, ()] dy A
- 5/ /nw g—Z(@a,A(t,u))(y)p((l —pte b, Ty, y) dy (W — p)(da) dX
£ e L L O 0 D0) SO | ol b7, ) ) ) ) AN

Observe now that drv (O (t, 1), O(t, 1) < [u [P((1 —e)p+ep/ t, T, 2) — p(p, t, T, z)| dz so that, by
the continuity of P2(RY) > u + p(u,t, T, z), (ZII) and the dominated convergence theorem, we obtain
lime o dpv(Oea(t, 1), O(t, 1)) = 0. Note also that lime o Wa(ue x, ) = 0. Hence, dividing by € both
sides of the previous identity and letting € goes to zero yields that u — h(©(t, 1)) admits a continuous
linear functional derivative thanks to the dominated convergence theorem as well as the continuity of
the maps p — [dh/om](u), [0p/om](u,t, T, z,y)(x'), the boundedness of [6h/dm] and (ZTITl). Moreover,
it holds

oh

om

+ /@w)z {—(e(t,u))(z) - %(@(t,m(x)} 5Pt T2, 2)(v) dzp(d).

om

i[h(@(t,u))](v) :/ ~—(O(t, 1)) (2) p(p, t, T, v, 2) dz

om

Each term appearing in the right-hand side, seen as a function of v, is continuously differentiable on
R? so that for any vy € RY

av[%[h(@(t ) = /R d )Pt T, v, 2) d-)

/ (f" (Ot m)(2) ~ (Ot 1)) (w)| 0 2pl, 1. T, 2, 2)(0) dd(a)
(]Rd)Z m m ] m

= [ [5r(©t1)(2) = 5 (Ot 1)) (w0)] Dup .0, 2)

001, 1))~ (1, 1) ()] O 1. T, 2) ) dcl)

(R4)2 | om
+0v( ;Z(@(t w)(vo) p(p,t, Ty v, 2) dz)
(2.15) - [f—h@(t,u»(z) — S (O(t 1)) ()] el Ty, 2) =
Rd m m
oh oh
(2.16) t [ O~ 5O m)e) a7, 2)0) it

where we used the fact that the last term appearing in the last but one equality is 0 since z —
p(p,t, T,v,z) is a density function. The joint continuity of the map (¢, u,v) — &J%[h(@(t,g))ﬂ (v)
then follows from the above identity and similar arguments as those previously employed in the first step
of the proof. Moreover, from the boundedness of (v,m) — [dh/ém](m)(v) and the linear growth of the
maps v — [pa [0up(p,t, T, v, 2)| dz, [pa |0up(p,t, T, 2, z)(v)| dz, uniformly in 4 € K, we deduce that pu —
h(©(t,n)) is continuously L-differentiable. The identity ([2I2) for n = 0 then follows by taking vy = v.
One may again differentiate ([2I5) and ([2I6) with respect to v for a fixed (¢, ) € [0,T) x Po(R?) and
then select vg = v. Then, one obtains (ZI2) for n = 1 from the boundedness of (v, m) — [0h/dm](m)(v)
and the linear growth v — [o. [02p(p,t, T, v, 2)| dz, [4a|0:0,p(1.t, T, 2, 2)(v)| dz, uniformly in p € K.
The continuity of the map (¢, ,v) — 0y[0, [h(O(t, 11))]](v) finally follows from arguments similar to

those previously employed in the first step of the proof. The remaining technical details are omitted.
O



WELL-POSEDNESS OF NON-LINEAR SDES AND PDE ON THE WASSERSTEIN SPACE 13

3. OVERVIEW, ASSUMPTIONS AND MAIN RESULTS

3.1. On the well-posedness of the martingale problem related to the SDE (LI)). We first
present the martingale problem associated to equation (LTI).

