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Abstract 22 

An accurate representation of the partitioning between soil evaporation and plant transpiration 23 

is an asset for modeling crop evapotranspiration (ET) along the agricultural season. The Two-24 

Surface energy Balance (TSEB) model operates the ET partitioning by using the land surface 25 

temperature (LST), vegetation cover fraction (fc), and the Priestley Taylor (PT) assumption 26 

that relates transpiration to net radiation via a fixed PT coefficient (αPT). To help constrain the 27 

evaporation/transpiration partition of TSEB, a new model (named TSEB-SM) is developed by 28 

using, in addition to LST and fc data, the near-surface soil moisture (SM) as an extra constraint 29 

on soil evaporation. An innovative calibration procedure is proposed to retrieve three key 30 

parameters: αPT and the parameters (arss and brss) of a soil resistance formulation. Specifically, 31 

arss and brss are retrieved at the seasonal time scale from SM and LST data with fc<0.5, while 32 

αPT is retrieved at the daily time scale from SM and LST data for fc>0.5. The new ET model 33 

named TSEB-SM is tested over 1 flood- and 2 drip-irrigated wheat fields using in situ data 34 

collected during two field experiments in 2002-2003 and 2016-2017. The calibration algorithm 35 

is found to be remarkably stable as αPT, arss and brss parameters converge rapidly in few (2-3) 36 

iterations. Retrieved values of αPT, arss and brss are in the range 0.0-1.4, 5.7-9.5, and 1.4-6.9, 37 

respectively. Calibrated daily αPT mainly follows the phenology of winter wheat crop with a 38 

maximum value coincident with the full development of green biomass and a minimum value 39 

reached at harvest. The temporal variations of αPT before senescence are attributed to the 40 

dynamics of both root-zone soil moisture and the amount of green biomass (vegetation water 41 
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content). Moreover, the overall (for the three sites) root mean square difference between the 42 

ET simulated by TSEB-SM and eddy-covariance measurements is 67 W m-2 (24% relative 43 

error), compared to 108 W m-2 (38% relative error) for the original version of TSEB using 44 

default parameterization (αPT =1.26). Such a calibration strategy has great potential for 45 

applications at multiple scales using remote sensing data including thermal-derived LST, solar 46 

reflectance-derived fc and microwave-derived SM. 47 

1 Introduction 48 

A large variety of evapotranspiration (ET) models and measurements have been reported 49 

in the literature (Allen et al., 2011). However, ET estimation over extended areas including 50 

different biomes and climates is still subject to significant uncertainties (Pereira et al., 2004; 51 

Ershadi et al., 2014). Although the main drivers of ET, such as atmospheric evaporative 52 

demand, vegetation type, development stages and health, surface biophysical characteristics 53 

and soil water availability (e.g. Federer et al., 2003), are now well identified, one major 54 

difficulty in modeling this process lies in a lack of relevant input data available at the desired 55 

space and time scales (Allen et al., 2011; Pereira et al., 2014). The accuracy of ET estimates at 56 

a given scale thus currently represents a trade-off between model complexity and realism, 57 

which is usually related to i) the number of model parameters and forcing variables and ii) the 58 

availability of data that generally decreases with the spatial extent (Allen et al., 2011; 59 

Gharsallah et al., 2014).  60 

Regarding data availability over large areas and at multiple scales, remote sensing observations 61 

provide very relevant information to feed ET models such as vegetation indices, land surface 62 

temperature (LST) and near-surface soil moisture (SM). Especially, SM is one of the main 63 

controlling factors of soil evaporation (e.g. Chanzy et al. 1993), vegetation cover fraction (fc) 64 

provides an essential structural constraint on evaporation/transpiration partitioning (e.g. Allen 65 

et al. 2000) and LST is a signature of available energy and evapotranspiration (e.g. Norman et 66 

al. 1995). For this reason, efforts have been made to integrate those data as additional and 67 

complementary information on ET (e.g. Price et al., 1990). Through its link with ET under 68 

moisture-limited conditions, LST has been extensively used to retrieve ET at a wide range of 69 

spatial resolutions (Kalma et al., 2008). LST-based ET retrieval methods are generally 70 

classified in two categories. The first one is the so-called “residual” method, which estimates 71 

latent heat flux as a residual term of the surface energy balance (e.g. Norman et al., 1995; Su, 72 

2002). The second one is named the “contextual” method based on the interpretation of the 73 

LST versus vegetation index feature space (e.g. Moran et al., 1994 ; Long and Singh, 2012), 74 

the interpretation of the LST versus albedo feature space (e.g. Roerink et al., 2000), or the 75 

interpretation of both spaces (Merlin 2013; Merlin et al., 2014). The use of SM data, Jung et 76 

al. (2010) related the global ET trend to the SM trend derived from TRMM (Tropical Rainfall 77 

Monitoring Mission) microwave data. At regional scale, ET was found to have a correlation of 78 

about 0.5 with the SM derived from airborne L-band data and a correlation even larger for fc 79 

values lower than 0.5 (Bindlish et al., 2001; Diarra et al., 2017). This was the basis for 80 

developing ET models based on microwave-derived SM data (Kustas et al., 1998; Bindlish et 81 

al., 2001; Kustas et al., 2003; Li et al., 2006; Gokmen et al., 2012; Li et al., 2015). 82 

Among a wide panel of existing ET models, the Priestley Taylor (PT) assumption that 83 

empirically relates ET to net radiation (Priestley and Taylor 1972) has shown a growing interest 84 

(Norman et al., 1995, Kustas and Norman 1999, Li et al., 2005, Anderson et al., 2007, Fisher 85 

et al., 2008, Agam et al., 2010, Jin et al., 2011, Yao et al., 2015, Ai et al., 2016). PT coefficient 86 

noted αPT directly relates latent heat flux to the energy available at the surface. Since neglecting 87 

the aerodynamic resistance term included in the full Penman-Monteith equation (Monteith 88 

