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Particle aggregates are frequently encountered in many natural and industrial environ-
ments. We describe here the stationary state of the fragmentation process of inertial scale
particle aggregates in turbulence, i.e., when the particles and the aggregates are larger than
the Kolmogorov dissipative scale η. For this purpose, we place at the initial time a large
aggregate of millimetric, nearly neutrally buoyant magnetic particles in a high-Reynolds-
number turbulent von Kármán flow. Turbulent fluctuations impose external stresses that
tend to fragment the initial and the subsequent aggregates, contrary to the magnetic dipoles
that impose torques and forces on the magnets responsible for cohesion. Using video image
analyses, we perform the three-dimensional reconstruction of the aggregates and measure
their characteristic sizes. The average number of particles inside each aggregate can then
be deduced as a function of the intensity of turbulence. Assuming a Kolmogorov inertial
scaling law for the turbulent velocity increments, we predict theoretically an aggregate mean
size which is in agreement with our experimental results.

DOI: 10.1103/PhysRevFluids.3.084605

I. INTRODUCTION

The study of aggregation and fragmentation of flocs in turbulent flows is of great importance
in engineering processes such as in the paper or textile making industry [1] where aggregation of
particles or fibers is harmfully controlled. Aggregation is also very frequently observed in natural
systems where it concerns a huge range of scales from nano- or microorganic particles that can be
transported by winds or marine currents [2] to dust grains and even rocks that aggregate in accretion
disks during planet formation [3]. If the effects of turbulence on aggregation and fragmentation have
been widely studied for particles whose size is within the viscous range of turbulence [4,5], the
consequences within the inertial range are poorly documented and not yet understood [6] despite
their tremendous importance.

In the present study, we analyze the effect of a turbulent flow acting on aggregates of magnetic
beads whose sizes are within the inertial range of turbulence. We performed a three-dimensional
video image analysis to detect the aggregates and measure their characteristic sizes. While low-
intensity turbulence allows large aggregates, strong turbulence favors small aggregates, an average
size being reached when the fragmentation by turbulence is not strong enough to continue the
breaking towards smaller scales. Using Kolmogorov scaling arguments, we propose a theoretical
model whose predictions are validated by our experiments that are performed in a fully turbulent
von Kármán flow. We choose millimetric magnetic particles because the separation force between
two adjacent magnets is well characterized and relatively uniform through the thousands of particles
we use. Then we will use a fractal description of the aggregate shapes to measure their dimensions
in order to predict their average size as a function of the turbulence intensity.

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES

The turbulence is generated in a transparent acrylic cubic container filled with 8 l of water by the
counterrotation of two impellers of radius R = 8.6 cm, fitted with straight blades (h = 5 mm). Each
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FIG. 1. Sketch of the turbulent von Kármán flow setup.

impeller can rotate independently at a controlled frequency f ranging from 8.5 to 30 Hz. In our study,
these two rotation frequencies are equal in order to generate a classical von Kármán flow. Figure 1
shows a sketch of our setup that differs from classical installations [7,8] by the presence of two
acrylic grids parallel to the disks. The purpose of these 3-mm mesh grids is to avoid the aggregates
to get close to and break on the rotating disks. Visualization is performed through two perpendicular
sides of the container. With the help of light-emitting diode (LED) light sources, diffused by a
translucent screen, a homogeneous backlight is obtained and used to image the aggregates, allowing
good contrast and depth of the visual field.

