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Cloud Point Extraction of α-Amino Acids
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Cloud point extraction with a polyethoxylated alcohol (Oxo-C 10 E 4 ) is used to separate five α-amino acids: alanine, valine, leucine, isoleucine, and phenylalanine (0.75 wt.% in water), and their extraction efficiencies are compared. The variables affecting phase separation and extraction (wt.% surfactant and equilibrium temperature) are optimized using experimental design. The four responses are: percentage of solute extracted (E), residual concentrations of solute (amino acid) and surfactant in the dilute phase, and volume fraction of coacervate at equilibrium. E increases with surfactant concentration and amino acid hydrophobicity in the following order: alanin < valin < leucin < isoleucine < phenylalanine, with respective maximum values: 73, 74, 76, 78.5, and 95%, and decreases with a temperature rise. It also makes sense that aspartic and glutamic acids, much more hydrophilic, are poorly extracted (E ∼ 10%). The trend observed is consistent with water/n-octanol partition coefficient (Log P) of amino acids in pure water. A more detailed study is presented for alanine and phenylalanine. Addition of sodium sulphate or cetylammonium bromide greatly raises extraction rates.

INTRODUCTION

The extraction and separation of organic compounds have become of great interest as biotechnological or industrial processes [START_REF] Patnaik | Liquid emulsion membranes: principles, problems and applications in fermentation processes[END_REF][START_REF] Hong | Concentration of amino acids by a liquid emulsion membrane with a cationic extractant[END_REF]. In general, substances produced in aqueous media should be separated from impurities or by-products. Data research projects of the EU confirmed antibiotics and other pharmaceuticals are present in sewage and natural waters. In some cases, metabolites were also found in drinking water sources. The removal rate of individual compounds through a waste water treatment is variable, and some standard removal techniques cannot eliminate all the compounds [START_REF] Dzygiel | Extraction of amino acids with emulsion liquid membranes using industrial surfactants and lecithin as stabilisers[END_REF]. In particular, amino acid separation and determination have become a very important objective in analytical chemistry, since their metabolites are present in a variety of biological, industrial and environmental samples (4). Several methods have been studied as an alternative to the degradation of amino acids [START_REF] Juang | Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes[END_REF][START_REF] Teramoto | Extraction of amino acids by emulsion liquid membranes containing di (2-ethylhexyl) phosphoric acid as a carrier biotechnology; coupled, facilitated transport diffusion[END_REF][START_REF] Xun | Amino acid extraction with AOT reverse micelle[END_REF][START_REF] Elsellami | Coupling process between solid-liquid extraction of amino acids by calixarenes and photocatalytic degradation[END_REF][START_REF] Lin | Simultaneous reactive extraction separation of amino acids from water with D2EHPA in hollow fiber contactors[END_REF][START_REF] Sereewatthanawut | Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis[END_REF] and various techniques are used for this purpose, such as liquid membranes, ion exchange, chromatography, filtration, evaporation, reverse osmosis, or electrodialysis [START_REF] Dzygiel | Extraction of amino acids with emulsion liquid membranes using industrial surfactants and lecithin as stabilisers[END_REF][START_REF] Wieczorek | Extraction of dansylated amino acids using the supported liquid membrane technique[END_REF][START_REF] Juang | Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes[END_REF][START_REF] Teramoto | Extraction of amino acids by emulsion liquid membranes containing di (2-ethylhexyl) phosphoric acid as a carrier biotechnology; coupled, facilitated transport diffusion[END_REF][START_REF] Xun | Amino acid extraction with AOT reverse micelle[END_REF][START_REF] Elsellami | Coupling process between solid-liquid extraction of amino acids by calixarenes and photocatalytic degradation[END_REF][START_REF] Lin | Simultaneous reactive extraction separation of amino acids from water with D2EHPA in hollow fiber contactors[END_REF][START_REF] Sereewatthanawut | Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis[END_REF][START_REF] Eyal | Industrial separation of carboxylic and amino acids by liquid membranes: Applicability, process considerations, and potential advantage[END_REF]. The development of new methods for water treatment is still in progress. Conventional technologies for water disinfection such as chlorination and ozonation, may lead to the formation of harmful substances and by-products (trihalomethanes, for example) [START_REF] Lin | Simultaneous reactive extraction separation of amino acids from water with D2EHPA in hollow fiber contactors[END_REF][START_REF] Sereewatthanawut | Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis[END_REF][START_REF] Eyal | Industrial separation of carboxylic and amino acids by liquid membranes: Applicability, process considerations, and potential advantage[END_REF][START_REF] Ollis | Photocatalytic purification and remediation of contaminated air and water[END_REF]. In the past decades, the interest in the use of aqueous micellar solutions in the field of separation science [START_REF] Gullickson | Liquid-coacervate extraction[END_REF], especially using polyethoxylated alcohols as biodegradable nonionic surfactants, has been growing. The present work concerns the study of cloud point extraction (CPE) as a method of recovery and valorization of several α-amino acids from aqueous solutions, using the powerful solubilizing property of nonionic surfactant aqueous solutions. In fact, above a cloud point curve, representing a line of lower consolution temperatures, T c , aqueous solutions of most polyethoxylated nonionics (or polyethylene glycols in the presence of electrolyte) form two phases: a surfactant-rich coacervate and a dilute phase [START_REF] Kimchuwanit | Use of a micellar-rich coacervate phase to extract trichloroethylene from water[END_REF][START_REF] Hinze | A critical review of surfactant-mediated phase separations (cloud-point extractions): Theory and applications[END_REF]. In the latter, surfactant concentration is close to its critical micelle concentration (cmc). Therefore, thanks to micellar solubilization, the solute initially present in the solution may be favorably extracted into the surfactant-rich phase after increasing the temperature above T c . So far, many compounds were extracted using cloud point extraction [START_REF] Quina | Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach[END_REF]: metal ions [START_REF] Sun | Cloud point extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr (III) in human serum samples[END_REF][START_REF] Xiang | Selective cloud point extraction for the determination of cadmium in food samples by flame atomic absorption spectrometry[END_REF], organic compounds [START_REF] Akita | Cloud-point extraction of organic compounds from aqueous solutions with nonionic surfactant[END_REF][START_REF] De | Organic solvent-free extraction of phenol through liquid-coacervate systems[END_REF][START_REF] Haddou | Purification of effluents by two-aqueous phase extraction[END_REF][START_REF] Haddou | Cloud point extraction of phenol and benzyl alcohol from aqueous stream[END_REF][START_REF] Haddou | Separation of neutral red and methylene blue from wastewater using two aqueous phase extraction methods[END_REF][START_REF] Talbi | Simultaneous elimination of dissolved and dispersed pollutants from cutting oil wastes using two aqueous phase extraction methods[END_REF][START_REF] Haddou | Cloud Point Extraction of Orange II and Orange G using neutral and mixed micelles: Comparative approach using experimental design[END_REF][START_REF] Ghouas | Extraction of humic acid by coacervate: Investigation of direct and back processes[END_REF], and proteins [START_REF] Bordier | Phase separation of integral membrane proteins in Triton X-114 solution[END_REF][START_REF] Tani | Micelle-mediated extraction[END_REF]. Amino acid separation and recovery, rather than degradation, may be relevant, e.g., in wastewater of amino acid producing industry. To the best of our knowledge, amino acid extraction has been attempted with reverse micelle system [START_REF] Aydogan | Extraction of Laspartic acid with reverse micelle system[END_REF] and with aqueous two-phase extraction (PEG-salt system), [START_REF] Chu | Extraction of amino acids by aqueous tow-phase partition[END_REF] but not with nonionic surfactant systems.

