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Configurational entropy of polydisperse supercooled liquids
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France

2) Dipartimento di Fisica, Universita degli studi di Roma La Sapienza, Nanotec-CNR, UOS Rome,
INFN-Sezione di Roma 1, Piazzale A. Moro 2, 00185, Rome, Italy

We propose a computational method to measure the configurational entropy in generic polydisperse glass-
formers. In particular, our method resolves issues related to the diverging mixing entropy term due to a
continuous polydispersity. The configurational entropy is measured as the difference between the well-defined
fluid entropy and a more problematic glass entropy. We show that the glass entropy can be computed by
a simple generalisation of the Frenkel-Ladd thermodynamic integration method, which takes into account
permutations of the particle diameters. This approach automatically provides a physically meaningful mixing

entropy for the glass entropy, and includes contributions that are not purely vibrational.

The proposed

configurational entropy is thus devoid of conceptual and technical difficulties due to continuous polydispersity,
while being conceptually closer, but technically simpler, than alternative free energy approaches.

I. INTRODUCTION

Polydispersity is an essential ingredient to study su-
percooled liquids and glasses because mono-component
glass-forming systems with spherical particles quickly
crystallize and do not easily form amorphous states. For
example, it is well-known that multi-components metal-
lic glasses with sufficiently large size polydispersity show
better glass-forming ability!, and size polydispersity is
unavoidable in colloidal glasses?. Continuously polydis-
perse glass-forming models are also getting increasing at-
tention because they maximise the efficiency of the swap
Monte-Carlo algorithm®®. As a result, they can be equi-
librated down to extremely low-temperatures or large
densities®”. This recent computational development en-
ables numerical studies that can be directly compared to
experimental work, and opens several possibilities to ex-
plore a wide range of physical phenomena occurring in
amorphous materials® 10,

A central issue for supercooled liquids is the determina-
tion of their configurational entropy, and of its evolution
when approaching the glass transition!!. However, the
statistical mechanics of continuously polydisperse sys-
tems involves some controversial issues such as parti-
cle distinguishability and the associated divergent mix-
ing entropy'? '8, These issues also influence the statisti-
cal mechanics description of polydisperse glass-formers!®.
The configurational entropy Scont can be defined by the
difference between the total entropy, Sior, and a glass
eUU'OPY; Sglass7

Sconf = Stot - Sg1a557 (1)

so that S¢.ons enumerates the number of glass states. The
technical problem with Eq. (1) is evident as we need to
take the difference between two entropies evaluated sep-
arately in phases that are not connected by any equi-
librium thermodynamic path. The unwanted byproduct
is that the absolute values of both entropies are needed.
This is particularly problematic for continuously polydis-
perse models, since the entropy Siot then contains a mix-
ing entropy contribution that is formally divergent, while

conventional methods to determine Sgiass do not. As a re-
sult, widely-used methods to determine Scon¢ in systems
with continuous polydispersity provide an infinite value,
which is unphysical. Similar problems are encountered
by discrete mixtures with infinitesimal size differences,
where the mixing entropy contribution to glass and fluid
entropies is again a problematic issue'®. It is therefore
important to develop methods to properly deal with the
mixing entropy contribution to Sgiass in Eq. (1), so that
meaningful configurational entropy measurements can be
generically performed for any type of particle size distri-
butions with no ad-hoc manipulations of mixing entropy
contributions. The main goal of the present paper is to
provide such a computational method.

For ordinary phase transitions, only entropy differences
are physically relevant, and can be measured by following
an cquilibrium thermodynamic path between two state
points. This is how experiments get around the absolute
value problem for glasses, too, but as a result only an
approximate estimate of the configurational entropy can
be measured?’~22. In a previous article!®, we provided a
resolution to the problem of the infinite mixing entropy
contribution to Eq. (1). The key physical idea is that
glass configurations that only differ by the exchange of
particles with very similar sizes should be considered as
part of the same glass ‘state’ and must be grouped to-
gether when estimating Sg1ass. This suggests that a glass
state is associated with an infinitely large number of con-
figurations, and thus Sglass contains a divergent mixing
entropy contribution term which cancels the one in Sy,
to eventually make Scont finite. In Ref. 19, we provided
an approximate method to evaluate a finite Scons, which
amounts to describing a continuously polydisperse sys-
tem as an effective discrete mixture with a finite number
of species, M*. We proposed an empirical method to
estimate M* directly in the simulations for each state
point, and applied this approach to a number of glass-
formers®'®. However, a gencral and precise treatment
of the mixing entropy is desired that does not rely on
approximations and can also be applied to an arbitrary
functional form of the particle size distribution. This is



becoming a particularly pressing issue as computer sim-
ulations are now getting closer to a putative thermody-
namic transition, which is defined by a vanishing config-
urational entropy. Thus, it is no longer possible to work
with empirical, approximate methods to address the na-
ture of the glass transition. As argued in our previous
paper'?, the mixing entropy of the glass state needs to
be included in Eq. (1), since failure to do so leads to the
incorrect conclusion?® that the configurational entropy is
bounded from below by the mixing entropy.

The goal of this paper is to provide a proper sta-
tistical mechanics description and a generic computa-
tional scheme to obtain the configurational entropy of
continuously polydisperse systems. We thus transform
the empirical method and the physical ideas proposed in
Ref. 19 into a mathematically consistent computational
scheme applicable to any type of particle size distribu-
tion. The computational method that we establish in
this work relies again on Eq. (1), but we use a statis-
tical mechanics description of Sgiags that includes par-
ticle permutation, and thus automatically produces the
correct mixing entropy. Whereas the evaluation of Sie
remains unchanged, Sglass is now computed by a Frenkel-
Ladd thermodynamic integration?® that we gencralize
to deal with the mixing entropy. To demonstrate that
our method provides physically meaningful results, we
perform molecular dynamics simulations of three glass-
forming models, using continuously polydisperse soft and
hard spheres®?, and a binary Lennard-Jones mixture?®.
Remarkably the obtained Scont for the polydisperse hard
spheres takes values comparable to the Landau free en-
ergy approach?® based on the Franz-Parisi potential®’.
This suggests that our scheme provides a cheaper com-
putational alternative to free energy measurements.

