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Cloud point extraction with a polyethoxylated alcohol
(Oxo-C10E4) is used to separate five α-amino acids: alanine, valine,
leucine, isoleucine, and phenylalanine (0.75 wt.% in water), and
their extraction efficiencies are compared. The variables affecting
phase separation and extraction (wt.% surfactant and equilibrium
temperature) are optimized using experimental design. The four
responses are: percentage of solute extracted (E), residual concen-
trations of solute (amino acid) and surfactant in the dilute phase,
and volume fraction of coacervate at equilibrium. E increases
with surfactant concentration and amino acid hydrophobicity in
the following order: alanin < valin < leucin < isoleucine <
phenylalanine, with respective maximum values: 73, 74, 76, 78.5,
and 95%, and decreases with a temperature rise. It also makes
sense that aspartic and glutamic acids, much more hydrophilic,
are poorly extracted (E ∼ 10%). The trend observed is consistent
with water/n-octanol partition coefficient (Log P) of amino acids
in pure water. A more detailed study is presented for alanine and
phenylalanine. Addition of sodium sulphate or cetylammonium
bromide greatly raises extraction rates.

Keywords α-amino acids; cloud point; coacervate; extraction; non-
ionicsurfactant

INTRODUCTION

The extraction and separation of organic compounds have

become of great interest as biotechnological or industrial pro-

cesses (1, 2). In general, substances produced in aqueous

media should be separated from impurities or by-products.

Data research projects of the EU confirmed antibiotics and
other pharmaceuticals are present in sewage and natural waters.
In some cases, metabolites were also found in drinking water
sources. The removal rate of individual compounds through a
waste water treatment is variable, and some standard removal
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techniques cannot eliminate all the compounds (3). In partic-
ular, amino acid separation and determination have become
a very important objective in analytical chemistry, since their
metabolites are present in a variety of biological, industrial
and environmental samples (4). Several methods have been
studied as an alternative to the degradation of amino acids
(5−10) and various techniques are used for this purpose, such
as liquid membranes, ion exchange, chromatography, filtra-
tion, evaporation, reverse osmosis, or electrodialysis (3−11).
The development of new methods for water treatment is still
in progress. Conventional technologies for water disinfection
such as chlorination and ozonation, may lead to the formation
of harmful substances and by-products (trihalomethanes, for
example) (9−12). In the past decades, the interest in the use
of aqueous micellar solutions in the field of separation science
(13), especially using polyethoxylated alcohols as biodegrad-
able nonionic surfactants, has been growing. The present work
concerns the study of cloud point extraction (CPE) as a method
of recovery and valorization of several α-amino acids from
aqueous solutions, using the powerful solubilizing property of
nonionic surfactant aqueous solutions. In fact, above a cloud
point curve, representing a line of lower consolution tempera-
tures, Tc, aqueous solutions of most polyethoxylated nonionics
(or polyethylene glycols in the presence of electrolyte) form
two phases: a surfactant-rich coacervate and a dilute phase (14,
15). In the latter, surfactant concentration is close to its critical
micelle concentration (cmc). Therefore, thanks to micellar sol-
ubilization, the solute initially present in the solution may be
favorably extracted into the surfactant-rich phase after increas-
ing the temperature above Tc. So far, many compounds were
extracted using cloud point extraction (16): metal ions (17,
18), organic compounds (19–26), and proteins (27, 28). Amino
acid separation and recovery, rather than degradation, may be
relevant, e.g., in wastewater of amino acid producing indus-
try. To the best of our knowledge, amino acid extraction has
been attempted with reverse micelle system (29) and with aque-
ous two-phase extraction (PEG-salt system), (30) but not with
nonionic surfactant systems.



MATERIALS AND METHODS

Materials

The surfactant used, a polyethoxylated alcohol: Oxo-C10E4,
having the average formula C10H21 (OCH2-CH2)4OH, with
a cloud point (Tc= 20◦C at 1 wt.% in water) was a gift
from SEPPIC (Castres, France). The amino acids: aspartic
and glutamic acids, alanine, valine, leucine, isoleucine, and
phenylalanine, were supplied by Sigma-Aldrich.

Ninhydrin, dimethylsulfoxide (DMSO), sodium acetate,
Na2SO4, and cetyltrimethylammonium bromide (CTAB) were
purchased from Prolabo.