MATERIALS AND METHODS

Materials

The surfactant used, a polyethoxylated alcohol: Oxo-C 10 E 4 , having the average formula C 10 H 21 (OCH 2-CH 2 ) 4 OH, with a cloud point (T c = 20 • C at 1 wt.% in water) was a gift from SEPPIC (Castres, France). The amino acids: aspartic and glutamic acids, alanine, valine, leucine, isoleucine, and phenylalanine, were supplied by Sigma-Aldrich.

Ninhydrin, dimethylsulfoxide (DMSO), sodium acetate, Na 2 SO 4 , and cetyltrimethylammonium bromide (CTAB) were purchased from Prolabo.

Methods

Cloud Point Measurement and Extraction Experiments

The cloud points were measured with a Mettler FP 900 device, consisting of an oven (FP900), a control unit, and several measuring cells. The cell temperature measurement was performed with a highly accurate Pt100sensor (probe), integrated in the body of the furnace. In the lower part of the cloud point measuring cell, PF81C, an optical fiber illuminates the three specimens. The light passing through the specimens is converted by three photoelectric cells into electrical signals proportional to the transmitted intensity. The light transmission is measured continuously while the cell temperature increases linearly at the heating rate chosen. The cloud point is the temperature at which the solution becomes cloudy, as a result of the appearance of a second phase.

For the extraction tests, 10 mL of solution containing the surfactant (1-6 wt.%) and the solute (amino acid at 0.75 wt.%) in deionized water were heated in a precise oven for 2 h. The volumes of both phases were then noted. A small amount of the dilute phase was taken using a syringe and analyzed.

Analysis

Surfactant (Oxo-C 10 E 4 ) determination in the dilute phase was achieved by reverse phase high performance liquid chromatography (HPLC) under the following conditions: RP18 column (ODS), 95 bar pressure, eluent H 2 O/CH 3 CN/CH 3 OH, 7.5/60/32.5 (vol), flow rate 1 mL/min, light scattering detector (LSD31, EUROSEP Instruments). Three parameters allow optimizing the sensitivity of the detector: the air flow rate, or pressure (1 bar) in the nebulizer, the temperature of the evaporator (55 • C), and the gain of the photomultiplier (400 mV).

The amino acids were determined with freshly prepared ninhydrin reagent, consisting of 10 mL of sodium acetate buffer solution at pH = 5.4, 0.8 g of ninhydrin (2,2-dihydroxyindan-1,3-dione), 0.12 g of hydrindantin (2,2 ′ -dihydroxy-1H,1 ′ H-2,2 ′ -biindene-1,1 ′ ,3,3 ′ (2H,2 ′ H)-tetrone), and 30 mL of DMSO [START_REF] Leane | Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms[END_REF]. For the assay, 1.0 mL of ninhydrin reagent was mixed with 1.0 mL of the bottom phase (dilute phase) of the amino acid extraction test in a capped vial. The vial was shaken by hand, and then transferred to a water bath at 100 • C for 30 min to allow complete reaction. After cooling to room temperature, the sample was introduced into a cuvette and the absorbance at 570 nm (Ruhemann purple), measured with a UV-vis spectrophotometer (SAFAS type MC2, photometric accuracy of ± 0.002 absorbance unit), was compared with that of a blank sample (amino acid replaced with deionized water).