This paper is organised as follows. In Sec. II, we de-
scribe the general framework leading to our computa-
tional method. Its numerical implementation for three
representative glass-formers is presented in Sec. ITI. Fi-
nally, we conclude and discuss our work in Sec IV.

Il. STATISTICAL MECHANICS FRAMEWORK
A. Setting

We consider an M-component polydisperse system in
the canonical ensemble in d-dimensions, such that N,
V, and T = 1/ are the number of particles, volume,
and temperature, respectively. We fix the Boltzmann
constant to unity, and p = N/V is the number density.
The case M = N corresponds to a continuously polydis-
perse system. The concentration of the m-th species is
Xm = Np/N, where N, is the number of particles of
the m-th species (N = Zm 1 Np). A point in position
space is denoted as r’¥ = (ry,ry,--- ,ry). For simplicity,
we consider equal masses, irrespective of the species.

1. Partition functions

For M-component polydisperse systems, the following
partition function in the canonical ensemble is conven-
tionally used!®:

1 _pueN
= v e @
m=1 m:e .

where A = /278h2/m and U(r"V) are the de Broglie
thermal wavelength and the potential energy, respec-
tively. We set the mass m = 1 and the Planck constant
h = 1. Note that in Eq. (2), the position r” is the only
pertinent degree of freedom left after tracing out the mo-
mentum.

For polydisperse systems, it is however useful to con-
sider the permutation of the particle diameters as addi-
tional degrees of freedom. We define a set of diameter
YN as XN = {51,092, ,on}. We introduce a permu-
tation 7 to the set XV, and X represents a specific
sequence of the diameters, e.g., 3 = (03,08,05, - ).
In total there exists N! such permutations. We define
a reference sequence, YN, = (01,09,03,--+ ,0n). Now
the potential energy also depends on the permutation
7 as denoted by U(ZY,rV). For bimplicity, we write

Ul(r N) =U(XN, M) only for the reference Y. and drop
off N, from the argument.

Becaube we include the permutations as additional de-
grees of freedom, we sum up all the possible permutations
in the partition function as

le N, IANd/ drVN e PUCR ), (3)

This generalised partition function in Eq. (3) is the cor-
rect starting point to compute the total and glass en-
tropies.

2. Frenkel-Ladd Hamiltonian

We denote the potential energy of the target system by
BU(XN, rV). To evaluate the entropy of the glass state
by a Frenkel-Ladd thermodynamic integration®*28-30  we
need to impose a harmonic constraint with the spring
constant o on the target system BUy(ZY,rY) as de-

scribed by

BU(7,x™,xg") = BU(Z7  xY) +aZ|rz—roZ| (4)

where 1 is a reference equilibrium configuration drawn
from the Boltzmann distribution of the target system.
We will use SU(EX,rY) and BU, (XY, v, r)) (with
a > 0) to access the total entropy and the glass entropy,
respectively.

Note that in this approach, r}’ is a randomly chosen
equilibrium configuration of the fluid?®3%3!, so that the



Frenkel-Ladd method implicitly assumes that the vibra-
tional entropy associated with any reference configura-
tion belonging to a given metabasin is the same for all
configurations of that metabasin, and inherent structures
play no specific role in that scheme.

B. Computing the total entropy Siot

In this section we explain how to compute the total en-
tropy Stot, starting from the partition function in Eq. (3).

1. A trivial identity

The partition function in Eq. (3) of the target sys-
tem defined by BUo(XY, r™V) reduces to the conventional
partition function in Eq. (2) because permutations of di-
ameters are always compensated by permutations of the
positions if there is no constraint, namely

N
Z = drN e AU ™)
NI Z IM_ N, IANd /v

1 N
Py WYY drNe=PUCT) = 7. 5
~ I’ N, IANd /V 0 (5)
Therefore, the computation of Syt is not altered by the
newly introduced summation associated with the permu-
tations in Eq. (3).

2. Thermodynamic integration from the ideal gas

Following the convention??:30:32:33 we perform a ther-

modynamic integration from the ideal gas state to the
target state. The thermodynamic integration for St de-
pends on the type of interaction potentials, and we need
to distinguish between continuous potentials (‘Soft’) and
hard sphere potentials (‘Hard’). The resulting expres-
sions are:

B
Stor = Sia + BEpen(8) — / 48 Bper(8) (Soft), (6)
0
(p(¢) -1
(b/
where Siq, Epot, ¢ and p are the ideal gas entropy, the
averaged potential energy, the volume fraction, and the
reduced pressure, respectively. For the ideal gas, Siq can
be written as

Sior = Sua — N / a POV gy ()

Siq=N —Nlnp—NInA?+ SI(HJ:Q, 8)

(d+2)
2

where SI(HA;Q
pressed as

is the mixing entropy of the ideal gas ex-

Shix = In (m) : 9)

When M is finite and N,, > 1, we can apply Stir-
ling’s approximation, In N,,! ~ N, In N,,, — N,,,, and then
Eq. (9) reduces to the standard form of the mixing en-

tropy, S(M)/N =— Zm 1 XmIn X,

mix

One can see that in a Contmuous polydisperse limit
(where M = N, and hence N,,, = 1), S, (M) diverges in the

mix
thermodynamic limit!®34, § r(lff( N)/N = (InN!)/N =~
InN — 1 — oo. This divergence is the root of a para-

doxical situation in the context of the glass physics as

the divergence of Smlx would cause the divergence of
Stot and hence Seont, suggesting that the glass transition
may not happen'?3°.