In order to characterize the turbulence, we have measured its properties by particle image
velocimetry (PIV) [9] in an (11 × 17)-cm2 section of a meridional plane between the grids in the
absence of magnetic particles. Since the volume fraction of particles is small enough, we can neglect
their backreaction on the flow. Let us note also that at each point x the turbulent kinetic energy
〈u′(x)2〉 is at least 5 times the mean flow energy 〈u(x)〉2. From the two-dimensional PIV velocity
fields, we can also measure the energy dissipation rate which is estimated using the longitudinal
second-order velocity structure function DLL(r ) ≡ 〈[u(x + r, t ) − u(x, t )]2〉, where r is the spatial
variable [10–12]. Figure 2(a) shows the variation of DLL(r )3/2/r (normalized by the Kolmogorov
constant CK ) as a function of r for different disk frequencies. In each case, the inertial regime
corresponds to the plateaus extending between ∼1 mm (larger than η because of the limited resolution
of the PIV) and the integral scale Li ∼ 3 cm. The typical length L of an aggregate is around 1 cm
and thus is smaller than the integral scale of turbulence. At this scale the pressure force induced by
the mean flow is much smaller than the one due to turbulence. Hence, the aggregates will be mainly
sensitive to the turbulent fluctuations. The energy dissipation rate ε is given by the amplitude of
these plateaus using a Kolmogorov constant CK = 2.12 [13]. The variation of ε with the rotation
frequency f is plotted in Fig. 2(b). As expected, ε varies with the third power of f , ε = (2πα)3R2f 3,
in agreement with classical results in turbulent von Kármán flow [7,14], where α = 3.24 × 10−2.
Table I summarizes the parameters of turbulence.

The 1000 beads used for the experiments were made from 1-mm-diam spherical neodymium
magnets. In order to characterize the magnetic interaction, the separation force of a sample of
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FIG. 2. (a) Normalized longitudinal second-order velocity structure function for the different impeller
rotation frequencies f . (b) Energy dissipation rate ε as a function of the impellers rotation frequency f .

magnetic bead pairs is measured when the pairs are separated by a stepper motor. At contact, the
separation force is equal to 0.135 N. Figure 3(a) shows the evolution of the attractive force between
two magnets with parallel magnetic moments m. As expected, this force decreases as r−4

b , where rb

is the distance between the two dipoles [15]. We note two important features that prevent the direct
use of these magnetic beads: First, since their density is around 7, they would sink in water to the
bottom of the container, and second, the separation force at contact would be too large compared to
the expected hydrodynamic force, thus preventing any fragmentation of the clusters by turbulence.
Because of these two difficulties, we coated the magnets with a layer of wax, which has two benefic
effects: First, it reduces the apparent density of the particles and second, by increasing the bead
diameter, it decreases the cohesion force at contact. The characteristics of the final wax-coated beads
are presented in Figs. 3(b)–3(d), where it can be seen that their shape is ovoidal because of the
manufacturing process dipping them into melted wax. They have an aspect ratio around 1.5, an
average main axis equal to 3.7 mm, and a mean density of 1.14. Furthermore, the attractive force
FB is decreased and equal to 4 × 10−4 N for a separation distance of 3.7 mm corresponding to the
average major axis along which the magnetic dipole is aligned. Using the 1000-magnetic-particle
volume and the volume of water between the grids, we can evaluate the solid volume fraction of our
system to be around 3%. This low value indicates that the particle laden flow is dilute and that the
probability for two particles to meet and merge in the turbulent flow is small. To test the eventual
role of buoyancy during the fragmentation process, some of our experimental runs were performed
with salty water having a density of 1.14. As we will see later, very limited effects of sedimentation
were detected and most of our experimental runs were finally realized with fresh water.

TABLE I. Principal characteristics of turbulence.

Parameter Value

Energy dissipation ε 0.05–2 m2/s3

Taylor microscale λ = √
15νu2

rms/ε 1.6–3.2 mm
Taylor-Reynolds number Reλ = √

15/νεu2
rms 600–1000

Kolmogorov length scale η = (ν3/ε)1/4 28–65 μm
Integral scale Li 3 cm
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FIG. 3. (a) Magnetic force FB between the magnets as a function of their separation distance r .
(b) Photograph of some beads coated with wax. (c) Main axis length probability distribution function (PDF)
and (d) density PDF, with their Gaussian fits.