RESULTS AND DISCUSSION Binary and Pseudo-Binary Phase Diagrams

In general, organic solubilizates can interact with the surfactant polar head group or with its hydrophobic chain in the micelle, thus modifying surfactant cloud point according to their chemical nature (19-26, 28, 32-35). As an example, Fig. 1 shows the effect of alanine, phenylalanine, aspartic acid, and glutamic acid on the cloud point curve of Oxo-C 10 E 4 . A significant interaction between the first two, rather "hydrophobic" amino acids and the surfactant induces a cloud point increase, corresponding to an enhanced surfactant solubility in water [START_REF] Tani | Micelle-mediated extraction[END_REF][START_REF] Sharma | Study of the cloud point of C 12 En nonionic surfactants: Effect of additives[END_REF][START_REF] Sadaghiania | Clouding of a nonionic surfactant: The effect of added surfactants on the cloud point[END_REF]. Consistently, the hydrophilic aspartic and glutamic acids cause a weak depression of the cloud point. Therefore, the cloud point change of the surfactant in the presence of amino acid is related to solute hydrophobicity (Fig. 1 and Table 1). Furthermore, even at very low concentration (0.1 wt.%), the presence of CTAB significantly enhances the cloud point of Oxo-C 10 E 4 (Fig. 2). In fact, the incorporation of ionic surfactant into the nonionic micelles causes electrostatic repulsion between the micelles, thus hindering coacervate formation and raising the cloud point [START_REF] Sadaghiania | Clouding of a nonionic surfactant: The effect of added surfactants on the cloud point[END_REF][START_REF] Schott | Effect of inorganic additives on solutions of nonionic surfactants: VII. Cloud point shift values of individual ions[END_REF]. On the contrary, the cloud point lowering of Oxo-C 10 E 4 by sodium sulphate (Fig. 2) is due to the salting-out of the surfactant induced by the solvated electrolyte. Indeed, as a wellknown structure maker [START_REF] Franks | Water[END_REF], the sulphate ion induces hydrogen bond weakening between surfactant ethylene oxide units and water molecules, making them less available to hydrate micellar aggregates [START_REF] Schott | Effect of inorganic additives on solutions of nonionic surfactants: VII. Cloud point shift values of individual ions[END_REF][START_REF] Schott | Effect of inorganic additives on solutions of nonionic surfactants: X. micellar properties[END_REF]. Since Na + does not form complexes with polyethoxylated surfactants, it also salts the surfactant out by dehydration [START_REF] Schott | Effect of inorganic additives on solutions of nonionic surfactants: VII. Cloud point shift values of individual ions[END_REF]. 

Extraction Efficiency Effect of pH

The presence of both basic and acidic functional groups in amino acid molecules induces an internal transfer of a hydrogen ion from the -COOH group to the -NH 2 group to give a zwitterion (Eq. 1), so that according to the pH value, the predominant species is cationic (in acidic medium), zwitterionic (between the two pK a values) or anionic (in alkaline medium). Amino acids show a minimum aqueous solubility at their isolectric point (pH i ), that is, the pH value at which the molecule bears no net electric charge.

At the isoelectric point In acidic medium

In alkaline medium [START_REF] Patnaik | Liquid emulsion membranes: principles, problems and applications in fermentation processes[END_REF] Now, since ionic species are more soluble in water, they will not be readily solubilized in nonionic micelles. Consequently, only a small amount of ionized solute can be extracted and it makes sense that, as shown in Fig. 3, the maximum extraction ratio (E) is located in the pH region between the two pK a values of the amino acids and practically constant for pH = pH i ± 2 (for alanine, pK 1 = 2.34, pK 2 = 9.69, pH i = 6; for phenylalanine pK 1 = 1.83, pK 2 = 9.13, pH i = 5.5) [START_REF] Budavari | The Merck Index[END_REF]. This also entails that pH is the key parameter for surfactant regeneration. Several works have been done on surfactant recovery and recycling after CPE, by a simple pH control [START_REF] Akita | Cloud-point extraction of organic compounds from aqueous solutions with nonionic surfactant[END_REF][START_REF] De | Organic solvent-free extraction of phenol through liquid-coacervate systems[END_REF][START_REF] Haddou | Purification of effluents by two-aqueous phase extraction[END_REF][START_REF] Haddou | Cloud point extraction of phenol and benzyl alcohol from aqueous stream[END_REF]. This requires two steps: back-extraction of acidic or alkaline solutes from coacervate and regeneration of the neutral coacervate.