C. Computing the glass entropy Sgiass

We compute the entropy of the glass state, Sglass, by a
Frenkel-Ladd construction?428-30 starting from Eq. (3)
with BUL(ZY, v 1) (o > 0) in Eq. (4). The central
idea of the Frenkel-Ladd construction is to perform a
thermodynamic integration between a well-known limit,
the Einstein solid when « is very large and particles per-
form small vibrations around the positions dictated by
the reference configuration to small a where the vibra-
tions resemble the ones of the glass. This thermodynamic
path involves an integration of the mean squared dis-
placement from large to small a-values. We now explain
this process.

1. Partition function in glass state

For the glass state o defined by the vicinity of the
reference configuration, the partition function in Eq. (3)

becomes
/ drN oAU £V )
v

Za N' Z HM 1
(10)

We add a factor N! in the numerator of Eq. (10), be-
cause for a given reference configuration r’, there exist
N! exactly identical configurations defined by the corre-
sponding permutations of the particle identities, which
we must take into account (see Ref. 28 for a related ar-
gument). Note that due to the presence of the reference
configuration rj)’, the identity shown in Eq. (5) does not
hold in the glass state.

We can then compute the entropy S, by S, = BE, —
BF,, where E, and F,, = —37!In Z, are the total energy
and free energy of the state «, respectively.

lANd

2. Definition of glass entropy

We define the glass entropy of the target system as
follows:

lim S, .

Qmin—0

Sglass = Qmin ? (11)



where (---) represents a (disorder) average over the ref-
erence configuration r)’ defined in Eq. (15) below.

The limit operation, lim,,,, -0, is crucial both con-
ceptually and practically. Although the naive limit leads
back to the fluid state, here we wish to compute the en-
tropy of a metastable glassy state characterised by a finite
lifetime. To this end, we need to keep amin finite, to pre-
vent the exploration of a different glass state during the
thermodynamic integration, and we instead make a sim-
ple extrapolation of iy from a finite auin value where a
metastable glass state is well-defined, down to zero. This
kind of extrapolation is inevitable in handling metastable
states in finite dimensions, which all have a finite lifetime.
Our practical solution to accurately perform the limit is
explained below in Sec. III.

We pick up the reference configuration rj’ from equilib-
rium configurations drawn from the Bolzmann distribu-
tion of the target system. This choice makes our scheme
conceptually closer to the Franz-Parisi free energy ap-
proach in that the overlap function is computed using
equilibrium reference configurations?%27. One might in-
tuitively think that configurations at the inherent struc-
ture would be natural candidates for r{Y. However, the
present choice produces quantitatively consistent results
with a vibrational description around inherent structures
as confirmed in the Kob-Andresen model®® and polydis-
perse soft spheres (Fig. 1(b)). Thus, we expect that equi-
librium reference configurations r{Y inside a basin of at-
traction produce essentially the same result as its inher-
ent structure.

3. Statistical averages

For convenience, we define the following notations of
the various statistical averages needed in the different
computations:

v S A et )

(¢ Da A [, drN e BU(N e e (12)

T . fV drN< .. )e_ﬁUa(var(JJv) 13

<( .. )>a - fv drNe *BUa(I“NJ'éV) s ( )

() = 2 (- Je U ) (14)
B NLZ e—BU(EN ) 7

_ fV dro ( . )e—ﬁUU(ro ) 15

)= T e e (15)

where the superscripts, T and S, represent the statis-
tical average over positions (T) and permutations (S),
respectively. Numerically, these statistical averages can
be easily evaluated through Monte-Carlo simulations us-
ing standard translational displacement (T) and particle
swaps (8)37. Note that any permutation 7 of the particle
diameters can be expressed as a product of two-particle
diameter swaps, and thus the permutation-phase space

can be properly sampled using swap Monte-Carlo simu-
lations.

4. Large a-regime: Einstein solid

In the Frenkel-Ladd construction, the Einstein solid is
chosen as the reference state?*. When aay is very large,
the system is constrained near the reference configuration
rlY, thus we get BU,,... (2N, vV r)) ~ BU(EN, rlY) +
Omax 21:1 |r; —ro;|?. Therefore, using Eq. (10), the sys-
tem is described by the Einstein solid whose free energy
is given by

BFu,..=NInA?+ W(r),8) + —1In A

Nd max
(2= - s
T
(16)
where W (rlY, 3) is an effective potential defined by

1 N _N
W(x),8) =~ (m D e Pl ) .o

™

This term, which originates from the effect of the per-
mutation, plays an important role in the evaluation of
the mixing entropy of the glass state. This is discussed
further below.