Methods

Cloud Point Measurement and Extraction Experiments

The cloud points were measured with a Mettler FP
900 device, consisting of an oven (FP900), a control unit, and
several measuring cells. The cell temperature measurement was
performed with a highly accurate Pt100sensor (probe), inte-
grated in the body of the furnace. In the lower part of the
cloud point measuring cell, PF81C, an optical fiber illuminates
the three specimens. The light passing through the specimens
is converted by three photoelectric cells into electrical signals
proportional to the transmitted intensity. The light transmission
is measured continuously while the cell temperature increases
linearly at the heating rate chosen. The cloud point is the tem-
perature at which the solution becomes cloudy, as a result of the
appearance of a second phase.

For the extraction tests, 10 mL of solution containing the
surfactant (1-6 wt.%) and the solute (amino acid at 0.75 wt.%)
in deionized water were heated in a precise oven for 2 h. The
volumes of both phases were then noted. A small amount of the
dilute phase was taken using a syringe and analyzed.

Analysis

Surfactant (Oxo-C10E4) determination in the dilute phase
was achieved by reverse phase high performance liquid chro-
matography (HPLC) under the following conditions: RP18 col-
umn (ODS), 95 bar pressure, eluent H2O/CH3CN/CH3OH,
7.5/60/32.5 (vol), flow rate 1 mL/min, light scattering detec-
tor (LSD31, EUROSEP Instruments). Three parameters allow
optimizing the sensitivity of the detector: the air flow rate, or
pressure (1 bar) in the nebulizer, the temperature of the evapo-
rator (55◦C), and the gain of the photomultiplier (400 mV).

The amino acids were determined with freshly prepared
ninhydrin reagent, consisting of 10 mL of sodium acetate buffer
solution at pH = 5.4, 0.8 g of ninhydrin (2,2-dihydroxyindan-
1,3-dione), 0.12 g of hydrindantin (2,2′-dihydroxy-1H,1′ H-
2,2′-biindene-1,1′,3,3′(2H,2′ H)-tetrone), and 30 mL of DMSO
(31). For the assay, 1.0 mL of ninhydrin reagent was mixed
with 1.0 mL of the bottom phase (dilute phase) of the amino
acid extraction test in a capped vial. The vial was shaken by
hand, and then transferred to a water bath at 100◦C for 30 min
to allow complete reaction. After cooling to room temperature,

the sample was introduced into a cuvette and the absorbance
at 570 nm (Ruhemann purple), measured with a UV–vis spec-
trophotometer (SAFAS type MC2, photometric accuracy of ±

0.002 absorbance unit), was compared with that of a blank
sample (amino acid replaced with deionized water).

RESULTS AND DISCUSSION

Binary and Pseudo-Binary Phase Diagrams

In general, organic solubilizates can interact with the
surfactant polar head group or with its hydrophobic chain in
the micelle, thus modifying surfactant cloud point according
to their chemical nature (19–26, 28, 32–35). As an exam-
ple, Fig. 1 shows the effect of alanine, phenylalanine, aspartic
acid, and glutamic acid on the cloud point curve of Oxo-
C10E4. A significant interaction between the first two, rather
“hydrophobic” amino acids and the surfactant induces a cloud
point increase, corresponding to an enhanced surfactant sol-
ubility in water (28, 32, 33). Consistently, the hydrophilic
aspartic and glutamic acids cause a weak depression of the
cloud point. Therefore, the cloud point change of the surfactant
in the presence of amino acid is related to solute hydropho-
bicity (Fig. 1 and Table 1). Furthermore, even at very low
concentration (0.1 wt.%), the presence of CTAB significantly
enhances the cloud point of Oxo-C10E4 (Fig. 2). In fact, the
incorporation of ionic surfactant into the nonionic micelles
causes electrostatic repulsion between the micelles, thus hin-
dering coacervate formation and raising the cloud point (33,
34). On the contrary, the cloud point lowering of Oxo-C10E4

by sodium sulphate (Fig. 2) is due to the salting-out of the
surfactant induced by the solvated electrolyte. Indeed, as a well-
known structure maker (36), the sulphate ion induces hydrogen
bond weakening between surfactant ethylene oxide units and
water molecules, making them less available to hydrate micellar
aggregates (34, 35). Since Na+ does not form complexes with
polyethoxylated surfactants, it also salts the surfactant out by
dehydration (34).
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FIG. 1. Effect of amino acids on the cloud point curve of Oxo-C10E4.



