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Abstract

Numerical Homogenization gives numerical approximations of the effective properties
of a composite material. In the case of periodic composite, multi-scale modeling allows
to consider only a Representative Volume Element (RVE). In this paper, we propose an
original finite element method based on fictitious domain principle, in which the RVE is
represented by a structured mesh and the inclusions are represented by independent and
non matching meshes. The integral computations on inclusions meshes are substituted
into the structured mesh of the RVE, with the help of a connection matrix.
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1. Introduction

A composite material is an heterogeneous material, composed of at least two differ-
ent constituents : a matrix, usually serving as a binder, and inclusions made of one or
more materials. The inclusions are often called reinforcements as the aim of manufac-
turing composite materials is to combine the properties of the matrix/inclusions to pro-
duce material with different properties from the individual constituents. To efficiently
model such materials, numerical homogenization techniques allows the computation
of the effectives properties.

We can distinguish two kinds of numerical homogenization techniques : mean field
methods and full field methods [3, 19]. The mean field methods are analytic or semi-
analytic methods, such as the Mori-Tanaka method or the self consistent method [8, 2].
They are used with an incomplete knowledge of the composite: only the volume frac-
tion and the specific geometry of the inclusions are known. As they are based on the
study of the Eschelby’s tensor, see [4], they are usually restricted to spherical inclusions
with low volume fraction. Full field methods consider more general composites, but re-
quire the exact knowledge of the geometry. Effective properties can be computed with
multi-scale modelling [20], such as the finite element method [5] or iteratives methods
based on Fast Fourier Transfom technique [16, 17]. These methods are valid for a pe-
riodic composite material. The material period is then identified as the Representative
Volume Element (RVE).
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As the RVE becomes more complex, especially in the cases with very thin or tiny
inclusions or inclusions coated with a thin pellicle, some difficulties arise : to accurately
model such RVEs, we need a huge number of meshes (especially in 3D) or a high
resolution image. Although some numerical advances allow the study of very high
resolution 3D images, the need to efficiently compute the effective properties of more
and more complex RVE subsists.

In the case of finite element methods, one difficulty, due to the heterogenity, is
to accurately approximate integrals defining the energy bilinear form involved in the
weak formulation of the homogenization modeling see [20, 5, 14]. It usually requires a
conforming mesh but the building such a conforming and periodic mesh with complex
geometries is not trivial, see for instance [21].

To circumvent the meshing difficulty, several approaches have been considered,
such as eXtended Finite Element Method [23, 15, 10] (XFEM), or Finite Cell Methods
[11] (FCM). The XFEM is combined with the Level Set Method to define the inclusions
and enriched shape functions [24]. The FCM considers only one structured mesh the
elements of which are then called cells. The FCM uses cell subdivisions to ensure a
better approximation of the integrals, see [11, 10].

Although considering periodic RVE based on multi-scale analysis rather than nu-
merical homogenization with Kinetic or Stress Uniform Boundary Condition, the method
presented in this paper has the same goal in the accurate approximation of integrals
defining the energy bilinear form, but relies on computations with independent meshes
based a Fictitious Domain principle: We use one structured mesh, for the entire RVE,
including the matrix and the inclusions and non-structured independent meshes for the
inclusions. We then compute integrals defined both on the whole RVE and integral
defined on the inclusions. The inclusion meshes will be related to the structured mesh
through a Connection Matrix. The Fictitious Domain Method for Homogenization
(FDMH), proposed in this paper, can be directly applied to inclusions of any kind of
shape or geometry, as long as a mesh is available.

The paper is organized as follows, after this short introduction we recall the periodic
homogenization theory, based on a multiscale modeling and asymptotic developement.
This periodic homogenization lead to variational problems that can be solved with the
help of a classical finite element method. In section 3, we then introduce our new
method based on fictitious domain principle to represent the inclusions. We describe
the construction of a connection matrix which allows to connect the meshes and com-
pute the energy forms involved in the periodic homogenization technique. In section 4,
we show some numerical tests with different inclusion geometries, in order to evaluate
and validate our method. We discuss the performance of our fictitious domain method
for homogenization.