5. Small a-regime

We compute S, in Eq. (11) by S,,,,, = SE
BF,..., where BE, . and BF, . are respectively given

T,S
by BBapin = 52+ (Vo (E7 2V, 18))

modynamic integration of the mean-squared displace-
ment over «,

min Qmin

min

and a ther-

Qmin

QU & N T’S
BFomm = BFopmax _/ da <Zrt _I'Oz'|2
Qmin i=1 a
(18)
Therefore, together with Eq. (16), we can express Sa,, .,
as
- _Nd Nl Ad Nd n(axrlax)+ S(]\/])
Qmin 2 2 T mix

4W(r0 7/6) +6< Qmin (EN Nar(I)V)>T’S_

Qmin

N T,S
Qmax
—|—/ d04< E |I'i — I‘()Z‘|2> . (19)
Omin i=1 -



6. Final expression of the glass entropy

Finally, by combining Egs. (11) and (19) we get the
expression of Sglags as

Nd Nd Omax
SglaSS:T—NhlAd—7hl( - )
+N dlim [ daAlS + S0 - Sl B),
Omin =Y J o in

(20)

where AT*S is a mean-squared displacement defined by

T,S

N
NS = %<Z v — 1“02'2> )
i=1

«

(21)

and Spyix(rd’, B) is a mixing entropy contribution defined
by

Smix(rg, 8) = W(rg', B) — BUs(x(")

= —ln (% Z eB(Uo(zf,réV)Uo(rgV))) .
(22)

In the derivation of Eq. (20) we also used the fol-

T,8
(Eij> rNa ré\/ > -

lowing relation: lim,_, —0 /3 <U

Qmin

B (U8 ,1Y))y ™ = B(Uo(x™))g = BUa(xd)-

In Eq. (20), one can find two features that make
our method distinct from the conventional Frenkel-Ladd
method?428730 The first one is that the mean-squared
displacement AL-S has to be evaluated by Monte-Carlo
simulations that sample both translational displacements
and diameter swaps (as denoted by T, S). This should
be distinguished from the normal mean-squared displace-
ment AT defined by using the average in Eq. (13) instead
of the one in Eq. (12). Due to the additional diameter
swap moves, one expects that AT>S > AT in general. The
second novel feature in Eq. (20) is the fact that Sgiass

Gmin

contains a non-trivial mixing entropy term, Sl(njg() — Shix-
For monodisperse particles or discrete mixtures where the
swap of the diameters with different species have a high
energy cost, the equalities, AT-S = AT and S, = Sr(lﬁi)
would hold, as we numerically confirm for a binary
Lennard-Jones mixture. In this case Eq. (20) reduces
to the conventional Frenkel-Ladd method. On the other

hand, for continuously polydisperse systems, one would
expect ATS > AT and S /N < S(MzN)/N — 0.

mix

Therefore Eq. (20) is a straightforward generalization of
the conventional Frenkel-Ladd method for systems with
continuous polydispersity, and the thermodynamic inte-
gration automatically takes into account the correct num-
ber of permutations allowed by thermal fluctuations in
equilibrium.

The fact that AT-S > AT also implies that ATS takes
into account non-vibrational contributions due to the

permutations of the diameters in addition to purely vi-
brational contribution measured by AT (see related ar-
gument in Refs. 36 and 38). Hence it is expected that
the resulting Sgiass more correctly deals with the non-
vibrational contributions to the glass entropy as well.

D. Computing the configurational entropy

We summarize our computational scheme for the con-
figurational entropy Scont = Stot — Sglass- Lhe entropies
Stot and Sglass are computed independently by two inde-
pendent thermodynamic integrations. The entropy of the
fluid Siot is obtained by the thermodynamic integration
from the ideal gas, as described by Egs. (6, 7), depending
on the interaction potential. The glass entropy Sgiagss iS
obtained by a Frenkel-Ladd thermodynamic integration,
summarized by Eq. (20).

It should be obvious, then, that the present scheme
resolves the problem of an infinite mixing entropy for
continuous polydispersity!?:3°. The diverging mixing en-
tropy is the term Sl(lf\i{() in Sior (through Eq. (8)) which
appears also in Sglass in Eq. (20). Instead Spix in Eq. (20)
remains as a finite mixing entropy contribution to Scont-
As we numerically confirm in Sec. III, Six takes a finite
value for continuously polydisperse systems, whereas it
recovers the appropriate limit for discrete mixtures (see
Appendix A), and vanishes for monodisperse systems.
Thus, the configurational entropy automatically incor-
porates the correct information about size polydispersity.
Whereas the physical idea is the same as in Ref. 19, the
present method is technically more elegant and does not
require the approximate determination of a crossover in
the evolution of the potential energy landscape.

I1l. NUMERICAL IMPLEMENTATION FOR THREE
GLASS-FORMERS

In this section, we numerically implement the method
exposed in Sec. II for continuous polydisperse systems
with soft and hard interactions, and for a standard bi-
nary Lennard-Jones mixture. Since the results for Stot
can be found in the literature®2?, we focus more specifi-
cally on the numerical determination of Sgiass. As seen in
Eq. (20), the main computational tasks are the determi-
nation of the integral of AT-S and the separate measure-
ment of Syix. We illustrate these tasks separately for a
single model, before presenting the final results for the
three of them.

A. Models and simulation details

We study three dimensional soft and hard sphere
potential models using a continuous size polydisper-
sity®”, where the particle diameter o of each particle



is distributed from the following particle size distribu-
tion: f(o) = Aoc~3, for ¢ € [0min,Omax), choosing
Omin/Omax = 0.45, where A is a normalization constant.
We use the averaged diameter as the unit length. We
simulate systems composed of N particles in a cubic cell
of volume V with periodic boundary conditions3°.

We use the following pairwise potential for a polydis-

perse soft sphere (SS) model®,

i 12 r 2 r 4
’Uij(T) =9 (TJ> +co+ 1 <U_) + co <0__> 7(23)

) ]
(0i +0j)

221~ o — ), (24)

O’ij =
where vy is the unit of energy, and e quantifies the degree
of non-additivity of the particle diameters. We set € =
0.2. The constants, cg, ¢c; and cy, are chosen so that
the first and second derivatives of v;;(r) become zero at
the cut-off rcye = 1.250;. We set the number density
p = N/V = 1.0186 with N = 1500 for the soft sphere
model.