III. EXPERIMENTAL PROCEDURES AND MEASUREMENTS

In order to relate the size of the aggregates to the intensity of turbulence, different experimental
runs were performed at different rotation frequencies. At the beginning of each experiment, all the
magnetic beads are placed inside the tank packed in a single large cluster and then the disks are set
into rotation. Under the action of turbulence, the initial large aggregate breaks into smaller ones of
different sizes. Note that even if we cannot totally exclude that fragmentation takes place by collision
on the grids, essentially we have visually observed it in the core of the flow. As already said, the
aggregation rate for the small solid fraction of 3% is quite low. Aggregation may arise in the bulk but
takes place mainly close to the grids where the probability of aggregate collision is higher. Therefore,
after some time, a stationary state [16] is reached when this aggregation process and the turbulent
fragmentation in the bulk balance. For the smallest aggregates, the cohesive force is larger than
the turbulent stresses preventing their fragmentation towards smaller scales. Fragmentation is thus
blocked or frozen at a certain aggregate mean size where on average the cohesive force equilibrates the
hydrodynamical force which is a function of the dissipation rate ε of turbulence. This force balance is
obtained when the last bond between two parts of an aggregate breaks. For each frequency, when the
stationary regime is achieved (and checked by visual inspection), we record with two synchronized
CCD cameras, a 255- or 500-frame video sequence of the flow at a rate of 5 images per second.
We choose on purpose a low video rate in order to perform statistics of the aggregate size from
uncorrelated images. Three different regimes are detected and illustrated in Fig. 4. As expected, at a
low frequency [8.5 Hz in Fig. 4(a)] the aggregates are made of a relatively large number of magnets,
while at higher frequency, the size of the aggregates becomes smaller [see Fig. 4(b) for 14.5 Hz]
until the flow is seeded by merely only individual particles [see Fig. 4(c) for 19 Hz].

To measure the volumes of the aggregates, we have performed a three-dimensional digital
reconstruction of each of them using the convex hull volume reconstruction method [17]. As shown
in Ref. [18], the precision of the volume reconstruction increases with the number of cameras. Here
with only two cameras, the volumes are always overestimated. However, most of the time the shape
of the aggregates is not concave; then this error should not impact our results. Moreover, the packing
coefficients, introduced later in the next section, will take into account the eventual concavity of the
aggregates. The principle of the reconstruction is the following: A 10-cm-side initial cubic volume
is determined at the center of the tank, a region seen by both cameras. This volume is then divided
in eight cubes with equal side which are projected on the two images. If the projection of a cube is
empty in at least one image, this cube is discarded. Otherwise, this cube is divided into eight smaller
cubes and the process is repeated until the current cube is completely filled and then saved. Finally,
the volume of each aggregate is determined using the positions and the sizes of each saved cube.
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(a) (c)(b)

FIG. 4. Observation of the three different regimes as a function of the turbulence intensity: (a) f = 8.5 Hz,
(b) f = 14.5 Hz, and (c) f = 19 Hz.

IV. MODEL FOR THE AVERAGE AGGREGATE SIZE

On average, aggregates consist of a number N of magnetic particles of diameter d. We can then
express their average volume V , cross section area S, and length L as a function of N and d,

V = c3N
3/d3d3, S = c2N

2/d2d2, L = c1N
1/d1d, (1)

where 1/d1, 2/d2, and 3/d3 are fractal dimensions characterizing the shapes of the aggregates and c1,
c2, and c3 three parameters representing their level of packing. From the inspection of the aggregates
as can be seen in Fig. 4, they appear to be quite compact without any arborescence. As a consequence,
and in order to simplify our analysis, we will assume in the following that d3 = 3 and c3 = π/6.
In this way, the volume of an aggregate of N spheres is simply equal to N times the volume of a
sphere. This will keep the possible fractal arrangements of clusters only in the expressions of S and L.
Following the seminal idea of Kolmogorov [19] concerning drop breakage in turbulence, we model
now the mean size of the aggregates by the balance between the hydrodynamic force FH acting on
their cross section and the magnetic force FB that tends to keep two particles clustered together.
Indeed, when an aggregate breaks into smaller ones, the last link between the initial aggregate and
a particle (belonging or not to another cluster) is controlled by a unique dipolar interaction, i.e., by
the force FB . This assumption differs strongly from the classical hypothesis where the number of
broken bonds scales with the number of aggregated particles [20]. To estimate FH , we will use the
results of Qureshi et al. [21] and Volk et al. [22], who show that the variance of the fluctuations of
acceleration of neutrally buoyant inertial particles is proportional to the pressure fluctuation variance
at the aggregate scale (the viscous term being negligible because of the high value of the aggregate
Reynolds number). Thus, here the inertial terms in the momentum equation are responsible first
for the transport of the aggregates but also for their eventual breaking. Note that in the model by
Kolmogorov [19], the mean drop size is obtained by replacing in the force balance the magnetic force
by the capillary force. Therefore, for an aggregate of size L within the inertial range of turbulence,
the hydrodynamic force FH is given by