Notations
In this paper, scalar values are typed in italic whereas the vector values are typed in

bold face.
Let us consider a εP periodic material. P constitutes the Representative Volume Ele-
ment (RVE), ε denotes the characteristic length of the RVE. To fix the idea, we set the
RVE P = [0, 1]3. The multiscale modeling consider macrocospic and local space vari-
ables. To the macroscopic space variables x ∈ R3, we associate the local (microscopic)
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space variables:

y =
1
ε

x ∈ P.

The divergence and gradient differential operators are respectively denoted as

div = divx +
1
ε

divy,

∇ = ∇x +
1
ε
∇y,

where divx and ∇x (resp. divy and ∇y) denote the divergence and the gradient differ-
ential operator with respect to the macroscopic variables x (resp. the local variables
y).

2. Periodic Homogenization

In order to present our original method, we briefly recall here the periodic ho-
mogenization theory [14, 20] and its numerical implementation with the finite element
method [5]. For the sake of simplicity, we present the theory and our method in the case
of thermal properties. With a periodic heterogeneous media, the thermal constitutive
law writes:

q = Λ∇u, (1)

where u denotes the temperature and q the heat flow, the conductivity tensor Λ is εP
periodic.

Under the action of external heat source f , the thermal equilibrium writes:

div q + f = 0. (2)

We set the asymptotic expansion:

u = u0(x) + εu1(y) + . . . (3)

∇u = e(u) = e0(u) + ε e1(u) + . . . (4)

q = q0 + εq1 + . . . (5)

As we develop:

∇u = (∇x +
1
ε
∇y)(u0 + εu1 + ε2u2 + . . . )

=
1
ε
∇yu0 + (∇xu0 + ∇yu1) + ε(∇xu1 + ∇yu2) + . . . ,

we obtain by identification:

e0(u) = ∇xu0 + ∇yu1

e1(u) = ∇xu1 + ∇yu2

q0 =Λ(∇xu0 + ∇yu1).
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Writing asymptotic expansion of the heat flow q in the equilibrium equation (2) gives,
by identification, two distinct equations, a local equation and a macroscopic equation,
see [20]. It follows that u0 depends only on x and u1 must be P-periodic. The local
equation writes :

divy(q0) = 0 in P, (6)

We write (6) in a weak or variational form :∫
P

q0∇y(u∗) = 0 ∀u∗ ∈ H1
per(P) (7)

Where H1
per(P) is the P-periodic Sobolev space H1 .

Let E0 = ∇xu0, then
q0 = Λ(E0 + ∇yu1).

Averaging q0 on the RVE P, we then have :

〈q0〉 =

∫
P

Λ(E0 + ∇yu1) = Λh∇u0. (8)

Λh denotes the homogenized conductivity tensor.
Furthermore, with (7), ∀E∗ ∈ R3 and ∀u∗ ∈ H1

per(P) :∫
P

q0(E∗ + ∇yu∗) =

∫
P

q0E∗ +

∫
P

q0∇yu∗

= 〈q0〉E∗

= Λh∇u0.E∗

In other words, we obtain the variational problems:∫
P

Λ(E0 + ∇yu1).(E∗ + ∇yu∗) = ΛhE0.E∗ ∀u∗ ∈ H1
per(P),∀E∗ ∈ R3. (9)

The resolution of the three problems (9) as ΛhE0 span R3, gives the homogenized
conductivity tensor Λh. The variational problems (9) are well-posed [20] and their
solutions can be approximated by the finite element method [5].