For the polydisperse hard sphere (HS) model”, we use
the pair interaction which is zero for non-overlapping par-
ticles and infinite otherwise with the additive condition
(e = 0). However, we use a finite potential modeling of
the hard sphere potential for Smix (see Appendix B for
the details). We perform the simulations for N = 1000
and 8000 to analyse finite-size effects. The hard sphere
simulations are presented as a function of the reduced
pressure p = P/(pkgT), where P is the measured pres-
sure, and kpT is set to unity. Thus, 1/p plays a role
similar to the one of temperature for soft potentials.

Finally, we study the standard Kob-Andersen (KA)
binary Lennard-Jones model?®. Both species A and B
have the same mass and the concentration of each species
are Xa = 0.8 and Xp = 0.2, respectively. The interac-
tion potential between two particles is given by ves(r) =
deap{(r/oap)t?—(r/cap)®}, where a, B € {A,B}. We set
ean = 1.0,eap = 1.5,egp = 0.5,0aa = 1.0,0a5 = 0.8
and opg = 0.88. The potential v,g(r) is truncated and
shifted at r¢y = 2.50,3. We show energy in units of €x 4,
with the Boltzmann constant kg = 1, and length in units
of oaa. Simulations are performed at constant density
p = 1.2. The number of particles is N = 1200.

We prepare equilibrium configurations for continuously
polydisperse systems using swap Monte-Carlo simula-
tions®”. With probability Psyap = 0.2 we perform a
swap move where we pick two particles at random and
attempt to exchange their diameters and with probabil-
ity 1— Pswap = 0.8, we perform conventional Monte Carlo
translational moves. Equilibrium configurations for the
KA model are prepared using standard Monte Carlo sim-
ulations?® (i.e., without swap moves, Psyap = 0). Lower
temperature configurations of the KA model are pre-
pared by the parallel tempering algorithm*"*? produced
in Ref. 43. The statistical averages shown in Eqgs. (12),
(13), and (14) are performed by using Piwap = 0.2, 0.0,
and 1.0 for Egs. (12), (13), and (14), respectively. The

10? : . . : :
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FIG. 1. (a) Mean-squared displacement in the Frenkel-Ladd
construction with normal (AL: dashed-line) and diameter
swap (AT'S: solid-line) Monte-Carlo simulations for polydis-
perse soft spheres. The shaded region corresponds to amin €
[6.1,20.2] and the arrow indicates oumin = 10.1. (b) Glass en-
tropy Selass/N obtained by Eq. (20) using either AT-S and AT
for amin = 10.1. The mixing entropy terms Sr(lf\ii) — Siix are
subtracted from Sgiass. The errorbars correspond to Sgiass /N
computed in the region omin € [6.1,20.2]. The full blue line
is the vibrational entropy Svib/N = (Sharm + Sann)/N, where
Sharm and Sann are obtained by diagonalization of the Hessian
matrix in the inherent structure and its anharmonic correc-
tion, respectively®.

statistical average in Eq. (15) is performed by averaging
over 5-20 independent reference configurations.

To present results for the three models coherently, we
use a temperature T normalized by the mode coupling
crossover. We define T* = T /Tyt for the polydis-
perse soft spheres (Tt = 0.104)6 and the Kob-Andersen
model (Tt = 0.435)25. For the polydisperse hard
spheres, we define T* = puyet/p With pumer = 23.55.



B. Constrained mean-squared displacements

In this section, we illustrate the numerical determina-
tion of the integral of ATS which appears in Eq. (20).
Starting from & = qmax = 3.0 x 10% — 1.01 x 107 (see
below), we perform MC simulations with decreasing « in
steps of §(log;ga) ~ 0.18 — 0.4. For each data point, we
perform 7 = 2 x 10* — 2 x 10 MC steps, measuring AL
only in the second half of the simulation. In Fig. 1(a) we
show the evolution of AT with the strength of the har-
monic coupling «, for polydisperse soft spheres at several
temperatures. As expected, AT'S is very small at large a
and increases as o decreases. When obtaining the data
at various values of o we have to make sure that the
mean-squared displacements have converged to the cor-
rect equilibrium value. We have performed detailed nu-
merical tests for this convergence. We have measured
ATS by changing the timescale 7 over which « is var-
ied and confirmed that AT"S does not depend on 7 down
t0 @min chosen in this study (see below). We also ap-
plied tests where AT"S is measured starting from both
the reference configuration and from an annealed config-
uration produced by the swap MC simulation at higher
temperature. The two simulations provide consistent re-
sults, ensuring the equilibration. These tests show that
it is much easier to converge constrained simulations in
the Frenkel-Ladd setup than in any other scheme (such
as cavity measurements?*). This is consistent with the
results of Ref. 45, which already showed that cavity mea-
surements were the most difficult constrained scheme to
obtain equilibrium measurements. A possible explana-
tion of this qualitative difference is that a (soft) con-
strained is locally applied to each particle in the Frenkel-
Ladd method, whereas a (hard) global constraint is ap-
plied from the boundary in cavity measurements.

To understand the effect of the particle diameter per-
mutations on the measured cage, we also show the evolu-
tion of AT for the same temperatures with dashed lines.
The two mean-squared displacements then only differ by
the introduction in AT'S of particle diameter permuta-
tions.