Effect of Amino Acid Structure

The extraction percentages obtained for seven α-amino acids (0.75 wt.% in pure water) with Oxo-C 10 E 4 aqueous mixtures above their cloud point are illustrated in Fig. 4 and the results corresponding to the 5 wt.% mixtures are reported in Table 1. They show rather high values (in excess of 70%) for the five "hydrophobic" compounds and very low ones (not exceeding 11%) for the two diacids, more hydrophilic, although less water-soluble than the other five. According to log P values, the more hydrophobic the amino acid is, the higher the extraction extent. Therefore, it appears that, at least qualitatively, log P is a fair descriptor of the behavior of those compounds in CPE; anyway, much better than aqueous solubility or the hydropathy index.

Effect of Surfactant Concentration and Temperature on the Extraction Parameters: Modeling of Extraction Results

The results of amino acid extraction from their 7.5 g/L (0.75 wt.%) aqueous solutions with Oxo-C 10 E 4 , according to two variables: wt.% surfactant (X t ), and temperature (T), are expressed by four responses (Y): percentage of extracted solute (E), residual concentrations of solute (X s,w ) and surfactant (X t,w ) in the dilute phase, and coacervate volume fraction at equilibrium (φ C ) [START_REF] Akita | Cloud-point extraction of organic compounds from aqueous solutions with nonionic surfactant[END_REF][START_REF] De | Organic solvent-free extraction of phenol through liquid-coacervate systems[END_REF][START_REF] Haddou | Purification of effluents by two-aqueous phase extraction[END_REF][START_REF] Haddou | Cloud point extraction of phenol and benzyl alcohol from aqueous stream[END_REF][START_REF] Haddou | Separation of neutral red and methylene blue from wastewater using two aqueous phase extraction methods[END_REF][START_REF] Talbi | Simultaneous elimination of dissolved and dispersed pollutants from cutting oil wastes using two aqueous phase extraction methods[END_REF][START_REF] Haddou | Cloud Point Extraction of Orange II and Orange G using neutral and mixed micelles: Comparative approach using experimental design[END_REF][START_REF] Ghouas | Extraction of humic acid by coacervate: Investigation of direct and back processes[END_REF]. Process optimization implies the maximization of E and the minimization of X s,w , X t,w , and φ C . For each parameter determined by considering a central composite design [START_REF] Box | Empirical Model-Building and Response Surfaces[END_REF], the results were analyzed by an empirical fitting. In this method, the experimental values are used to determine the polynomial model constants to be adjusted. The models were checked by plotting computed data against experimental results. The quadratic correlation was chosen to give the slope and the regression coefficient (R 2 ) the closest to unity.

Y = a 0 + a 1 X t + a 2 T + a 12 X t T + a 11 X t 2 + a 22 T 2 (2)
Such a correlation allows building the response surface.

For alanine and phenylalanine, the quadratic equations for the properties (E, X s,w, X t.w, and φ C ), whose reliability was checked, are as follows: 

E (alanine) =

Extraction Efficiency

Figure 5 represents the three-dimensional isoresponse curves of the studied properties smoothed by the quadratic model (Eqs. 3 and4). As already shown in Fig. 4, the extent of amino acid extraction (E) increases with X t , but only weakly beyond 5%. At 5 wt.% Oxo-C 10 E 4, E reaches 94% and 71% for phenylalanine and alanine, respectively. By increasing the hydrophobic character of the amino acid, the presence of a benzene ring in phenylalanine has a positive effect on amino acid solubilization in coacervate micelles. On the other hand, a temperature rise has a slight effect of amino acid extraction. This trend has been observed in other extraction systems [START_REF] De | Organic solvent-free extraction of phenol through liquid-coacervate systems[END_REF][START_REF] Haddou | Purification of effluents by two-aqueous phase extraction[END_REF][START_REF] Haddou | Cloud point extraction of phenol and benzyl alcohol from aqueous stream[END_REF][START_REF] Haddou | Separation of neutral red and methylene blue from wastewater using two aqueous phase extraction methods[END_REF][START_REF] Talbi | Simultaneous elimination of dissolved and dispersed pollutants from cutting oil wastes using two aqueous phase extraction methods[END_REF][START_REF] Haddou | Cloud Point Extraction of Orange II and Orange G using neutral and mixed micelles: Comparative approach using experimental design[END_REF][START_REF] Ghouas | Extraction of humic acid by coacervate: Investigation of direct and back processes[END_REF]. The most favorable areas for cloud point are thus located in the darker color zones in Fig. 5.