1965), the PT formulation is relatively simple, requires less input data and has proven to be 89 
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remarkably accurate and robust for estimating potential ET in a wide range of conditions 90 

(Fisher et al., 2008). It is therefore well suited for operational (McAneney et al., 1996) and 91 

large scale (Anderson et al., 2008) applications. In addition, recent studies based on in situ 92 

global data sets have reported a good robustness of the PT modeling approach over a variety 93 

of biomes (Ershadi et al., 2014). Nevertheless, various theoretical (e.g. De Bruin, 1983) and 94 

experimental (e.g. Fisher et al., 2008) studies have stressed that the PT coefficient is variable 95 

under different surface and atmospheric conditions. In a literature review, the factors that 96 

influence the variability of αPT are: leaf area index (Fisher et al., 2008; Jin et al., 2011; Ai and 97 

Yang, 2016), the green fraction of canopy (Norman et al., 1995; Fisher et al., 2008), soil water 98 

availability (Davies and Allen, 1973; Mukammal and Neumann 1977; De Bruin, 1983; 99 

Eichinger et al., 1996; Fisher et al., 2008; Jin et al., 2011; Perez et al., 2017; Yao et al., 2017), 100 

vapor pressure deficit or advective conditions (Jury and Tanner, 1975; Kustas et al., 2000; 101 

Agam et al., 2010; Colaizzi et al., 2014), wind speed (Mukammal and Neumann, 1977), air 102 

temperature (Ai and Yang, 2016), air relative humidity (Er-Raki et al., 2010), plant temperature 103 

(Fisher et al., 2008), surface sensible heat flux (Pereira and Nova 1992) and mulch fraction (Ai 104 

and Yang, 2016). As a result of changes in the above ecophysiological and environmental 105 

constraints, αPT commonly varies in the range 0.5-2.0 with an average value estimated around 106 

1.3 (above references).  107 

Data available from space can help in implementing the PT approach from three distinct 108 

perspectives: i) applying a constraint on vegetation transpiration using an a priori value for αPT 109 

(Norman et al., 1995; Kustas et al., 1999; Anderson et al., 2008), ii) applying a constraint on 110 

soil evaporation using SM data (Bindlish et al., 2001; Yao et al., 2017), or iii) retrieving the 111 

PT coefficient from vegetation indices (Fisher et al., 2008; Jin et al., 2011; Yao et al., 2015; 112 

Yao et al., 2017) or from an interpretation of the LST-vegetation index feature space (Jiang 113 

and Islam, 2001; Wang et al., 2006; Perez et al., 2017). While LST, vegetation indices and SM 114 

are alternatively used by satellite-based PT approaches, few studies have combined all three 115 

data types. In fact, most studies have compared LST-based versus SM-based ET models 116 

separately (Kustas et al., 1998; Kustas et al., 2003; Li et al., 2006; Gokmen et al., 2012). Given 117 

that SM controls the soil temperature (via the soil evaporation) and that LST integrates both 118 

soil and vegetation temperatures, the main issue to integrate simultaneously SM and LST into 119 

an unique model is to ensure a robust convergence of soil/vegetation temperatures (Kustas et 120 

al., 2003; Li et al., 2006) and associated evaporation/transpiration fluxes. The recent studies of 121 

Li et al.(2015) and Song et al.(2016) combined LST and SM to better constrain ET but both 122 

approaches relied on a priori reduction coefficients of potential ET. Reduction coefficients of 123 

potential ET are equivalent to the soil evaporative efficiency (defined as the ratio of actual to 124 

potential evaporation, e.g. Merlin et al., 2016) and to the vegetation stress functions (defined 125 

as the ratio of actual to potential transpiration, e.g. Hain et al., 2009) for the soil and vegetation 126 

component, respectively. The point is there is no universal parameterization of both soil 127 

evaporation efficiency and vegetation stress functions. Alternatively, Sun et al. (2012) 128 

proposed an innovative assimilation method to calibrate the parameters of a SVAT (Soil 129 

Vegetation Atmosphere Transfer) model from available remote sensing variables including 130 

LST and SM. Assimilation results improved ET estimates but the retrieved parameters were 131 

mostly conceptual due to the simplicity of the surface model used. 132 

In this context, the objective of this paper is: (i) the modification of the PT-based TSEB 133 

formalism (Norman et al., 1995; Kustas et al., 1999) to integrate LST and SM in situ data 134 

simultaneously (the modified version is named TSEB-SM), and (ii) the development of a 135 

calibration procedure of TSEB-SM to retrieve the main parameters of soil evaporation (soil 136 

resistance) and plant transpiration (αPT). The approach is tested over three irrigated wheat crops 137 

in the Tensift basin, central Morocco. In each case, the calibration procedure is tested and the 138 
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TSEB-SM latent and sensible heat fluxes are evaluated and compared against the original 139 

TSEB simulations.  140 

2 Methods 141 

2.1 Data 142 

2.1.1 Sites description 143 

The study sites are located in irrigated agricultural areas east (R3 perimeter) and west 144 

(Chichaoua area) of Marrakech city in the Tensift basin, central Morocco (see Figure 1). The 145 

climate in the region is semi-arid, with an average yearly precipitation in the order of 250 mm, 146 

of which approximately 75% falls during the winter and spring (November-April). The average 147 

humidity of the atmosphere is 50% and the reference crop ET is estimated as 1600 mm per year 148 

(Allen et al., 1998), greatly exceeding the annual rainfall. 149 

Two data sets are used herein. The first data set was collected from December 2002 to May 150 

2003 over a wheat crop in the R3 zone. The second one was collected from November 2016 to 151 