3. Fictitious Domain Method

The fictitious domain method is a technique used to solve elliptic boundary value
problems in domain with complex boundaries or interfaces for which the meshing
or the repetition of the meshing can induces difficulties[7]. To remedy this, distinct
meshes are considered, one main mesh, usually structured, and meshes of the inter-
faces or inclusions. The fictitious domain method is then equivalent to a quadratic
optimization problem with a linear constraint : the relations between the meshes or
the interface or boundary conditions are taken in account with the help of Lagrange
multipliers, see [7]. The method presented here differs since we shall not introduce
Lagrange multipliers and we employ a true mesh of the inclusion instead of refining
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the computation within the element (or cell) that are being cut by the boundary of an
inclusion see [11, 10]. Actually, the use of isoparametric element on a structured mesh
of the RVE allows us to connect the different meshes in a very simple way with the
help of a Connection Matrix.

Energy form
We present our method in the case of thermal properties, the extension for other

cases such as linear elasticity is straightforward.
From the variational problem (9) let us consider the quadratic energy functional:

J(u,E) =

∫
P

Λ(E + ∇yu).(E + ∇yu). (10)

To fix the idea, we suppose the RVE P to be constituted by two homogeneous and
isotropic media : the matrix P \S and one inclusion S . The conductivity matrix writes:

Λ(y) =

 Λm in P\S

Λs in S .

We have :

J(u,E) =

∫
P\S

Λm(E + ∇yu).(E + ∇yu) +

∫
S

Λs(E + ∇yu).(E + ∇yu). (11)

We then rewrite :

J(u,E) =

∫
P

Λm(E + ∇yu).(E + ∇yu)︸                             ︷︷                             ︸
Jm

+

∫
S

(Λs − Λm)(E + ∇yu).(E + ∇yu)︸                                      ︷︷                                      ︸
Js

(12)

The main idea of the FDMH consists in defining two distinct and a priori incompatible
and independent meshes representing the RVE P and the inclusion S . The considera-
tion of these meshes allow independent numerical computations of Jm and Js : Along
the structured mesh of the entire domain P, let us define the interpolation space Vh of
dimension n such that any uh ∈ Vh can be represented by û ∈ Rn. The functional Jm

can then be defined with the help of a (n + 3) × (n + 3) matrix Km :

Jm(uh,E) =

∫
P

Λm(E + ∇yuh).(E + ∇yuh) =

[
û
E

]>
Km

[
û
E

]
. (13)

On another hand, let us consider a conforming mesh of the inclusion S and let us
define the interpolation space W l. Let p be the dimension of W l, any vl ∈ W l can be
represented by a vector v̂ ∈ Rp. In order to simplify the presentation, the meshes will
be denoted respectively as P and S .

The functional Js can be defined in W l with a (p + 3) × (p + 3) matrix Ks :

Js(vl,E) =

∫
S

(Λs − Λm)(E + ∇yvl).(E + ∇yvl) =

[
v̂
E

]>
Ks

[
v̂
E

]
. (14)

Both the matrices Km and Ks can be computed using standard finite element procedures.
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A Connection Matrix
As we defined the matrices Km and Ks, the main difficulty is to connect the Degrees

of Freedom (DOFs) v̂ of the inclusion S to the DOFs û of the structured mesh P. With
isoparametric elements, this can easily be achieved:
For each component vi of v̂, we have vi = v(Ni) where Ni is a node of S . Let El, be
an element of the RVE P in which the node Ni is included, see Figure 1. Let x̂, ŷ,

Figure 1: A node Ni from a triangular mesh of an inclusion in the quadrangular element El of the RVE

ẑ be the coordinates of the nodes constituting the element El. With an isoparametric
element, we usually define a reference element and its corresponding shape functions
Φ̂. Let (x, y, z) be the coordinates of the node Ni, and let (r, s, t) be its coordinates in
the reference element associated to El. By definition, we have :

x = Φ̂(r, s, t)> x̂

y = Φ̂(r, s, t)>ŷ

z = Φ̂(r, s, t)>ẑ

Let vi be the value of vl at node Ni :

vi = v(x, y, z) (15)

As we work with isoparametric elements, we also have :

v(x, y, z) = Φ̂(r, s, t)>û, (16)

In other words, we have the relation from the value vi at a node of the inclusion mesh
to the values û on the mesh of the element El :

vi = Φ̂(r, s, t)>û. (17)