FH ∼ 1
2ρ(δuL)2S, (2)

where δuL is the typical velocity increment at scale L and ρ the fluid density. Taking into account that
δuL ∼ (εL)1/3, which is the classical law of homogeneous and isotropic turbulence [11] together with
our measurement of the dissipation rate ε, we can express the equilibrium regime of the fragmentation-
aggregation process

FH ∼ 2ρ(απf )2(R2d4Nβ )2/3c2c
2/3
1 = FB, (3)

with β = (3d1 + d2)/d1d2.
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For high rotation rates of the impellers, we have observed that aggregates are completely
fragmented and that only individual particles are present in the flow [see Fig. 4(c)]. Therefore,
aggregates reach their smallest size when they consist of only Nc = 2 beads, i.e., chainlike structures
implying that c1 = 1, c2 = π/4, c3 = π/6, d1 = 1, and d2 = 2 giving βc = 5/2. A threshold
frequency fc at the onset is thus obtained from Eq. (3). For our setup, we calculate a value fc ≈ 25 Hz.
This value corresponds to a dissipation rate εc ∼ 1 m2/s3. Using this threshold, we can recast Eq. (3)
to predict the average number of particles per aggregate

N ∼
(

fc

f

)3/β(
Nc

a

)βc/β

or N ∼
(

εc

ε

)1/β(
Nc

a

)βc/β

, (4)

with a = (4/πc
2/3
1 c2)3/2βc . As βc = 5/2, a = (4/πc

2/3
1 c2)3/5, a value that remains close to 1 for the

different arrangements that can be encountered when packing beads [23]. Note that the proportionality
constant that appears through the ∼ symbol in Eq. (4), originates from the definition of FH [Eq. (2)],
and can be absorbed in constant a.

As can be observed in Fig. 4(a), in the low-frequency or weakest-turbulence regime, the aggregates
seem quite smooth and compact. In this case d1 = d2 = 3 and β = 4/3. As a consequence, Eq. (4)
leads to a scaling law valid far from the onset for the average number N of particles per aggregate
as a function of the rotation frequency f of the disks or of the dissipation rate of turbulence:

N ∝
(

f

fc

)−9/4

or N ∝
(

ε

εc

)−3/4

. (5)

A similar scaling law is predicted in [20] but the assumption about the number of bonds broken
at fragmentation leads to a different exponent. These results are analogous to the pioneer work of
Kolmogorov on the drop fragmentation in turbulence where the size of the droplet Ddrop is related
to the turbulent intensity Ddrop ∼ ε−K with K = 2/5 [19].

V. COMPARISON BETWEEN EXPERIMENTAL RESULTS AND THEORY

After having processed the synchronized video images issued from the two cameras, a statistical
study of the aggregate size and shape distribution is realized. Note that as our model applies only for
N � 2, the individual particles are not taken into account in the statistical analysis. First, Fig. 5(a)
presents the evolution of the measured mean number 〈Nexpt〉 of particles per aggregate for the two
different densities of fresh and salty water. The measured mean number 〈Nexpt〉 is calculated from
the volume of each aggregate divided by the volume πd3/6 of a single particle. It is an upper bound
of the real number of particles N that depends on the packing number c3: 〈Nexpt〉 = 6c3/πN with
c3 between π/6 for chains and 1/