Definition 3.1. Let u € P(R?). We say that the probability measure P on the canonical space
C([0,00),R%) (endowed with the canonical filtration (F;);>0) with time marginals (P(t));>0, solves the
non-linear martingale problem associated to the SDE (1)) with initial distribution p at time 0 if the
canonical process (y;)¢>o satisfies the following two conditions:

(i) P(yo €T) = u(D), I' € B(R?).
(ii) For all f € C3(R), the process

d

t d
(3.1) fye) = f(wo) */ Zbi(s,ys,]f”(@)axif(ysH% > aii(s, 95, P(5))07, 4, f (ys) p ds

0 i,j=1

is a square integrable martingale under P.

Remark 3.2. A similar definition holds by letting the canonical process starts from time ¢y with initial
distribution p, in which case we say that the initial condition is (to, ) and (7) is replaced by the condition:
P(y(s) € T30 < s < to) = p(I).

Having this definition at hand we now introduce some assumptions on the coefficients:

(HR) (i) The drift coefficient b : Ry x R? x P(R?) — R is a bounded and measurable function.
Moreover, for any (t,x) € Ry x R?, the map m ~ b(t, 2, m) is Lipschitz-continuous for the
total variation metric, uniformly with respect to t, z, that is, there exists a positive constant
C such that for all (¢,z) € Ry x R%, for all m,m’ € P(R?)

|b(t, z,m) — b(t,z,m')| < Cdpy(m,m’)

where we remind the reader that drv denotes the total variation metric on ’P(Rd).

(ii) The diffusion coefficient a : R x R% x P(RY) — R¢ ® R?, where a(t,z,m) = (00*)(t, =, m),
is a bounded and continuous function. Moreover, for any (t,m) € Ry x P(R%), the function
R? > 2+ a(t,z,m) € R?®R? is uniformly 7-Holder continuous for some 7 € (0, 1], namely

[a]H — sup |a(t,:c,m) — a(tvyam)| < 00
£20, 27y, meP(RY) @ =yl

(iii) For any (i,j) € {1,--- ,d}* and any (t,2) € Ry x R%, the map P(R%) 5 m — a; ;(t,z,m)
has a linear functional derivative.

(iv) For any (i,j) € {1,---,d}* and any (t,m) € Ry x P(R%), the map (RY)? > (z,y) —
[0ai j/om](t, x,m)(y) is an n-Holder continuous function, for some n € (0, 1], uniformly with
respect to the variables ¢t and m.

(HE) The diffusion coefficient is uniformly elliptic, that is, there exists A > 1 such that for any
(t,m) € [0,00) x P(RY) and any (z,2) € (R4, \1[2P < {a(t,z,m)z, 2) < A2]%.

Remark 3.3. o Assumption (HR)(i) may be reformulated as the following slightly stronger assumption:
the map P(R?) > m + b(t,z,m) has a linear functional derivative.

o Note that under assumption (HR)(iii) and (iv), the map P(RY) > m ~ a; j(t,z,m) is Lipschitz-

continuous with respect to the distance

well(m,m’)

dy(m,m') = inf / {lz —y|" A1} 7(dz, dy)
(R4)?
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where II(m,m') is the set of all transference plan from m to m’. Indeed, for any m,m’ € P(R?%) and any
transference plan 7 € II(m, m’)

|a”txm) a; j(t,z,m’)]|

[ B2 0 20— )

[ 5;;5 (12, (1= Xy (@) = (0,2, (1= N+ ') ) A (e, dy)|

5(1”-
= (t,x,m)(. z—y|" A1} w(dx,d
e mO], [ eyl a1y (e dy

A

sup [
t,x,m

where sup, ,. ., [[0ai,; /6m](t,z,m)(.)] 5 denotes the uniform Holder modulus of the map [da; ; /dm](t, z, m)().
Finally, the claim follows by taking the infimum in the previous inequality with respect to = € II(m, m’).

Our first main result concerns the well-posedness of the martingale problem associated to the SDE

@D.

Theorem 3.4. Under (HR) and (HE), the martingale problem associated with (L] is well-posed for
any initial distribution x € P(R?). In particular, weak uniqueness in law holds for the SDE (1.