May 2017 over two wheat crops near Chichaoua. Those experiments were carried out to 152 

monitor the energy and water balance as well as the soil and vegetation characteristics and 153 

conditions during the entire wheat growing cycle. The R3 crop field is 4 ha and is irrigated 154 

through periodic (approximately every 3 weeks) flooding with a mean quantity of 30 mm 155 

regardless of precipitation. Both Chichaoua crop fields are 1.5 ha and are irrigated by drip 156 

technique. During the 2016-17 experiment, one (reference) field was irrigated according to the 157 

crop water needs estimated by the FAO method every 3 to 4 days until mid-April while the 158 

other (controlled) field was irrigated exactly the same way except during controlled stress 159 

periods when irrigation was cut. The mean irrigation quantity was about 15 mm for both crop 160 

fields, whereas the total water supply by drip irrigation was 374 and 504 mm for the controlled 161 

and reference field, respectively.  162 
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 163 

 164 
Figure 1.Location of the three study sites including a flood-irrigated wheat crop in the R3 zone (east of Marrakech) and two 165 
(controlled and reference) drip-irrigated wheat crops near Chichaoua city (west of Marrakech) in the Tensift basin, central 166 

Morocco.(Flat area) 167 

 168 
 169 

2.1.2 Surface fluxes 170 

An eddy covariance (EC) tower was installed over each field to measure the latent (LE) 171 

heat and sensible (H) heat fluxes at a 2-m height. EC systems included a CSAT3 3D sonic 172 

anemometer (Campbell scientific Ltd, Logan USA) over the three sites, a LICOR-7500 open-173 

path infrared gas analyzer (Campbell scientific Ltd, Logan USA) installed over the R3 site and 174 

a KH20 Krypton hygrometer (Campbell Scientific Ltd, Logan USA) installed over both 175 

Chichaoua sites. The half-hourly fluxes were calculated off-line using the EC processing 176 

software ‘ECpack’, after performing all required corrections for planar fit correction, humidity 177 

and oxygen (KH20), frequency response for slow apparatus, and path length integration (Van 178 

Dijk et al., 2004). EC towers were also equipped with Kipp and Zonen CNR radiometers to 179 

measure net radiation (Rn) and heat flux plates (Campbell Scientific Ltd, Logan USA) to 180 

measure the soil heat flux (G). Analysis of the energy balance closure showed that the sum of 181 

latent and sensible heat flux measured independently by the EC systems was often lower than 182 

the available energy (Rn-G). The relative closure was satisfied by about 88%, 64% and 70% 183 

(of available energy) for the R3, controlled and reference sites, respectively. This problem 184 

could not be explained neither by the mismatch in the spatial extent of flux measurements, nor 185 

by the uncertainties associated with the measurements of soil heat flux and net radiation (Twine 186 

et al., 2000, Ezzahar et al. 2009, Hoedjes 2008). Correction was hence performed using the 187 

approach suggested by Twine et al. (2000). The energy budget closure was forced at the 30 188 

min time step using the daily Bowen ratio (called 𝛽 = H/LE). Corrected turbulent fluxes were 189 
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derived as 𝐿𝐸 =
𝛽

𝛽+1
(𝑅𝑛 − 𝐺) and  𝐻 =

(𝑅𝑛−𝐺)

𝛽+1
 , with 𝛽 computed from the 30-min observed 190 

H and LE cumulated between 9 am and 5 pm. The Bowen ratio correction enhanced these 191 

turbulent fluxes by about 21, 39 and 50% for H and 20, 42 and 56% for LE, for R3 zone, 192 

controlled and reference sites, respectively. 193 

2.1.3 Land surface temperature, soil moisture and vegetation cover fraction 194 

Surface temperature was measured by using an infrared thermometer (IRTS-P) set up at a 2-m 195 

height above ground. Two sensors, oriented downwards, were used in each field. The measured 196 

LST is taken as the arithmetical mean of the two independent measurements. 197 

Time Domain Reflectometry (TDR) probes (model CS615, CS655) were installed in a soil pit 198 

near the EC towers to measure soil water content at different soil depths of 5, 10, 20, 30, 50, 199 

100 cm and 5, 15, 25, 35, 50, 80 cm and 5, 15, 30, 50, 80 cm for the flood-, controlled drip- 200 

and reference drip-irrigated wheat, respectively. The TDR technique is based on the 201 

measurement of the soil dielectric constant to estimate its volumetric water content. An 202 

appropriate calibration of the TDR measurement is necessary because several factors as the 203 

electrical conductivity, bulk density and soil texture can affect the soil dielectric constant (Topp 204 

et al., 1980; Regalado et al., 2001; Roth et al., 1992; Tomer et al., 1999; Weitz et al., 1997). 205 

The field volumetric moisture content was determined using the gravimetric method; three 206 

samples were collected at installation depth of each TDR probe using a 392.5 cm3 aluminum 207 

core.  A linear regression was established between the volumetric water content and the square 208 

root of the TDR time response (τ in s) ( 𝑆𝑀 = 𝑎𝑇𝐷𝑅 ∗ √𝜏 + 𝑏𝑇𝐷𝑅 ). 209 

The vegetation cover fraction -defined as the vegetated surface area projected on the ground at 210 

nadir, per soil surface area unit- was measured routinely within each field using a digital 211 

photography-based method. Hemispherical photographs were taken at various representative 212 

points of the field using a Nikon CoolPix camera equipped with a fisheye lens. This method 213 

binarizes digital photos, in vegetation and soil, based on thresholds in the green and red bands 214 

(Khabba et al., 2009).  215 

  216 

2.2 Models and calibration strategies 217 

In this section, the main equations of the original version of TSEB model (Norman et al., 218 

1995; Kustas et al., 1999) are briefly reproduced and the new TSEB-SM model is fully 219 

described. Note that the main difference between the two models concerns the treatment of soil 220 

evaporation, which is either estimated as a residual term for TSEB or explicitly represented 221 

through a soil resistance term for TSEB-SM.   222 

 223 

2.2.1 Models  224 

A. TSEB model 225 

The TSEB model was presented and described by Norman et al., (1995),  Norman et al. 226 