We fill up (completing with zeroes) the relation (17) to all the values of u in the mesh
of the RVE P and let us denote with Ci the 1 × n line matrix such that :

vi = v(x, y, z) = Φ̂(r, s, t)>û = Ciû,
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(û abusively represents the nodal values of u in an element El but also in the whole RVE
P). Considering every nodes of S , we finally obtain a connection matrix C constructed
line by line, which connects v̂, the DOF associated to the mesh of the inclusions, to û,
the dof associated to the mesh of the RVE :

v̂ = Cû. (18)

We are then able to rewrite the energy quadratic form computed on the inclusion Js :

Js =

[
v̂
E

]>
Ks

[
v̂
E

]
=

[
Cû
E

]>
Ks

[
Cû
E

]
. (19)

Finally, we obtain the main energy quadratic form defined only on û :

J(u,E) =

[
û
E

]> (
Km +

[
C 0
0 1

]>
Ks

[
C 0
0 1

]) [
û
E

]
. (20)

In other words, with the matrix defined in (20), we are applying a finite element method
to the problems of (9) with the interpolation space defined on the structured mesh of
the RVE P.

In case of multiple inclusions, the procedure is repeated independently for each
inclusion; all computations can be performed in parallel. The principle is very general
and flexible, the inclusion meshes do not have to be of identical types, we can mix
different types of mesh.

A priori, for unstructured meshes, the determination of the connection matrix C is
not trivial. This difficulty is completely relieved, in the case of structured mesh for
the RVE, with the use of isoparametric elements. In such cases, a simple formula (17)
gives every components of the matrix C based on the definition of the shape functions
of the reference element. Furthermore, with a regular structured mesh of P the periodic
boundary condition are easily imposed by a simple substitution procedure.

It should be noted that since the material are heterogeneous, the discontinuity of the
constitutive law implies that our FDMH solution, as it is not enriched, does not pos-
sess the correct weak continuity at the interfaces, except in the case where the distinct
meshes are matching, see the test with a cubic inclusion in section 4.2. In the general
case (non matching meshes) our method can be seen as conforming the discontinuity
but for an approximated inclusion geometry. The approximation of the geometry is
equivalent to a pixelization of the inclusion. Thus, the convergence of the method is
ensured since a finer RVE mesh induces a better approximation of the inclusion.

4. Numerical tests

In order to validate the FDMH, we present here some numerical tests. We study
thermal and linear elastic cases. For the sake of simplicity, we consider isotropic con-
stitutive laws. We define a contrast parameter as the ratio between the characteristic
coefficient of inclusions and that of RVE :

• In the thermal case
cthermal =

λinc

λrve
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• In the linear elasticity case

celastic =
Einc

Erve

where λinc and Einc (resp. λrve and Erve) are the conductivity and the Young’s modulus
of the inclusion (resp. the matrix). In all cases presented in this paper, we chose to set
the contrasts cthermal and celastic to 100.

We consider periodic RVE defined with inclusions of elementary geometry such as
sphere, cube, and ellipsoid, To fix the ideas, we chose the 8-nodes hexaedric element
(cub8) both for the inclusions and the RVE P, see Figure 2.

Figure 2: Spherical (left) and cubic (right) inclusions in hexaedric mesh

The structured mesh of the RVE is characterized by its resolution. A resolution n
corresponds to a n × n × n subdivision in all three space dimension. For instance, a
resolution 10, represents a 10 × 10 × 10, 8-nodes hexaedric mesh of the RVE, which
contains 1000 elements, 1331 nodes, 1334 DOFs in the thermal case, and 3999 DOFs
in the elasticity case. In the following, the RVE mesh resolution shall be denoted as
Nrve. Associated to the resolution, we define the parameter hrve = 1/Nrve, representing
the characteristic length of an element of the mesh.