Residual Concentration of Amino Acid (X s.w ) Figure 6 represents the three-dimensional isoresponse curves of the studied property (X s.w ), smoothed by the quadratic model (Eqs. 5 and 6). The concentration of amino acid in the dilute phase, X s.w , decreases as X t increases, but varies only slightly with a temperature rise. Hence, the first contact between surfactant and effluent solutions allows 4-and 14-fold alanine and phenylalanine concentration reductions, respectively (Table 2).

Residual Concentration of Surfactant (X t.W )

The behavior of X t.w vs. X t and T is shown in Fig. 7 (smoothed by the quadratic model Eqs. 7 and 8). The residual concentration of surfactant is low at high temperature and low surfactant concentration. These results are in good agreement with previous studies with other polyethoxylated alcohols (21-26). X t.w is a very important parameter. A high loss of surfactant in the dilute phase can compromise process reliability. Indeed, the presence of another contaminant in the dilute phase is sufficient to make the process useless. Although Oxo-C 9-15 E 2-10 compounds are readily biodegradable and do not give rise to bioaccumulation, they are considered as toxic to fish [START_REF]) Miljøministeriet, Miljøstyrelsen[END_REF], so that it would be detrimental to release and squander them in the dilute phase.

Volume Fraction of Coacervate

In order to increase the concentration factor of solute, a minimal volume fraction of coacervate (φ c ) should be obtained. In fact, according to Fig. 8, and as predicted by Fig. 1, the smoothed value of φ c using Eqs. ( 9) and ( 10) is low at high temperature and low surfactant concentration. Now, higher surfactant concentrations lead to higher E and lower X s,w values. So, the optimization of the process needs to compromise over the four studied parameters E, X s,w, X t.w, and φ c [START_REF] De | Organic solvent-free extraction of phenol through liquid-coacervate systems[END_REF][START_REF] Haddou | Purification of effluents by two-aqueous phase extraction[END_REF][START_REF] Haddou | Cloud point extraction of phenol and benzyl alcohol from aqueous stream[END_REF][START_REF] Haddou | Separation of neutral red and methylene blue from wastewater using two aqueous phase extraction methods[END_REF][START_REF] Talbi | Simultaneous elimination of dissolved and dispersed pollutants from cutting oil wastes using two aqueous phase extraction methods[END_REF][START_REF] Haddou | Cloud Point Extraction of Orange II and Orange G using neutral and mixed micelles: Comparative approach using experimental design[END_REF][START_REF] Ghouas | Extraction of humic acid by coacervate: Investigation of direct and back processes[END_REF]. On the basis of this finding, optimal values of φ c (i.e., 0.2) were obtained using 4 wt.% Dowfax 20B10 and 4 wt.% Oxo-C 10 E 4 at 50 • C and 40 • C, respectively.

Effect of Salt on the Rate of Extraction (E)

In general, electrolyte addition induces coacervate volume fraction reduction due to the cloud point lowering of the surfactant solution [START_REF] Haddou | Cloud point extraction of phenol and benzyl alcohol from aqueous stream[END_REF]. The presence of Na 2 SO 4 decreases the cloud point (T c ) of Oxo-C 10 E 4 (Fig. 2) and increases the values of (T-T c ). Therefore, in the presence of salts, at a given temperature, smaller coacervate volumes with high surfactant concentration were obtained (results not shown). Inducing a decrease of amino acid aqueous solubility by a salting-out phenomenon, the presence of the electrolyte increases the extraction extent (E) of amino acid (Fig. 9). According to Saito and Shinoda (39), the addition of electrolyte to nonionic surfactant solutions increases their hydrocarbon solubilization capacity, by lowering surfactant cmc, so that, at a given surfactant concentration, more micelles are present.