(2000), Kustas and Norman (1999), Timmermans et al (2007), French et al. (2015) and Colaizzi 227 

et al. (2012). It produces two separate energy balances for the soil and vegetation and estimates 228 

evaporation and transpiration as residual term of the energy balance. Two variables derived 229 

from remote sensing instruments are key inputs for TSEB model: The first is the surface 230 

temperature, which is used to estimate the sensible heat flux and the second is the fraction 231 

cover, which controls the energy partitioning between surface vegetation and soil. 232 
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The PT coefficient (PT) is one of the most sensitive parameters of TSEB, because it drives the 233 

vegetation latent heat flux. Most studies conducted with TSEB have used its generic value 234 

around 1.3 (Norman et al., 1995; Kustas and Norman, 1999; Bindlish et al., 2001; Anderson et 235 

al., 2007; Colaizzi et al., 2014). Other studies have identified different values of αPT depending 236 

on the vegetation cover fraction and particular forcing conditions. Notably, the PT coefficient 237 

was found to be smaller for dry surfaces and higher for humid conditions (Eichinger et al., 238 

1996). Nevertheless the relative stability of αPT in many conditions has led to set αPT constant. 239 

Consistent with this assumption, αPT is set to 1.26 in TSEB (Priestley and Taylor, 1972). 240 

B. TSEB-SM model 241 

The TSEB formalism is modified to integrate SM as an additional constraint on modeled 242 

ET. In practice, the energy balance for vegetation and soil in TSEB-SM is the same as in TSEB, 243 

but the soil evaporation is now explicitly represented as a function of SM via a soil resistance 244 

term. Note that Song et al. (2016) have recently introduced SM in TSEB using a formulation 245 

of soil evaporative efficiency. While there is partial equivalence between both formulations, 246 

the soil resistance formulation is preferred herein as its parameters can be calibrated either from 247 

soil texture information (Merlin et al., 2016) or from a combination of LST and SM data under 248 

bare soil conditions (Merlin et al., 2017).  249 

The soil latent heat flux is estimated as:  250 

LEsoil =
ρcp

γ
.

(es − ea)

rah + rs + rss
 

(1) 

where es is the saturated vapor pressure at the soil surface, ea is the air vapor pressure, and rss 251 

is the resistance to vapor diffusion in the soil. rss is expressed as follows (Passerat de Silans, 252 

1986) : 253 

rss = exp (arss − brss ∗
SM

SMsat
) 

(2) 

with SM being the soil moisture in the 0-5 cm soil layer, arss and brss are two empirical 254 

parameters and SMsat the soil moisture at saturation expressed as: 255 

SMsat = 0.1 ∗ (−108 ∗ fsand + 49.305) (3) 

with fsand is the percentage of sand in the soil.  256 

The flowchart of Figure 2 summarizes the different steps followed to resolve the energy balance 257 

in TSEB-SM model. The algorithm is based on an iterative procedure that loops on the Monin-258 

Obukhov length (MO length), which is a scale parameter that characterizes the degree of 259 

instability or stability of the boundary layer. MO length is approximately the height at which 260 

aerodynamic shear, or mechanical energy, is equal to the buoyancy energy. In practice, MO 261 

length is used as correction factor to determine the aerodynamic resistance rah. First, the 262 

algorithm starts by initializing the soil and vegetation temperatures, as well as sensible and 263 

latent heat fluxes. Then it calculates the available energy for the soil-vegetation-atmosphere 264 

interface by estimating the surface net radiation and its partition between the vegetation and 265 

the soil, as well as the soil heat flux. The way soil and vegetation temperatures are estimated is 266 

in fact a specificity of the new model, which is based on the explicit resolution of the energy 267 

balance for soil and vegetation respectively. Component temperatures are obtained by 268 

minimizing cost functions Fsoil and Fveg: 269 

Fsoil,k = (Rn,soil,k − Hsoil,k − LEsoil,k − Gk)2 (4) 

 270 
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Fveg,k = (Rn,veg,k − Hveg,k − LEveg,k)2 (5) 

with k being a loop index. By using the formula of the Newton method: 271 

Tsoil,k+1 = Tsoil,k −
Fsoilk

dFsoilk

 
(6) 

 272 

Tveg,k+1 = Tveg,k −
Fvegk

dFvegk

 
(7) 

where dFsoil and dFveg are the first derivative of the cost function for soil and vegetation, 273 

respectively.  274 

At the end of each iteration, the simulated LST (noted Tsurf,sim Figure 2) and heat fluxes are 275 

used to recalculate the MO length iteratively. The iterative procedure is repeated until MO 276 

length (and H) converges, meaning that the difference between two successive values is smaller 277 

than a given threshold (numerical uncertainty). 278 

 279 
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 280 
Figure 2.Schematic diagram of TSEB-SM model. 281 

 282 

2.2.2 Calibration strategies 283 

The calibration approach of TSEB-SM is presented below. In this case, the calibration 284 

strategy is tightly coupled to the model formalism and the availability of input data (LST in the 285 

former case and both LST and SM in the latter). 286 
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C. TSEB-SM 287 

The calibration procedure of TSEB-SM is presented in the schematic diagram of Figure 288 

3. It is done in two steps: the first aims to provide first guess estimates of arss and brss (named 289 

arss,FG and brss,FG) as input to the second step that aims to provide the final values of (arss,cal, 290 

brss,cal) and αPT,cal,daily.  291 

Given that soil evaporation and plant transpiration may compensate each other to result in 292 

similar total ET values, it is important to ensure that the calibration procedure is well defined, 293 

meaning that a unique triplet (arss, brss, αPT) is systematically obtained at the desired time scale. 294 

In order to do so, the calibration data set is divided into two regions with specific behaviors: i) 295 

data with fc ≤ 0.5 for which ET is mainly controlled by soil evaporation and ii) data with fc >296 