Besides the RVE resolution Nrve, we define another parameter Ninc to set the el-
ement size of the mesh of the inclusions. As hrve and hinc are respectively the char-
acteristic length of the mesh of the RVE and the inclusion, we define the ratio η as
:

η =
hrve

hinc
. (21)

A value of η larger than 1 means a finer mesh of the inclusion than the RVE’s.
A serial of numerical tests have been performed to evaluate the influence of η on the
results. We found out that, as we increase the value of η, the relative error is decreasing
to 0. However, the evolution of relative error becomes negligible from the point η = 1,
we illustrate this in Figure 3 in the case of spherical inclusion. On the other hand, a
large value of η means a finer inclusion mesh and thus a longer time to complete the
computations.
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As the geometry can be complex, we also imposed a minimal resolution for the
inclusions meshes. Hence for low RVE resolution, the parameter η can actually be
greater than 1, in order to ensure a correct approximation of the geometry. Moreover,
the meshing of the inclusion must be refined enough compared to the RVE meshing :
a finer inclusion mesh avoids holes in the connections. This is a standard requirement
in Fictitious Domain Methods. In other words, the mesh of the inclusion must be
sufficiently refined compared to the resolution of the RVE, but need not to be too fine
since that does not improve the approximation beyond a certain value. In all of our
following numerical studies, the ratio η is set to the ”optimal” value η = 1.
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Figure 3: Relative error of the homogenized bulk modulus against the value of η for different RVE resolu-
tions, in the case of a spherical inclusion

4.1. Spherical inclusion

Figure 4: RVE with one spherical inclusion of diameter d = 0.6, volume fraction ρ = 0.1131

A sphere is defined by the coordinates of its center and its diameter d. In this
example, we set d = 0.6, the volume fraction is thus ρ = 0.1131, see Figure 4. Since ρ is
small enough, the analytical Mori-Tanaka model, based on the Eschelby’s tensor is used
as the reference solution [8], both in thermal and linear elasticity cases, see [22, 18].
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Figure 5: Relative error of computed homogenized conductivity coefficient λ for one spherical inclusion

In Figure 5, we draw the relative error of homogenized conductivity coefficient λ
between the FDMH and the reference solution, the contrast cthermal = 100. Linear
convergence is observed with respect to the RVE resolution. With a resolution Nrve =

100 for the RVE, the relative error is about 1%.
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Figure 6: Relative error of computed homogenized elasticity coefficient k and µ for one spherical inclusion

In the linear elasticity case, the contrast celastic is also set to 100. The Poisson’s
ratio is fixed as 1

3 for both the inclusion and the matrix.
As the composite material is isotropic, we use the bulk modulus k and the shear

modulus µ to represent the homogenized results. In Figure 6, the relative error of the
homogenized elastic coefficient k and µ are plotted versus the RVE resolution. We
notice a linear convergence with respect to the RVE resolution for both homogenized
coefficients k and µ, which is similar to the thermal case.

We end this section with the case of one spherical inclusion of various size, the
contrasts remain fixed at cthermal = celastic = 100. We plot the comparative results
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Figure 7: Comparison of normalized effective conductivity computed by Mori-Tanaka Model, FDMH, FFT
at resolution 50 and 100 in the case of one spherical inclusion of different size
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Figure 8: Comparison of normalized effective elastic properties computed by Mori-Tanaka analytic Model
(MT), Self Consistent semi-analytic model (SCM), FDMH, FFT at resolution 50 and 100 in the case of one
spherical inclusion of different size; bulk modulus (left) and shear modulus (right).

of the normalized conductivity (thermal case), see Fig. 7, and normalized bulk and
shear modulii (elasticity case), see Fig. 8 between the Mori-Tanaka analytic model, the
FDMH and the FFT method with different resolutions (50 and 100). We note that for
greater volumic fraction the results given by the FDMH method deviate from analytical
references (Mori-Tanaka and self-Consistent Model) but remain close to the results
given by the FFT method.

4.2. Cubic inclusion

In this section, we consider a cubic inclusion. A cube of side l = 0.5 is placed at the
center of RVE, as shown in Figure 9. The volume fraction of the inclusion is ρ = 0.125.