Effect of Cetyltrimethylammonium Bromide (CTAB) on the Extraction Yield (E): Extraction with Mixed Micelles

When nonionic and ionic surfactants co-exist in an environment, both surfactant species can interact and provide additional beneficial properties to the system. In most cases, mixed micelles form, that can lead to synergistic effects [START_REF] Nishikido | Thermodynamic equations expressing the synergistic solubilization effect by surfactant mixtures[END_REF]. Figure 10 shows the synergistic effect of the Oxo-C 10 E 4 /CTAB system toward CPE of alanine and phenylalanine, that is, the extraction extent (E) is highly improved with the mixed micelle system compared with that obtained using neutral micelle system (at 0 wt.% of CTAB). In pure aqueous solution the dipolar ion (zwitterionic) form ( -OOC-RCH-NH 3 + ) of the amino acid predominates. Thus, the cationic surfactant (CTAB) reinforces micellar solubilization thanks to Coulombic interactions.

CONCLUSIONS

Coacervate extraction (CPE) was used to separate amino acids from water. The best compromise between the parameters governing the extraction effectiveness (surfactant concentration and temperature) was found using a suitable experimental design and three-dimensional empirical curve fitting. In pure water, extractions at temperatures ranging between 43 • C and 
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FIG. 6 .
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TABLE 1

 1 Extraction extent E (%) of amino acids using 5 wt. % Oxo-C 10 E 4

		Hydropathy	Water solubility		E (%) at 5 wt.% of	Extraction
	Amino acid	index (40)	(g/L) (42) a	Log P (37)	Oxo-C 10 E 4 .	temperature ( • C)
	Alanine	1.8	166.9	-2.85	73	54
	Valine	4.2	88.5	-2.26	74	55
	Leucine	3.8	23.8	-1.52	76	54
	Isoleucine	4.5	34.2	-1.70	78.5	54
	Phenylalanine	2.8	27.9	-1.38	95	54
	Glutamicacid	-3.5	8.64	-3.69	11	20
	Aspartic acid	-3.5	7.78	-3.89	10	20
	at iso-electric pH and 25 • C (41).				

  326.22 + 32.96 X t -11.68 T -0.46 X t T

			(3)
	-0.67 X t	2 + 0.12 T 2
	E (phenylalanine) = 226.84 + 3.08 X t -5.13 T + 0.21 X t T
			(4)
	-0.99 X t	2 + 0.04 T 2
	X s.w(alanine) = -149.25 -1.00 X t + 6.25T -0.06T 2	(5)
	X s.w(phenylalanine) = -0.12 + 0.10 X t + 0.08 T
			(6)
			-0.02 X t T + 0.06 X t	2
	φ c(alanine) = -0.46 + 0.17 X t + 0.05T	(7)
	φ c(phenylalanine) = 4.12 + 1.32X t -0.16T -0.02X t T -0.01 X 2
			(8)
			(9)
	+ 0.18X t	2 + 0.01T 2
	X t.w(phenylalanine) = 30.21 + 4.95 X t -0.74 T
			(10)
	-0.09 X t T + 0.09 X t	2 + 0.01 T 2

X t.w(alanine) = 41.78 + 4.40 X t -1.28 T -0.098X t T

TABLE 2

 2 Some experimental results of the extraction parameters (E, X s,w , X t,w , φ C and X s,0 /X s,w )

	X s,w	X t,w

X s,0 = 7.5g/L (initial concentration of amino acid). FIG.

7

. Three-dimensional isoresponse curves smoothed by a quadratic model, X t.w =f(Xt. T), calculated by the quadratic model (Eqs. 6 and 7).