0.5 for which ET is dominated by plant transpiration. In both data sets, soil evaporation and 297 

plant transpiration may occur simultaneously but the LST over the mixed surface is expected 298 

to be more sensitive to soil evaporation and plant transpiration for fc ≤ 0.5 and fc > 0.5, 299 

respectively (Moran et al. 1994; Merlin et al. 2012).  300 

The first calibration step initializes αPT =1.26 and inverts rss at each time (30-min) step for data 301 

with fc ≤ 0.5. The rss is first adjusted to minimize the following cost function: 302 

Finst = (Tsurf,sim − Tsurf,mes)2 (8) 

 using the Newton method:  303 

rss,k+1 = rss,k −
Finstk

dFinstk

 
 

(9) 

where Tsurf,sim and Tsurf,mes are the LST simulated by TSEB-SM model and observed over the 304 

crop field at the 30-min time step, respectively. The inverted rss is then correlated to the 305 

observed SM to estimate arss and brss. In practice, arss and –brss/SMsat are the intercept and the 306 

slope of the linear regression of the ln(rss) versus SM relationship (see Equation 2).  As the 307 

retrieved pair (arss, brss) depends on the αPT value, an iterative loop is run on arss, brss and αPT 308 

until convergence of arss and brss is achieved. At each iteration, the inverted arss and brss are used 309 

as input to invert αPT for data with fc > 0.5. The PT Taylor coefficient is adjusted, at the daily 310 

time scale, to minimize the following cost function: 311 

Fdaily = ∑(Tsurf,sim,i − Tsurf,mes,i

N

i=1

)2 

 

(10) 

with N being the number of 30-min LST measurements available for a given day. To keep a 312 

(time) scale consistency between all three retrieved parameters in calibration step 1, the daily 313 

inverted αPT is averaged at the seasonal time scale before being used as input to the following 314 

(next iteration) inversion of arss and brss. To further assess the model’s stability, the initial values 315 

of (arss,k=0, brss,k=0) were randomly set to a range of values between 1 and 13 and the results (not 316 

shown) confirmed the robustness of the calibration approach, regardless of the initialization. 317 

The second calibration step refines the estimation of αPT at the daily scale. The first guess arss,FG 318 

and brss,FG obtained in step 1 are first used as input to the retrieval procedure of daily αPT for 319 

data with fc > 0.5 (minimization of Fdaily). Next, the daily retrieved αPT is smoothed to remove 320 

outliers as well as to reduce random uncertainties in daily retrieved αPT. Then, the smoothed 321 

αPT is normalized between its minimum and maximum values reached during the agricultural 322 

season after having forced the minimum value of smoothed αPT to 0 at harvest so that 323 

transpiration is zero at this time: 324 
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αPT,cal,daily =
αPT,dailysmooth

− min (αPT,dailysmooth
)

max(αPT,dailysmooth
) − min (αPT,dailysmooth

)
∗ max(αPT,dailysmooth

) 
(11) 

Finally rss is calibrated a last time to ensure consistency between daily calibrated αPT,cal,daily 325 

and final arss,cal and brss,cal (see Figure 3). 326 

 327 

 328 
Figure 3.Schematic diagram of the two-step calibration strategy of TSEB-SM model. 329 

 330 
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3 Results and Discussions 331 

The proposed calibration of rss and αPT is successively applied to the flood-irrigated (R3), 332 

the controlled drip-irrigated (Chichaoua) and the reference drip-irrigated (Chichaoua) wheat 333 

sites. The TSEB-SM approach is then assessed in terms of evapotranspiration. In practice, the 334 

H and LE simulated at the half hourly time scale (between 11 am and 1:30 pm) by TSEB-SM 335 

and by the original TSEB model (using an a priori default value for αPT) are compared against 336 

EC measurements at the three experimental sites. 337 

5.1 Retrieved parameters 338 

Figure 4 plots the iterative values of arss, brss and mean αPT during calibration step 1. 339 

Iteration 0 corresponds to default values. The convergence of all three parameters is very fast, 340 

requiring only 2 or 3 iterations for achieving a relative error better than 1%. This result confirms 341 

the appropriateness of separating the calibration range in fc intervals where one parameter has 342 

significantly more weight on simulation results (i.e. simulated LST and associated fluxes) than 343 

the others. The calibrated pair (arss, brss) is (5.67, 1.40), (6.51, 3.82) and (9.47, 6.87) for the 344 

flood-, controlled drip- and reference drip-irrigated field, respectively. The mean retrieved 345 

values (7.2, 4.0) are relatively close to those estimated in Sellers et al. (1992) (8.2, 4.3). The 346 

variability of arss and brss can be explained by numerous factors such as soil texture (Merlin et 347 

al., 2016) and meteorological conditions (Merlin et al., 2011). Nevertheless, retrieved 348 

parameters are significantly different for both drip sites whereas they i) are located about 200 349 

m apart only and ii) have similar soil texture and meteorological conditions. In fact, retrieved 350 

arss is an increasing function of retrieved brss due to compensation effects between arss and brss 351 

for a given SM and LST observation pair and regardless of soil properties and meteorological 352 

conditions. Such compensation reveals the empirical nature of the rss formulation in Sellers et 353 

al. (1992).  354 

 355 
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 356 
Figure 4.Iterative values of arss,(a), brss (b) and mean value of retrieved αPT  (c) for the flood-, controlled drip- and 357 

reference drip-irrigated wheat fields separately (calibration step 1). 358 

 359 

 360 

The mean value of αPT at the semi-hourly time scale (see Figure 4) is 0.81, 0.88 and 1.24 for 361 

the flood-, controlled drip- and reference drip-irrigated wheat fields, respectively. Note that the 362 

mean value is very close to the theoretical αPT value for the reference drip-irrigated field case. 363 