TABLE 1
Extraction extent E (%) of amino acids using 5 wt. % Oxo-C10E4

Amino acid
Hydropathy
index (40)

Water solubility
(g/L) (42) a Log P (37)

E (%) at 5 wt.% of
Oxo-C10E4.

Extraction
temperature (◦C)

Alanine 1.8 166.9 −2.85 73 54
Valine 4.2 88.5 −2.26 74 55
Leucine 3.8 23.8 −1.52 76 54
Isoleucine 4.5 34.2 −1.70 78.5 54
Phenylalanine 2.8 27.9 −1.38 95 54
Glutamicacid −3.5 8.64 −3.69 11 20
Aspartic acid −3.5 7.78 −3.89 10 20

at iso-electric pH and 25◦C (41).
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Extraction Efficiency

Effect of pH

The presence of both basic and acidic functional groups
in amino acid molecules induces an internal transfer of a
hydrogen ion from the -COOH group to the -NH2 group
to give a zwitterion (Eq. 1), so that according to the pH
value, the predominant species is cationic (in acidic medium),
zwitterionic (between the two pKa values) or anionic (in
alkaline medium). Amino acids show a minimum aqueous
solubility at their isolectric point (pHi), that is, the pH
value at which the molecule bears no net electric charge.

At the isoelectric pointIn acidic medium In alkaline medium (1)

Now, since ionic species are more soluble in water, they will not
be readily solubilized in nonionic micelles. Consequently, only

a small amount of ionized solute can be extracted and it makes
sense that, as shown in Fig. 3, the maximum extraction ratio
(E) is located in the pH region between the two pKa values of
the amino acids and practically constant for pH = pHi ± 2 (for
alanine, pK1 = 2.34, pK2 = 9.69, pHi = 6; for phenylalanine
pK1 = 1.83, pK2 = 9.13, pHi = 5.5) (41).

This also entails that pH is the key parameter for surfactant
regeneration. Several works have been done on surfactant
recovery and recycling after CPE, by a simple pH control
(19–22). This requires two steps: back-extraction of acidic or
alkaline solutes from coacervate and regeneration of the neutral
coacervate.

Effect of Amino Acid Structure

The extraction percentages obtained for seven α-amino acids
(0.75 wt.% in pure water) with Oxo-C10E4 aqueous mixtures
above their cloud point are illustrated in Fig. 4 and the results
corresponding to the 5 wt.% mixtures are reported in Table 1.
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They show rather high values (in excess of 70%) for the five
“hydrophobic” compounds and very low ones (not exceed-
ing 11%) for the two diacids, more hydrophilic, although less
water-soluble than the other five. According to log P values, the
more hydrophobic the amino acid is, the higher the extraction
extent. Therefore, it appears that, at least qualitatively, log P is
a fair descriptor of the behavior of those compounds in CPE;
anyway, much better than aqueous solubility or the hydropathy
index.

Effect of Surfactant Concentration and Temperature on the

Extraction Parameters: Modeling of Extraction Results

The results of amino acid extraction from their 7.5 g/L
(0.75 wt.%) aqueous solutions with Oxo-C10E4, according to
two variables: wt.% surfactant (Xt), and temperature (T), are
expressed by four responses (Y): percentage of extracted solute
(E), residual concentrations of solute (Xs,w) and surfactant
(Xt,w) in the dilute phase, and coacervate volume fraction at
equilibrium (φC) (19–26). Process optimization implies the
maximization of E and the minimization of Xs,w, Xt,w, and
φC. For each parameter determined by considering a central
composite design (38), the results were analyzed by an empir-
ical fitting. In this method, the experimental values are used to
determine the polynomial model constants to be adjusted. The
models were checked by plotting computed data against experi-
mental results. The quadratic correlation was chosen to give the
slope and the regression coefficient (R2) the closest to unity.