For strong o, both AT and AT precisely obey the
Einstein solid prediction, ATS ~ AT ~ 3/(2a). With
decreasing o, AL-S and AT enter a plateau region shown
by the shaded region. In this region, the system is
trapped by its own cage. We find that AT-S > AT which
means that ATS samples a larger phase space within the
glass state than AYL. Decreasing a further, the harmonic
constraint for AT is too weak and the metastability of
the glass state is not strong enough to prevent the system
from diffusing, which translates into an upturn of ALS
for higher temperature at small a. The effect is also
visible for AT, but it is much less pronounced since the
structural relaxation without swap moves is considerably
slower®, and metastability is therefore stronger.

To perform the integration and to take the amyin — 0

limit in Eq. (20), we use the following manipulation:

Omax Gmax
lim / dCYAES A aminAg;nSin +/ deAE’S.
amin—0 @

(25)

The practical choice for amax is simple, as it is sufficient
that it lies deep inside the Einstein solid regime. We
choose tmax = 3.0 x 108 —1.01 x 107 for all systems. We
set amin = 10.1 for the polydisperse soft spheres within
the plateau region indicated in the arrow in Fig. 1(a),
where the equilibration is ensured.

We show the resulting glass entropy minus the mix-

ing entropy contribution, (Sgiass — Sl(rf\f() + Smix)/N, in
Fig. 1(b). (The mixing entropy terms are considered in
the following subsection.) We also present the results
obtained by substituting AT by AT in Eq. (25) to get
some feeling about the quantitative importance of parti-
cle diameter permutations in this measurement. We also
compare the value of the same glass entropy contribu-
tion obtained by following the potential energy landscape
recipe*®, where a vibrational entropy Sy, is computed as
Svib = Sharm + Sanha where Sharm and Sanh are the en-
tropies obtained by diagonalization of the Hessian matrix
at the inherent structure and its anharmonic correction,
respectively®.

Strikingly, we find that the glass entropy obtained by
the ordinary Frenkel-Ladd approach with no diameter
permutation takes values very similar to the vibrational
entropy Syip computed by the potential energy landscape
approach. This trend suggests that AT accounts for
purely vibrational motion inside a single inherent struc-
ture®0. We also find the same trend in the KA model
(not shown). On the other hand, the glass entropy Sgiass
obtained with diameter permutation using AL'S takes
larger values, because AE’S > AE. In other words, Sgiass
takes into account non-vibrational contributions, which
should be associated with the presence of many inherent
structures within a single glass state!?3647. The asso-
ciation of many inherent structures within a single glass
state is impossible within the potential energy landscape
and ordinary Frenkel-Ladd approaches, but arises natu-
rally within both the present scheme and the Franz-Parisi
free-energy measurement?°.

Note that the specific choice of the value of ay,;, mostly
affects the determination of Sgass at higher temperature,
where the plateau is not well formed. To estimate this
effect, we draw errorbars whose range corresponds to
Sglass/IN obtained from the edges of the shaded region,
Qmin € [6.1,20.2], in Fig. 1(b). We find that the size of
the errorbars progressively becomes smaller as the tem-
perature decreases, in agreement with the clear plateau
formation at the lower temperature in Fig. 1(a). This
trend justifies our choice of amni, at low temperatures.

We find qualitatively similar behavior for the polydis-
perse hard sphere model and the KA model (not shown).
However, whereas the inequality AT > AT holds for
the polydisperse hard sphere model similarly to the soft
sphere model, the KA model shows AT'S ~ AT due to

min min



the fact that diameter permutations are hardly accepted
in this bidisperse model*®.

C. Mixing entropy

To measure Suix(ry’,3) numerically, we perform a
thermodynamic integration over a temperature 8’ from
the target temperature 5 = S with a given refer-

ence configuration r) to the high temperature limit,
8" — 0. The high temperature limit of Eq. (22)

is trivially Smix(rd,5" — 0) — 0. The derivative
of Smix(rd’,3") with respect to 3 becomes a poten-
tial energy difference, h’é&;m = <U0(E71y7rév)>z, -
Uo(rd) = AUnix(rl’, 8’). In this last expression, AUpix
quantifies the potential energy increment due to the ex-
ploration of the permutation phase space by heating the
system at temperature 7" = 1/8" > T. Therefore, we get
by thermodynamic integration,

- 8 -
S EN . B) = / AT B, (26)

To measure AUpix(rd’,3’) in practice, the system is
gradually heated from the target temperature 5’ = j
to the infinite temperature 8° — 0 by performing Monte
Carlo simulations where only particle diameter permu-
tations are attempted (denoted by the superscript ‘S’ in
Eq. (14)) while keeping fixed the particle positions of the
reference configuration r{’ generated at f3.

As shown in Fig. 2(a) for polydisperse soft spheres,
AUnix/N takes a very small value at large 8/, and sharply
increases approaching 3’ — 0. This is observed for all
temperatures T = 1/, with a relatively weak tempera-
ture dependence. Note that AUpix/N remains finite as
B — 0, as shown in the inset. This guarantees a finite
mixing entropy Smix/N as well. A qualitatively simi-
lar behavior is found for polydisperse hard spheres and
for the KA model, except that the KA model shows fully
temperature-independent results. To compute AU,y for
the hard spheres, we use a soft potential modeling, as de-
scribed in Appendix B. We also perform a cooling path
from 8 = 0 to 8/ = B for polydisperse soft spheres,
which coincides perfectly with the heating path described
above. Therefore, we conclude that one can easily achieve
an equilibrium path for the thermodynamic integration
and sample the permutation-phase space properly.