It is suggested that fg generally equals 1 at the maximum of αPT (peak of ET), so that the 364 

maximum αPT value is directly comparable to its default value (1.26) corresponding to fully 365 

unstressed conditions (Priestley and Taylor, 1972). Nonetheless, the mean αPT is significantly 366 

smaller than the default value for the flood- and controlled drip-irrigated cases. Lower values 367 

can be associated with stress conditions that may have occurred during the crop development.   368 

Figure 5 plots the time series of daily retrieved αPT for each site separately. It can be seen that 369 

the maximum value of daily αPT varies from field to field. It is estimated as 1.8, 2.10 and 2.82 370 

for the flood-, controlled drip- and reference drip-irrigated fields, respectively. It is clearly 371 

observed that the values related to drip irrigation are significantly greater than the values related 372 

to flood irrigation. This could be explained by the difference in agricultural practices of each 373 

field (sowing date, irrigation events, rainfall and fertilization) as well as uncertainties in 374 

retrieved αPT. Two effects are likely to explain the highly variable and excessively high 375 

retrieved αPT values over the drip irrigated site for the first few daily retrievals. First, it is 376 

reminded that αPT is retrieved for fc>0.5. When fc is slightly larger than 0.5 (that is on the first 377 
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few retrieval days of the season), large uncertainties in retrieved αPT are expected because the 378 

soil surface still plays a significant role in the observed LST. Little response is shown for the 379 

first two months over the flood irrigation field, because the flux measurements over this site 380 

started when wheat was already well developed (fc significantly larger than 0.5). Second, the 381 

R3 site is surrounded by homogeneous irrigated wheat fields while the drip irrigated fields are 382 

surrounded by dryland, which potentially reinforces advection effects, leading to enhanced 383 

retrieved αPT. Note that the retrieved αPT values above 2 and near 0 are due to the uncertainties 384 

in LST-derived daily estimates, especially during the periods when wheat is partially covering 385 

the soil. 386 

As explained above, a smoothing function is applied to reduce uncertainties in daily αPT,. The 387 

smoothing length (it is one parameter of the smoothing function) is set to 10% of the total time 388 

series, that is about 10-20 days. Such a smoothing procedure is justified by the fact that both 389 

biomass and root-zone soil moisture commonly change across the agricultural season with a 390 

characteristic time of 1 to 2 weeks (Albergel et al. 2008). Furthermore, Figure 5 clearly shows 391 

that the smoothing function removes all outliers while capturing significant patterns at the quasi 392 

daily scale. The smoothed αPT ranges from 0.03 to 1.22, 0.17 to 1.26 and 0.61 to 1.38 for the 393 

flood-, controlled drip- and reference drip-irrigated wheat, respectively.     394 

 395 
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 396 
Figure 5.Time series of daily retrieved and smoothed αPT  for the (a) flood-, (b) controlled drip- and (c) reference drip-397 

irrigated wheat fields, separately (calibration step 2). 398 

 399 
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The normalization in Equation (11) of smoothed αPT between its assumed minimum value (0) 400 

and smoothed maximum value makes the calibrated daily αPT range from 0 to 1.22, 0 to 1.26 401 

and 0 to 1.38 for the flood-, controlled drip- and reference drip-irrigated fields, respectively. 402 

Time series of calibrated daily αPT are presented in Figure 6 superimposed with fc for 403 

comparison purposes. The maximum calibrated daily αPT is close to the theoretical value of 404 

1.26 in each case. However, its temporal variability is found to be significant even during the 405 

growing stage of wheat. Calibrated daily αPT is more stable for the reference drip field than for 406 

both flood and controlled drip fields, with a relative change during the growing period of 8.08% 407 

compared to 26.94% and 22.66% for the other two fields, respectively. This result is consistent 408 

with the fact that the reference drip field had been irrigated according to the water needs 409 

estimated by the FAO-56 method while the other two fields (flood and controlled drip) had 410 

been under water deficit conditions for one or several periods during the growing stage. Note 411 

that the controlled-drip field has a special feature in terms of αPT daily dynamics. The maximum 412 

value is reached by the beginning of March, which is much earlier than the αPT peak observed 413 

at the reference drip (around late April) and flood (beginning of May) fields, although wheat 414 

was sowed on the same date as reference drip field. It is suggested that the controlled drip-415 

irrigated wheat did not recover well from the first (relatively long) stress period from 416 

22/02/2017 to 06/03/2017. The irrigation water supplied after mid-March was probably not 417 

sufficient for the wheat of controlled drip field to catch up with the reference drip-irrigated 418 

wheat, even if the amount of water used for irrigation after this period was approximately the 419 

same (about 166 mm).  420 

 421 
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 422 
Figure 6.Time series of calibrated daily αPT, superimposed with fc for the (a)  flood-, (b) controlled drip- and (c) reference 423 

drip-irrigated wheat fields, separately. The red segments represent irrigations during the season. 424 

 425 

5.2 Interpretation of αPT variabilities 426 

αPT is expected to vary according to several factors including LAI, green fraction cover and 427 

soil water availability. In order to verify the consistency of the variations in daily retrieved PT, 428 

Figure 7 presents the time series of calibrated daily αPT superimposed with near-surface (5-cm) 429 

soil moisture, deeper (30-cm) soil moisture. It is reminded that the daily αPT for fc <0.5 is set 430 

to the mean daily αPT obtained for fc>0.5 (see Figure 6). Therefore, the variability of αPT should 431 

be interpreted for fc>0.5 only, that is from fc=0.5 until harvest. Figure 7 illustrates the expected 432 

relationships between αPT and the water availability in the soil column. In each case, the αPT 433 

dynamics are driven by soil moisture variations. 434 
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The qualitative analysis of αPT variability in relation to soil water availability indicates that αPT 435 

cannot be considered as a constant. Large variations in this parameter are likely to occur during 436 

the agricultural season, especially under stress conditions. Water deficit may happen with flood 437 

irrigation when the frequency of water supplies (every 3 weeks on average over R3) is 438 

relatively low compared to the water demand under such semi-arid conditions. Indeed the water 439 