Y = a0 + a1 Xt + a2T + a12XtT + a11Xt
2 + a22T2 (2)

Such a correlation allows building the response surface.
For alanine and phenylalanine, the quadratic equations for

the properties (E, Xs,w, Xt.w, and φC), whose reliability was
checked, are as follows:

E(alanine) = 326.22 + 32.96 Xt − 11.68 T − 0.46 XtT

− 0.67 Xt
2 + 0.12 T2

(3)

E(phenylalanine) = 226.84 + 3.08 Xt − 5.13 T + 0.21 XtT

− 0.99 Xt
2 + 0.04 T2

(4)

Xs.w(alanine) = −149.25 − 1.00 Xt + 6.25T − 0.06T2 (5)

Xs.w(phenylalanine) = − 0.12 + 0.10 Xt + 0.08 T

− 0.02 XtT + 0.06 Xt
2

(6)

φc(alanine) = −0.46 + 0.17 Xt + 0.05T (7)

φc(phenylalanine) = 4.12 + 1.32Xt − 0.16T − 0.02XtT − 0.01 X2

(8)

Xt.w(alanine) = 41.78 + 4.40 Xt − 1.28 T − 0.098XtT

+ 0.18Xt
2 + 0.01T2

(9)

Xt.w(phenylalanine) = 30.21 + 4.95 Xt − 0.74 T

− 0.09 XtT + 0.09 Xt
2 + 0.01 T2

(10)

Extraction Efficiency

Figure 5 represents the three-dimensional isoresponse
curves of the studied properties smoothed by the quadratic
model (Eqs. 3 and 4). As already shown in Fig. 4, the extent
of amino acid extraction (E) increases with Xt, but only weakly
beyond 5%. At 5 wt.% Oxo-C10E4, E reaches 94% and 71%
for phenylalanine and alanine, respectively. By increasing the
hydrophobic character of the amino acid, the presence of a ben-
zene ring in phenylalanine has a positive effect on amino acid
solubilization in coacervate micelles. On the other hand, a tem-
perature rise has a slight effect of amino acid extraction. This
trend has been observed in other extraction systems (20–26).
The most favorable areas for cloud point are thus located in the
darker color zones in Fig. 5.

Residual Concentration of Amino Acid (Xs.w)

Figure 6 represents the three-dimensional isoresponse
curves of the studied property (Xs.w), smoothed by the quadratic
model (Eqs. 5 and 6). The concentration of amino acid in
the dilute phase, Xs.w, decreases as Xt increases, but varies
only slightly with a temperature rise. Hence, the first con-
tact between surfactant and effluent solutions allows 4- and



FIG. 5. Three-dimensional isoresponse curves smoothed by a quadratic model, E = f(Xt. T), calculated by the quadratic model (Eqs. 2 and 3).

FIG. 6. Three-dimensional isoresponse curves smoothed by a quadratic model, Xs.w= f(Xt. T), calculated by the quadratic model (Eqs. 4 and 5).

14-fold alanine and phenylalanine concentration reductions,
respectively (Table 2).

Residual Concentration of Surfactant (Xt.W)

The behavior of Xt.w vs. Xt and T is shown in Fig. 7
(smoothed by the quadratic model Eqs. 7 and 8). The resid-
ual concentration of surfactant is low at high temperature and
low surfactant concentration. These results are in good agree-
ment with previous studies with other polyethoxylated alcohols
(21−26). Xt.w is a very important parameter. A high loss of
surfactant in the dilute phase can compromise process reliabil-
ity. Indeed, the presence of another contaminant in the dilute
phase is sufficient to make the process useless. Although Oxo-
C9-15E2-10compounds are readily biodegradable and do not give
rise to bioaccumulation, they are considered as toxic to fish
(43), so that it would be detrimental to release and squander
them in the dilute phase.

Volume Fraction of Coacervate

In order to increase the concentration factor of solute, a min-
imal volume fraction of coacervate (φc) should be obtained.
In fact, according to Fig. 8, and as predicted by Fig. 1, the
smoothed value of φc using Eqs. (9) and (10) is low at high
temperature and low surfactant concentration. Now, higher
surfactant concentrations lead to higher E and lower Xs,w val-
ues. So, the optimization of the process needs to compromise
over the four studied parameters E, Xs,w, Xt.w, and φc (20–26).
On the basis of this finding, optimal values of φc (i.e., 0.2) were
obtained using 4 wt.% Dowfax 20B10 and 4 wt.% Oxo-C10E4

at 50◦C and 40◦C, respectively.