√
2 for the maximum admissible packing of spheres [23]. We can

conclude that the value of c3 is quite constrained and stays in any case close to 0.5, thus justifying
our choice to keep c3 = π/6. Then, from the measurement of the surface S and the length L of an
aggregate, we can determine d1 and d2 and then calculate β, which is plotted in Fig. 5(a) versus
ε/εc. To validate our model, we want to determine the aggregate mean size from the evolution of
β. To do so, we use a smooth sigmoid function βfit = β0/{1 + exp[(ε − εb )/σ ]} + β∞ that fits the
experimental values of β. From this fit, we can then determine the evolution of 〈Nexpt〉 as a function
of ε/εc, with only one adjustable parameter a which takes into account the packing coefficients
and also some proportionality constants (close to 1) coming from the definition of FH . We see that
our theoretical model nicely reproduces the experimental results on the entire range of exploration
[solid lines in Fig. 5(a)] with a single fitting coefficient a = 0.9. Between the large and smooth
aggregate asymptotic regime given by the −3/4 scaling law (5) and the threshold, there exists
a smooth transition where the shape of the aggregates becomes less regular, acquiring nontrivial
fractal dimensions. Finally, under the threshold, the average measured number 〈NT 〉 of aggregated
or not particles becomes close to the single-particle limit as can be observed in Fig. 5(b). We also
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FIG. 5. (a) Experimental results for fresh water are shown by red closed circles (〈Nexpt〉) and blue closed
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Also shown are the theoretical predictions (solid lines) of the average number of particles N per aggregate
versus the dissipation rate ε of turbulence. A smooth sigmoid evolution for β is fitted through the fresh water
data and is used together with the measured threshold fc = 25 and fitting parameters a = 0.9 and 6c3/π = 1 to
predict 〈Nexpt〉. (b) Measure of the average number 〈NT 〉 of particles per aggregate taking into account individual
particles in the statistics.

observe that the results of the experiments using fresh and salty water are very close one to the other,
justifying our assumption to neglect the settling.

Therefore, our results validate our hypothesis that aggregates break one bond after another,
reaching their average final size when the last bond breaks. As explained in Ref. [24], a hierarchical
fragmentation could indeed lead to a log-normal distribution of the aggregate sizes. Even if the
number of aggregates that we have analyzed is limited, we have computed the probability density
functions (PDFs) of the number Nexpt of particles in each aggregate for different rotation rates of the
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FIG. 6. (a) Probability density functions of the size of the aggregates for different rotation rates of the
impellers in the case of the fresh water experiments. In agreement with a hierarchical breaking mechanism,
log-normal distributions that have the same means and standard deviations as the experimental distributions
have been plotted through each distribution. (b) Evolution of the variance σ of the PDFs (fresh water) as a
function of the dissipation rate ε of turbulence.
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impellers for the experiments performed in fresh water, discarding as before individual particles in
the statistics. Figure 6(a) shows these experimental distributions. We have checked that their mean
values and variances are converged, which is enough to completely determine the shape of log-normal
distributions which are also plotted in Fig. 6(a) (solid lines) without any adjustable parameter. As can
be seen in the figure, there is good agreement between the log-normal PDFs and the experimental
data. The tails of the PDFs show a monotonic increase of the large cluster population as the intensity
of turbulence decreases, a trend that can also be observed in Fig. 6(b) on the evolution of the variance
σ of the PDFs versus the dissipation rate ε of turbulence. However, to fully validate the log-normal
distributions of the aggregate sizes, more extensive measurements would be needed in order to
converge the tails of the experimental PDFs.

VI. CONCLUSION

In classical studies on aggregation of nano- or microparticles in turbulent flows, the particles
are usually smaller than Kolmogorov’s scale of turbulence and thus are essentially sensitive to
viscous effects. In this study, we have deliberately chosen to study the fragmentation of particle
aggregates whose sizes are within the inertial range of turbulence. Experiments were performed
using in-house manufactured millimetric magnetic particles that aggregate due to their magnetic
field. The consideration of a classical model of turbulence based on Kolmogorov’s similarity
hypothesis leads to the prediction of the average size of the aggregates as a function of the
turbulence intensity. Experimental measurements, using three-dimensional aggregate detection and
reconstruction software, and theoretical predictions agree very well. The analysis of the aggregate
size distribution is closed to a log-normal distribution and is coherent with the hierarchical physical
mechanism we evoke for aggregate fragmentation. As a conclusion, we claim that knowing the
intensity of turbulence and knowing the cohesive force and shapes of the particles, our model
can predict the average size of the aggregates. We expect that our result can be used in different
engineering situations, but we claim also that it can be used to probe turbulence itself: Knowing the
force field between particles, the sole observation of the aggregate sizes and shapes should lead to
the estimation of the level of turbulence.
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