stress observed in the flood-irrigated wheat may be attributed to the increase in water depletion 440 

at the root zone through a removal of water by transpiration and percolation losses (Er-Raki et 441 

al., 2007). Water stress may also happen with drip when the technique is not appropriately 442 

implemented or by applying regulated deficit irrigation.  443 

 444 
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 445 
Figure 7.Time series of α_(PT,cal,daily) superimposed with 5-cm/30-cm soil moisture (SM) for: (a) flood-, (b) controlled drip- 446 

and (c) reference drip-irrigated fields, respectively.  447 

 448 
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5.3 Surface fluxes 449 

The ability of TSEB and TSEB-SM for partitioning the available energy into H and LE 450 

is assessed by forcing -in each case- Rn and G to their measured values. Note that the calibration 451 

of TSEB-SM is still undertaken using observed LST, SM and fc whereas the validation of TSEB 452 

and TSEB-SM model output is undertaken using EC measurements of H and LE. The metrics 453 

used to evaluate results comprise the determination coefficient (R2), the root mean square error 454 

(RMSE) and the mean bias error (MBE) between simulated and observed fluxes. 455 

Figure 8 plots simulated versus observed LE for the three sites separately. TSEB provides 456 

satisfying results for the flood site with a RMSE of 78 W/m2 and a relative error (estimated as 457 

RMSE divided by mean observed LE) of 27%. However, two notable features are observed for 458 

the other two (controlled and reference drip) sites: i) the LE simulated by TSEB never exceeds 459 

500 W/m2 over the entire growing season (fc>0.5) although observations reach 700 W/m2 and 460 

ii) the overall MBE is about 29 W/m2 and 66 W/m2 for the controlled and reference drip field 461 

respectively, meaning that TSEB also overestimates LE in the lower ET range. To dig deeper, 462 

the performance of TSEB is now assessed by analyzing the metrics computed for three distinct 463 

periods of the agricultural season: the period for fc ≤ 0.5, for fc > 0.5  and the senescence 464 

stage. Note that the senescence period is defined herein as starting after the last peak observed 465 

on the calibrated daily αPT (becomes remarkable after about one week) and finishing when 466 

green fraction cover becomes zero, which corresponds to the last date of the three time series. 467 

Hence the senescence starts on 27/04/2003, 19/04/2017 and 15/04/2017 for the flood-, 468 

controlled drip- and reference drip-irrigated field, respectively. A visual assessment of scatter 469 

plots in Figure 8 and the statistics presented in Table 1 clearly indicate that TSEB 470 

underestimates LE fluxes at around the maximum of ET (well developed crop before 471 

senescence) while it overestimates LE fluxes during senescence until harvest. The saturation 472 

of TSEB in the higher range of ET is due to the fixed maximum value for αPT (equal to 1.26). 473 

The structure of the model cannot accommodate large evaporative demand conditions and 474 

strong advective conditions (Song et al., 2016).     475 

Both limitations identified in the TSEB formalism seem to be partly solved by the TSEB-SM 476 

approach. In particular, the LE simulated by TSEB-SM (Figure 8) is closer to the 1:1 line in 477 

each case (fc ≤ 0.5 and fc > 0.5  and the senescence), providing a quite significant 478 

improvement for drip sites. The simulated LE does not saturate as it reaches 700 W/m2 over 479 

the reference drip site. In fact, the retrieval of daily αPT values larger than the theoretical 480 

maximum 1.26 significantly improves ET estimates. Moreover, the overestimation of LE 481 

during the senescence stage is much reduced for TSEB-SM. It is suggested that the decrease in 482 

calibrated daily αPT integrates the drop in green vegetation fraction that takes place during 483 

senescence. 484 

 485 
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 486 
Figure 8.Scatterplot of simulated versus observed LE for the (top) food-, (middle) controlled drip- and (bottom) reference 487 

drip-irrigated fields and for (left) TSEB-SM and (right) TSEB models, respectively. 488 

 489 

The comparison between TSEB and TSEB-SM is continued by plotting simulated versus 490 

observed H for each site in Figure 9. Consistent with previous results obtained for LE, the 491 

calibration strategy within TSEB-SM provides in general a significantly improved RMSE 492 

compared to the original TSEB. The RMSE is 49 W/m2 instead of 73 W/m2, 78 W/m2 instead 493 

of 78 W/m2 and 119 W/m2 instead of 128 W/m2 for the flood-, controlled drip- and reference 494 

drip-irrigated field respectively. The determination coefficient between simulated and observed 495 

H is significantly improved from 0.61 to 0.67, from 0.37 to 0.75 and from 0.29 to 0.82, 496 

respectively when including calibrated parameters to TSEB-SM. 497 

One can observe that the slope of the linear regression between TSEB and in situ H is very low 498 

in all cases. The modeled H does not seem to be sensitive enough to changes in surface and 499 

atmospheric conditions during all three periods (fc ≤ 0.5, fc > 0.5 and senescence).  500 

 501 
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 502 

 503 
Figure 9.Scatterplot of simulated versus observed H for the (top) food-, (middle) controlled drip- and (bottom) reference 504 

drip-irrigated fields and for (right) TSEB and (left) TSEB-SM model, respectively. 505 

Tableau 1:Error statistics (RMSE, R2 and MBE) between  modeled and measured sensible and latent 506 

heat fluxes for the flood, controlled drip- and reference drip-irrigated fields, and for TSEB and TSEB-507 

SM model, separately (Rn and G are forced to their measured value 508 

  TSEB-SM TSEB 

  RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

 

Latent 

heat flux 

(LE) 

Flood 49 0.79 -4 78 0.79 66 

Controlled 

drip 

73 0.64 -6 119 0.22 29 

Reference 

drip 

78 0.86 56 128 0.28  66 

 

Sensible 

heat flux 

(H)  

Flood 49 0.67 4 78 0.61 -66 

Controlled 

drip 

73 0.75 7 119 0.37 -29 

Reference 

drip 

78 0.82 -56 128 0.29 -66 
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 509 