Effect of Salt on the Rate of Extraction (E)

In general, electrolyte addition induces coacervate volume
fraction reduction due to the cloud point lowering of the
surfactant solution (22). The presence of Na2SO4 decreases the



TABLE 2
Some experimental results of the extraction parameters (E, Xs,w, Xt,w, φC and Xs,0/Xs,w)

Xs,w Xt,w

[XT (wt.%) , T(◦C)] E (%) (mg/L) (wt.%) φC Xs,0/ Xs,w
(a)

Alanine R2=0.984 R2=0.982 R2=0.978 R2=0.959
[2, 42] 68.332 13.006 0.264 3.158
[2, 45] 66.624 2.503 12.562 0.214 2.996
[2, 48] 63.012 2.774 11.769 0.114 2.704
[3, 45] 72.563 2.058 13.236 0.302 3.645
[3, 48] 69.823 2.263 11.893 0.224 3.314
[4, 51] 71.095 2.025 12.456 0.101 3.703

Phenylalanine R2=0.979 R2=0.989 R2=0.985 R2=0.942
[2, 48] 81.624 1.378 11.145 0.241 5.442
[2, 50] 80.542 1.459 10.896 0.125 5.139
[2, 52] 78.893 1.583 10.025 0.035 4.738
[3, 50] 88.013 0.899 13.112 0.312 8.342
[3, 52] 87.236 0.957 11.679 0.100 7.835
[4, 54] 93.123 0.515 11.892 0.012 14.541

Xs,0= 7.5g/L (initial concentration of amino acid).

FIG. 7. Three-dimensional isoresponse curves smoothed by a quadratic model, Xt.w=f(Xt. T), calculated by the quadratic model (Eqs. 6 and 7).

cloud point (Tc) of Oxo-C10E4 (Fig. 2) and increases the values
of (T−Tc). Therefore, in the presence of salts, at a given temper-
ature, smaller coacervate volumes with high surfactant concen-
tration were obtained (results not shown). Inducing a decrease
of amino acid aqueous solubility by a salting-out phenomenon,
the presence of the electrolyte increases the extraction extent
(E) of amino acid (Fig. 9). According to Saito and Shinoda
(39), the addition of electrolyte to nonionic surfactant solutions
increases their hydrocarbon solubilization capacity, by lower-
ing surfactant cmc, so that, at a given surfactant concentration,
more micelles are present.

Effect of Cetyltrimethylammonium Bromide (CTAB) on the

Extraction Yield (E): Extraction with Mixed Micelles

When nonionic and ionic surfactants co-exist in an envi-
ronment, both surfactant species can interact and provide
additional beneficial properties to the system. In most cases,
mixed micelles form, that can lead to synergistic effects (44).
Figure 10 shows the synergistic effect of the Oxo-C10E4/CTAB
system toward CPE of alanine and phenylalanine, that is,
the extraction extent (E) is highly improved with the mixed
micelle system compared with that obtained using neutral
micelle system (at 0 wt.% of CTAB). In pure aqueous solution



FIG. 8. Three-dimensional isoresponse curves smoothed by a quadratic model, φC = f(Xt. T), calculated by the quadratic model (Eqs. 8 and 9).
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the dipolar ion (zwitterionic) form (−OOC-RCH-NH3
+) of

the amino acid predominates. Thus, the cationic surfactant
(CTAB) reinforces micellar solubilization thanks to Coulombic
interactions.

CONCLUSIONS

Coacervate extraction (CPE) was used to separate amino
acids from water. The best compromise between the parameters
governing the extraction effectiveness (surfactant concentra-
tion and temperature) was found using a suitable experimental
design and three-dimensional empirical curve fitting. In pure
water, extractions at temperatures ranging between 43◦C and
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55◦C yielded extraction extents between 10 and 95%, depend-
ing on amino acid structure. CPE of amino acids is governed by
their hydrophobicity. These phenomena can have an application
in separation of hydrophobic and hydrophilic amino acids. Low
surfactant concentration (≤ 4 wt.%) should be used to have a
smaller volume fraction of coacervate. Na2SO4, as a salting-out
electrolyte, and CTAB, as a mixed micelle forming surfactant,
increased the extraction extent of amino acids. The extraction
of the solute was high within the pH range situated between
the two pKa values of amino acids. Thus, pH is a key param-
eter for surfactant recovery and recycling in CPE of amino
acids.



NOMENCLATURE

Symbols

cmc Critical micelle concentration
E Extraction efficiency (%)

Log P Log Ko/w (Ko/w: octanol/water partition coefficient)
T Temperature (◦C)

Tc Clouding temperature or cloud point (◦C)
Xs,w Residual concentration of amino acid (g/L)

Xt Residual concentration of surfactant (g/L)
Xt,w Initial surfactant concentration (g/L)

φc Volume fraction of coacervate
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