When investigating strong well-posedness of non-linear SDE an interesting fact is that, combining
uniqueness in law for the non-linear SDE together with strong uniqueness result for the associated linear
SDE, i.e. the same SDE with time-inhomogeneous coefficients, the law argument being now treated as
a time-inhomogeneity, immediately yields to strong uniqueness. To be more specific, from the previous
well-posedness result we have that any strong solution Y of the SDE (1)) (if it exists) writes

(3.2) Yi=¢&+ /Ot b(s, Y, [X£])ds + /Ot o (s, Ye, [XE])dW,

implying that, setting b : RT x R? 3 (¢,) = b(t,y,[X5]) € R and & : RT x R 5 (t,y) = 5(t, y, [XE]) €
R? x R?, it solves

(3.3) §+/O b(s, Y)der/O o(s,Ys)dWs.

But this linear SDE is well posed in the strong sense under the additional assumption that the diffusion
coefficient & is Lipschitz in space (see [Ver80]). Hence, any strong solutions of [B:2) are equals P-a.s.
so that strong well-posedness follows from the Yamada-Watanabe theorem. This gives the following
corollary.

Corollary 3.5. Assume that the assumptions of Theorem hold and, that for all (t,m) in Ry X
P(R?), the map x + o(t,z,m) is Lispchitz continuous uniformly with respect to t and m. Then, strong

uniqueness holds for the SDE (LT)).

3.2. On the density of the solution of the SDE (1)) and its regularity properties. Under the
assumption of Theorem [34] by weak uniqueness, the law of the process (X; ’5),25 given by the unique
solution to the SDE (1)) starting from the initial distribution p = [¢] at time s only depends upon &
through its law p. Given p € Py(R?), it thus makes sense to consider ([X;*]);> as a function of y (and
also of the time variable s) without specifying the choice of the lifted random variable £ that has p as
distribution. We then introduce, for any = € R¢, the following decoupled stochastic flow associated to

the SDE (I]:[I)
t t
(3.4) XpoH = g 4 / b(r, X35, [X24]) dr + / o(r, X350, [X24]) WV,

We note that the previous equation is not a McKean-Vlasov SDE since the law appearing in the
coefficients is not [X2¥#] but rather [X¢], that is, the marginal law of the solution to the SDE (L))
(starting at time s from the initial distribution u) evaluated at time r. Under the assumptions of
Theorem B.4] the time-inhomogeneous martingale problem associated to the SDE (B.4)) is well-posed, see
e.g. Stroock and Varadhan [SV79]. In particular, weak existence and uniqueness in law holds for the

SDE (34).
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Moreover, from Friedman [Fri64], see also McKean and Singer [MS67], it follows that the transition
density of the SDE (34) existd]. In particular, the random variable X ;""" has a density that we denote
by z — p(u, s,t, x, z) which admits a representation in infinite series by means of the parametrix method
that we now briefly describe. We refer the reader to [Fri64] or Konakov and Mammen [KMO00] for a
more complete exposition. We first introduce the approximation process ()A(gz“ )to>t, obtained from
the dynamics ([B4]) by removing the drift and freezing the diffusion coefficient in space at a fixed point
y, namely

~ t2
(3.5) Rivon _ +/ o (ry, [X2€]) AW,

t1

The process ()A(fgm” )to>t, is a simple Gaussian process with transition density given explicitly by

to
DY (1, 8,11, t0,,2) i =g (/ a(r,y, [ X3%)) dr, z — x) )

t1
To make the notation simpler, we will write p(p, s, t1, t2, x,y) := p¥(u, s, t1,te, z,y) and p¥(u, 8, ta, x, 2) =
pY(u, s, s,ta, x, z). Note importantly that the variable y acts twice since it appears as a terminal point
where the density is evaluated and also as the point where the diffusion coefficient is frozen. Note also
that in what follows we need to separate between the starting time ¢; of the approximation process and
the starting time s of the original McKean-Vlasov dynamics. We now introduce the two infinitesimal
generators associated to the dynamics ([8.4) and (3.3]), namely