 510 

The intercomparison between TSEB and TSEB-SM is finally undertaken by simulating the 511 

available energy, instead of forcing Rn and G to their measured values as in Table 1. Table 2 512 

reports the error statistics for the four energy fluxes separately. The larger discrepancies for LE 513 

estimated from TSEB-SM model in this case is likely due to greater scatter between modeled 514 

and measured Rn, which is related to the difference between simulated and observed LST. Note 515 

also that the determination coefficient between simulated and measured G is about 0.4-0.5 for 516 

both TSEB and TSEB-SM and all three sites. This is linked in part to the relatively small 517 

magnitude and range in the observed values combined with the simplicity of the approach used 518 

to estimate G. Overall, the simulations of LE and H when modeling Rn and G are fully 519 

consistent with those obtained when forcing Rn and G to their measured values. TSEB-SM still 520 

provides superior results to TSEB in terms of RMSE, R2 and MBE between simulated and 521 

observed fluxes. Especially the sensible heat flux is significantly improved in all cases.  522 

 523 

Tableau 2:Error statistics (RMSE. R2 and MBE) between modeled and measured net radiation, 524 

conductive flux, and sensible and latent heat fluxes for the flood, controlled drip- and reference drip-525 

irrigated fields, and for TSEB and TSEB-SM model, separately. 526 

  TSEB-SM TSEB 

  RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

 

Net 

radiation 

(Rn) 

Flood 31 0.98 -25 18 0.99 -17 

Controlled 

drip 

27 0.98 -10 16 0.99 1 

Reference 

drip 

50 0.95 -32 9 0.99 1 

 

Conductif 

flux (G) 

Flood 23 0.41 2 22 0.43 1 

Controlled 

drip 

20 0.5 9 25 0.48 12 

Reference 

drip 

14 0.39 14 30 0.38 26 

 

Sensible 

heat flux 

(H)  

Flood 27 0.66 34 78 0.61 -67 

Controlled 

drip 

61 0.82 8 118 0.38 -28 

  527 

 528 
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 529 
Figure 10. Scatterplot of observed H+LE versus observed Rn-G (left), corrected H versus observed H (center) and corrected 530 
LE versus observed LE (right) the food- (top), controlled (middle) and reference drip-irrigated (bottom) fields respectively. 531 

 532 

4 Conclusions 533 

A new evapotranspiration model named TSEB-SM is derived from the TSEB formalism by 534 

explicitly representing soil evaporation using a soil resistance. An innovative calibration 535 

approach is also developed to retrieve the main parameters of soil evaporation and plant 536 

transpiration via the soil resistance and αPT respectively. In practice the soil resistance 537 

parameters are retrieved at the seasonal time scale from SM and LST data with 𝐟𝐜 ≤ 𝟎. 𝟓. While 538 

αPT is retrieved at the daily time scale from SM and LST data for 𝐟𝐜 > 𝟎. 𝟓. The performance 539 

of TSEB-SM and TSEB models is assessed in terms of LE and H partitioning using an in situ 540 

data set collected over 1 flood- and 2 drip-irrigated wheat fields.  541 

The convergence of the iterative calibration procedure on (arss. brss) and αPT  is successfully 542 

tested when all three parameters are estimated at the seasonal time scale, as well as when 543 
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considering a daily variability of αPT. The maximum calibrated daily αPT is close to the 544 

theoretical value of 1.26 for all three sites. However its temporal variability is found to be 545 

significant even during the growing stage of wheat. A qualitative analysis of αPT variabilities 546 

in relation to soil moisture at 5 cm and 30 cm depth and to VWC indicates that αPT cannot be 547 

considered as a constant in the conditions of the experiments. Large deviations about the 1.26 548 

value are likely to occur during the agricultural season especially under dry, water deficit and 549 

advective conditions. 550 

In terms of flux estimates, TSEB provides satisfying results for the flood site but not for the 551 

other two (controlled and reference drip) sites. The saturation of TSEB in the higher range of 552 

ET is due to the fixed maximum value for αPT (equal to 1.26). Moreover, the overestimation of 553 

LE by TSEB during senescence is associated with a very low sensitivity of simulated H to any 554 

surface/atmospheric conditions. Both limitations identified in the TSEB formalism seem to be 555 

partly solved by the TSEB-SM approach with a slope of the linear regression between 556 

simulated and observed LE/H much closer to 1 in all cases. Such an evapotranspiration model 557 

simultaneously constrained by LST, fc and SM seems to respond robustly in terms of LE/H 558 

partitioning for wheat crops under the conditions of the experiments. However, the calibrated 559 

daily αPT needed to be i) smoothed to reduce random uncertainties and ii) normalized between 560 

its two extreme values since the 0 value was not necessarily reached at harvest. In the real 561 

application the use of NDVI as a green vegetation index would provide complementary 562 

information to constrain even more the drop in the retrieved “effective αPT” during senescence. 563 

Further efforts should be made to investigate the variability of αPT at the daily and finer time 564 

scales and to relate its variations to variables other than biomass and soil water availability. 565 

Reciprocally, the retrieved αPT could serve as a basis for deriving a proxy for root zone soil 566 

moisture and crop water needs. Last but not least estimates of SM are needed at the crop field 567 

scale. Those data may be provided by satellite microwave data disaggregated at medium to 568 

high spatial resolution (Merlin et al., 2013; Molero et al., 2016). Especially, the L4DIS 569 

processor (Merlin et al., 2012; Molero et al., 2016) provides 1 km resolution SM data on a 570 

routine basis from 40 km resolution Soil Moisture and Ocean Salinity (SMOS) and 1 km 571 

resolution MODIS (Moderate resolution Imaging Spectroradiometer) data. Such a high-572 

resolution SM product would be fully compatible with future implementations of TSEB-SM 573 

over large areas. 574 
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