In Fig. 2(b) we show the resulting Spix/N as a function
of the normalized temperature T* for the three studied
systems. For the KA model, Syix/N precisely recovers

the standard combinatorial mixing entropy Sr(lf\g(ﬂ) /N =
—XalnXa — XglnXp =~ 0.5 (with Xo = 0.8 and
Xp=0.2) for a wide range of temperatures. This means

that Spix = Sl(nj\iiﬁ) holds and that the mixing entropy
terms in Eq. (20) exactly cancel each other, directly jus-
tifying previous treatments of the mixing entropy for this

model??32. We find that this treatment holds in binary
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FIG. 2. (a) Evolution of AUpix(r{’, 8’) during the thermody-
namic integration over 3’ for several reference temperatures
B. Inset: same data in log-log representation. (b) Mixing en-
tropy Smix/N obtained by Eq. (26) as a function of the nor-
malized temperature T = T /Tmc; for the three studied mod-
els. Filled and empty circles for HS correspond to N = 1000
and 8000, respectively. The dashed-line corresponds to the
combinatorial mixing entropy for the KA mixture.

hard sphere mixtures with sufficiently large size ratio
as well, as demonstrated in Appendix A. We also find
that Syix/N smoothly connects the monodisperse limit
where Spix/N = 0 to the large size ratio regime where

Smix = Sﬁﬁzz), as shown in Appendix A. These results
mean that we do not need to decide how to treat the sys-
tem (as being monodisperse or polydisperse?®) since our
method directly measures the correct value of the mix-
ing entropy. This is conceptually analogous to a recent
analytic computation®”, although our approach can deal

with a continuous polydispersity more straightforwardly.

The important result is of course that for the continu-
ously polydisperse systems, Smix/N takes slightly larger
values, but it remains finite. The obtained values are
comparable to our previous estimates through an effec-

tive M*-component approximation'®. In this descrip-




tion, M* was obtained by dividing the particle diameter
distribution f(o) into a series of M* finite intervals of the
same width, Ao = (0max —Omin)/M™*. Interestingly, how-
ever, we find that Spx slightly increases with decreasing
the temperature or increasing the pressure, an effect that
was not captured by the previous estimation. To obtain
a more quantitative comparison with our previous work,
we may consider the quantity M = exp[Smix/N] which
can be seen as an effective number of components for the
system using the assumption of equal concentrations, i.e.,
X = 1/Mt (m =1,2,---,M"). As a consequence of
the slight increase of Smix, MT also increases steadily
with decreasing the temperature or increasing the pres-
sure, which means that a smaller Ao is effectively needed
to properly represent the continuous mixture with in-
creasing the degree of supercooling. The range of M in
Fig. 2(b) is MT ~ 5 — 6 for polydisperse soft spheres, and
M7 ~ 1013 for polydisperse hard spheres. These results
suggest that the hard sphere potential is more sensitive
to small diameter differences than the soft potential.

Note finally that our measurement of Spyix is not in-
fluenced by finite size effects, as can be seen by compar-
ing N = 1000 and N = 8000 data for hard spheres in
Fig. 2(b).

D. Configurational entropy for three glass-formers

Finally, we compile the configurational entropy,
Scont/N = (Stot — Sglass) /N, of three systems as a func-
tion of the normalized temperature 7* in Fig. 3. Since
Sconf depends on the chosen ap,i, in the determination
of Sglass, we display the errorbars corresponding to Scont
from amin-values chosen inside the plateau region, in the
same way as in Fig. 1(b). The size of the errorbars de-
creases with decreasing T for all systems, showing a
systematic improvement of the accuracy of our measure-
ment towards lower temperature. The range of chosen
Qmin ar€ Qmin = 10.1, amin € [6.1,20.2] for polydisperse
soft spheres, amin = 15.1, amin € [7.5,30.1] for polydis-
perse hard spheres, and amin = 10.0, amin € [4.0,20.0]
for the Kob-Andersen model, respectively. We also find
that our measurements of Sconr do not involve finite size
effects, as shown by the comparison between N = 1000
and N = 8000 for hard spheres.

To extrapolate Scons down to lower temperatures, we
use an empirical relation, Scont/N = A(l — T3%/T7),
where A and T} are fitting parameters?®%°. The nu-
merical results of all models suggest that Sconr/N van-
ishes at a finite T} > 0, which consolidates previous find-
ings®. Specifically, we find T} = 0.355,0.567 and 0.571
for soft spheres, hard spheres, and the KA model, respec-
tively. However, it is clear from the data shown in Fig. 3
that the possibility that a sharp Kauzmann transition is
eventually avoided is also compatible with our data, if
some presently-inaccessible crossover temperature exists
below which the temperature evolution of the configu-
rational entropy changes qualitatively, as envisioned in
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FIG. 3. (a) Configurational entropy Scont/N obtained for

three glass-formers with errorbars reflecting the chosen range
of amin. Filled and empty circles for hard spheres (HS) cor-
respond to N = 1000 and 8000, respectively. Scont/N based
on the potential energy landscape (PEL) approach for soft
spheres (SS) and HS in Ref. 8 are plotted using grey sym-
bols. The Franz-Parisi (FP) potential approach for HS is
also shown. Extrapolations are performed by fitting data to
Secont/N = A(1 — Tt /T™) or using the curves in Ref. 8. (b)
Zoom of the low temperature data for HS.

several analytical models®! 53,

We plot other estimates of Scons/N obtained in Ref. 8,
shown as squares (polydisperse soft spheres) and circles
(polydisperse hard spheres). These estimates are based
on the potential energy landscape description of Sgjass®®
together with a combinatorial approximation of the mix-
ing entropy using the effective M*-components approx-
imation'®. We also plot Sconr obtained by the Franz-
Parisi free energy?527 for polydisperse hard spheres. We
find that Scont/N by our scheme for the polydisperse sys-
tems take smaller values than those of the PEL approach,
mainly due to the fact that non-vibrational contributions
are more correctly taken into account®®. However, over-
all, the estimated Kauzmann temperatures T are quite
consistent among the different measurements of Scont.