The iterative methods based on the FFT (Fast Fourier Transform) give in this case
an almost exact solution since the geometry is exactly reproduced by the voxelisation,
see [16]. For example, if we consider a centered cubic inclusion of side 0.5, the vox-
elizations should be made in multiple of 4 subdivisions in order to match the geometry.
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Figure 9: RVE with one cubic inclusion of side l = 0.5, volume fraction ρ = 0.125

In such cases, the FFT calculation (with a voxelization resolution 100) is then consid-
ered as a reference solution. We emphasize also that in such resolution, the FDMH
will coincide exactly with a standard Finite Element Method (FEM) with conform and
compatible mesh for the inclusion, see Figure 10, where the inclusion is represented in
green and RVE in yellow.

Figure 10: A cubic inclusion with matching (left, NRVE = 4) and non-matching (right, NRVE = 5) meshes.

In Figure 11, we have plotted the relative error of the homogenized thermal co-
efficient λ against the RVE resolution. In both matching and non-matching case, we
notice a linear convergence. A noticeable difference in the order of magnitude for the
relative errors can be observed in these two cases. This difference corresponds to the
error made by the FDMH compared to a pure finite element calculation.

In Figure 12, the relative error of homogenized coefficient k and µ is plotted versus
the RVE resolution. The same observation is found as in the thermal case, with a
similar linear convergence.

Comparison between matching and non-matching meshes allows us to measure the
error made by the FDMH compared to a conventional finite element method. We pro-
pose here a specific way to measure this error: in a fixed RVE mesh, from a matching
position of two meshes, we move the cubic inclusion slightly in different directions
(following x/y, in the xy plane or in the xyz space), until another matching position.
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Figure 11: Relative error of the homogenized coefficients λ for one cubic inclusion, the mesh of inclusion
and RVE are matching (left) or not matching (right)
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Figure 12: Relative error of the homogenized elastic coefficients k and µ for one cubic inclusion, the mesh
of inclusion and RVE are matching (left) or not matching (right)

In Figure 13, we plot the FDMH / FEM comparison of the homogenized coefficients
λ against the relative distance, which is the ratio between the moved distance and hrve,
the characteristic length of the mesh of the RVE. Compared to FEM, the error made
by our method is null in the matching position, and reach its maximum with a relative
distance equal to 0.5. For a resolution 100, the error of the method might be significant
but is less than 2%.

4.3. Ellipsoidal inclusion

Let us consider an ellipsoidal inclusion. It is defined by its center coordinates and
its principal axis or it can be defined as a volume the boundary of which can defined
by a quadric :

x2

a
+

y2

b
+

z2

c
= 1.

We consider here an ellipsoid centered in the middle of the RVE P with a = 0.15, b =

0.15, c = 0.4, see in Figure 14. The volume fraction is ρ = 0.0377. Material constituted
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Figure 13: FDMH / FEM comparison between matching and non-matching meshes, for RVE with a cubic
inclusion, thermal case

with such RVE are not isotropic, especially if the contrast is large. Thus, for the thermal
case, we analyze the diagonal terms of the homogenized conductivity tensor Λ. For the
elastic case, since we have a transversely isotropic material in the plane (x, y) and in
the longitudinal axis (z), the computation of the compliance tensor S in the Bechterew
base [1], makes it possible to identify Young’s modulus E1, E3 and shear modulus G31.

Figure 14: RVE with one ellipsoidal inclusion, a = 0.15, b = 0.15, c = 0.4, volume fraction ρ = 0.0377

Since a Mori-Tanaka solution is available [2], we use it as a reference solution. The
linear convergence can be found in both cases for the coefficients in the plane (x, y), see
Figure 15. The non-linear convergence of the coefficient in the longitudinal axis (z) is
possibly caused by the inaccuracy of the referenced Mori-Tanaka solution, in the case
of which, the inclusion is too elongated in the longitudinal direction compared to the
size of RVE. With a RVE resolution of 1003, the relative error is in order of magnitude
10−2, see Figure 15.
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Figure 15: Relative error of the homogenized conductivity tensor (left) and stiffness coefficients (right) for
one ellipsoidal inclusion case

4.4. Multiple ellipsoidal inclusions

To illustrate a case of mutiple inclusions, we consider another case of eight ellip-
soidal inclusions with the same size a = 0.05, b = 0.05, c = 0.15, which are randomly
distributed, see Figure 16. The volume fraction is ρ = 0.01257. We recall that the
FDMH procedure, see section 3, is repeated for each inclusion.