d d

s 1 s
Es,tf(ua t,l’) = Z bi(taxa [Xt 75])6I1f(ua t,l’) + 5 Z ai,j(ta xz, [Xt 16])83-;,11-.]0(”) t,l’),
i=1 ig=1
. 1<
Es,tf(/j/a tal') = 5 Z ai,j(tay) [Xf,é])ai,”z]f(,u/ata :C)
ij=1
and define the parametrix kernel H for (u,r,z,y) € P2(RY) x [s,t) x (R?)?
H(,U/a SaTatvxvy) = (Es,r - ES,T)ﬁ(/’[’) Sarvtaxay)
d
= Zbi(raxa [Xﬁﬁ])@Zli)\(’u’ Saratvwvy)
i=1
1 d
+ 5 Z (aiJ (7“, Ty [Xfﬁg]) — Q5 (7“, Y, [Xf’g]))aii@jﬁ(u, s, 1,1, %, y)
ij=1

Now we define the following space-time convolution operator

t
(f@g)(u st xy) = / /d fluys,rr’ x, 2)g(p, 8,77t 2, y) dz dr’
r R

and to simplify the notation we will write (f ® g)(u, s,t,x,y) := (f ® 9)(u, s, s,t,x,y), H(u, s, t,z,2) =
H(u, s,5,t,2,2) and proceed similarly for other maps. We also define f @ H*) = (f @ H*—D) @ H for
k > 1 with the convention that f ® H(®) = f. With these notations, the following parametrix expansion
in infinite series of the transition p(u,s,t,z,z) holds. Let T > 0. For any 0 < s < t < T and any
(12, 9) € Pa(RY) x (RY)?

(3.6) Pl s, t,2,y) = D, 8,6, 2, 9) +p @ H(p, s,t,2,y).

so that, by induction

(3.7) pli stz y) =Y (POHE)(p, s,t,2,y).
k>0

Moreover, the above infinite series converge absolutely and uniformly for (u, z,y) € P2(R%) x (R%)? and
satisfies the following Gaussian upper-bound: for any 0 < s < t < T and any (i, r,y) € Pa(R?) x (R%)?2

(38) p(,U/, s,t,x,y) S En/2,1(c(|b|00 + 1)) g(C(t - S)) Yy — ‘T)

Un [Fri64], it is proved that if z — b(r,z) = b(r, , [Xf’g]) is bounded and Holder-continuous then the fundamental
solution associated to the infinitesimal generator of ([3.4) exists and is unique by means of the parametrix method. However,
existence of the transition density as well as weak existence and weak uniqueness can be derived under the sole assumption
that the drift coefficient is bounded and measurable and the diffusion matrix is uniformly elliptic, bounded and Holder
continuous.
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where C' := C(T, \,n) and ¢ := ¢()) are two positive constants. We refer to [MS67] for a proof based on
Kolmogorov’s backward and forward equations satisfied by p, see also Frikha [Fril7] for a proof based
on probabilistic arguments.

Under the additional assumption that x +— b(t,x, u) is n-Holder continuous, it turns out that z —
p(p, 8,t, 2, 2) is two times continuously differentiable. Moreover, the following pointwise Gaussian esti-
mates for its derivatives hold: for any S € [0,7), there exist some positive constants C' := C (T, b, a, A\, 1),
Cg := C(T,b,a,\,n, B) and ¢ := ¢(A) such that for any (11, 7,y,2) € Pa(RY)x (R)3 andany 0 < s <t < T

(39) bl t.2,2)] € g glelt = 5). 2 =x). m=0.1.2

and
z—ylf

(B10) 19290052 2) = plh 59,1 < Cor T [ofelt =92 =)+ glet =92 )]
o

We refer again to [Fri64] for a proof of the above estimates. Let us point out that the differentiability
of the map [0,2) x P2(R%) > (s, 1) = p(u, s,t,z,2) is the main question that we want to address here.

A similar representation in infinite series is also valid for the density of the random variable X, ’5,
denoted by z — p(u, s,t, z), but we will not use it explicitly. Actually, we will make use of the following
key relation

(3.11) p(p, s, t,2) = /]Rd o, s, t,x, z) u(dx).

The representation in infinite series of p(y, s,t, z) is thus obtained by integrating x — p(y, s,t,x, z)
against the initial distribution p, in other w