Figure 16: RVE with eight ellipsoidal inclusions, a = 0.05, b = 0.05, c = 0.15, volume fraction ρ = 0.01257

As we have several inclusions in this case, the reference solution is given by the
analytical Self-Consistent Model (SCM) [9], based on the Eschelby’s tensor [4].

We also notice a linear convergence for both thermal and elastic cases, see Fig-
ure 17. This observation proves that FDMH responds properly to the cases with num-
bers of inclusions.

4.5. Pellicle / Hollow sphere inclusion

We consider a pellicle sphere inclusion, centered with d = 0.6, as shown in Fig-
ure 18. The reference solution is given by a three phases Mori-Tanaka model based
on the Eshelby inclusions [13]. Numerical tests are performed with different relative
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Figure 17: Relative error of the homogenized conductivity tensor (left) and stiffness coefficients (right) for
eight ellipsoidal inclusions case

thickness, which is defined as the ratio between the thickness of the pellicle and the
radius of the sphere.

Figure 18: RVE with one pellicle spherical inclusion with d = 0.6, relative thickness = 0.01

In Figure 19, the homogenized coefficients λ are normalized and plotted versus the
relative thickness for both FDMH and Mori-Tanaka solution. The results computed
by these two methods are close. With a relative thickness equal to 0.01, the relative
difference is about 1%. We conclude that the FDMH can be used to compute effective
properties of periodic material with very thin pellicle inclusions. We also note that for
the inclusions computation, a 2 dimensional model can be used. This ability to consider
very thin inclusions is an interesting advantage of the FDMH over other numerical
homogenization methods.
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Computing resources
The computations are performed by a finite element library code, named CFEM,

developed by the authors, in Python/Fortran. We use the PETSc1 library to solve the
linear systems. The meshes are generated with the Gmsh software [6].

In some cases, as the RVE resolution may involves millions of DOFs, we used
Myria, a HPC cluster located in CRIANN2. However, all of the computations presented
in this paper can be performed on personal computers (We used a 2014 macbook pro
laptop or a laptop PC).

5. Conclusion

We have presented an original alternative method to evaluate the effective properties
of periodic heterogeneous materials, using a fictitious domain principle. With the help
of a connection matrix between the distinct meshes of inclusions and RVE, we are able
to implement a finite element in the framework of a structured mesh of the RVE.

Numerical tests, with inclusions of elementary geometry such as sphere, cube and
ellipsoid, have shown a linear convergence of relative errors with respect to reference
solutions. The convergence rates are observed as expected, regarding the use of linear
interpolation.

One interesting advantage of the FDMH method presented in this paper is the total
flexibility concerning the inclusions meshes. Complex geometries of any kind can be
considered, as long as a mesh is available. We have shown an example with very thin
spherical pellicle, but we can also imagine a case of a very high resolution 3d image of a
composite material sample, obtained through imagery techniques, such as tomography.
We can obtain the (fine) meshes of the inclusions by segmentation techniques and then
consider a coarser mesh of the sample, making the computation possible.

1Portable, Extensible Toolkit for Scientific Computation : https://www.mcs.anl.gov/petsc
2Regional Computer Center and Digital Applications of Normandy : https://www.criann.fr
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With the cubic inclusion test where we have been able to give an estimation the er-
ror of the FDMH compared to a classical finite element method with a mesh conform-
ing to the inclusions geometry. These substantial errors indicates that improvement
of the efficiency of the method should be developed. In particular, we are currently
investigating how to introduce some kind of enrichment by modifying the connection
matrix in order to better conform the weak continuity at interfaces.
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