Remarkably, our new scheme produces values that are
comparable to Scont obtained from the Franz-Parisi free
energy?® for polydisperse hard spheres, as highlighted in
Fig. 3(b). Our numerical results imply that these two
methods seemingly sample similar regions of the free-
energy landscape. We find however a slight difference
of the functional form and the resulting location of T%.
We note that choosing a state point dependent cuyi, for
our scheme might slightly change the functional form in-
side the range of the errorbar. Similarly, the definition
of the overlap function in the Franz-Parisi potential and
the choice of a coarse-graining length would also affect
the detailed functional form of these results.

We emphasize that the main difference between these
two estimates does not simply originate from computa-
tional details, since the physical construction is quali-
tatively different between the two approaches. In the
present scheme, we use Eq. (1) to separately compute the
fluid entropy Siot (by thermodynamic integration from
the ideal gas) and the glass entropy Sglass (from ther-
modynamic integration from an ‘ideal’ Einstein solid).
Each integration is relatively straighforward as it does
not involve the crossing any equilibrium phase transition
since the fluid and solid phases are treated separately. In-
stead, the Franz-Parisi free energy provides Sconf in a sin-
gle measurement, by following an equilibrium path from
the equilibrated fluid up to the glass state confined in a
configuration space. This path however involves crossing
an equilibrium phase transition26:°45% and it is therefore
computationally more costly. Of course, ideally these two
methods should be able to produce consistent results.

IV. DISCUSSION AND CONCLUSION

We have developed a computational scheme to mea-
sure the configurational entropy for generic polydisperse
systems, which is a straightforward generalization of the
conventional Frenkel-Ladd approach. The key idea is the
introduction of diameter permutations as additional de-
grees of freedom for the glass entropy, which is imple-
mented by a simple swap Monte Carlo algorithm. Our
scheme automatically takes into account the mixing en-
tropy contribution for any particle size distribution as
well as non-vibrational contributions to the glass en-
tropy. This provides an accurate configurational entropy
determination which seems comparable to the free en-
ergy approach based on the Franz-Parisi potential. This
is quite remarkable because the physical construction in
the two approaches are qualitatively different. A prac-
tical merit of our method is a relatively low computa-
tional cost, which allows us to study more deeply super-
cooled and larger systems. There is still a slight discrep-
ancy of the functional forms between our scheme and
the Franz-Parisi free energy, which might be cured by
more precise choices for amin and for the definition of the
overlap function. Furthermore, the distinction between
the two methods is still quite large in the Kob-Andersen
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model®?%%. Consolidating the mutual consistency among
different configurational entropy measurements would be
an important step for the complete thermodynamic char-
acterization of the nature of the glass transition®.

It has been argued that the entropy of colloidal poly-
disperse systems involves a subjective measurement, be-
cause particle distinguishability depends on the resolu-
tion chosen by the observer'®!”. This argument seems to
prohibit a well-defined and quantitative value of the con-
figurational entropy for colloidal glasses. However, our
proposed scheme is free from any conceptual and tech-
nical difficulties due to continuous polydispersity thanks
to a proper statistical mechanics description of the glass
state. Thus, the observer subjectivity plays no role in
our measurement. Note that outside the realm of the
configurational entropy measurement discussed here, the
entropy of colloidal systems in the fluid still remains
plagued with potential infinity problems, which should be
managed for each case separately'?> '8, Among them, our
scheme might be useful also for phase equilibria problems
in the canonical ensemble®”®8 or accurate determination
of the entropy of granular materials®®9,
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Appendix A: Snix for simple mixtures

We demonstrate that Sy reduces to the standard
. . . ) (M) . .
combinatorial mixing entropy S for simple mixtures.

mix

1. Monodisperse and binary mixtures

First, it is instructive to verify that Spix vanishes in
the monodisperse limit. In this limit, since Uy (S, rl}) =
Uo(r)) for any permuation ¥Y, we immediately get from
Eq. (22) that Smix(rd’, 8) = 0.

Next, we consider the case of M = 2 binary mix-
tures composed of species A and B with concentrations
Xa = NA/N and Xg = NB/N (0 < Xa,XB < 1). Start-
ing from a reference equilibrium configuration r{’ with a
potential energy Up(r)) = Ug(EX., r{’), the system may
explore different permutations XY. Permutations asso-
ciated with the exchange of diameters within the same
species (denoted by A ++ A or B <> B) have a strictly
zero energy cost. There exist Na!/Ng! such permutations.
On the other hand, at sufficiently low temperature or
high density, permutations associated with an exchange
of the diameters between different species (denoted by A
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FIG. 4. Mixing entropy Smix for three-dimensional binary
hard sphere mixtures at ¢ = 0.45. (a) Evolution as a func-
tion of R = og/oa for Xo = Xp = 0.5. The black straight
line corresponds to S~ /N = —XsInXa — XpIn Xp =

In2. (b) Evolution as a function of Xa for R = 1.4. The

black curve corresponds to Sr(lf\ii:2>/N = —XalnXa — (1 -
Xa)In(1 — X4).

+ B) may produce a high energy cost. Therefore, we can
evaluate the Bolzmann factor in that case as
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increases.
We also measure the Xa-dependence of Spix for R =
1.4 in Fig. 4(b). We thus confirm that Smix precisely fol-

lows the expected expression, SM=2) /N =—-XalnXs—

mix

(1 — Xa)In(1 — Xa), when changing X systematically.

Appendix B: Snix for hard sphere potential

For hard sphere potentials, the potential energy for the
thermodynamic integration in Eq. (26) is not a suitable
observable. Thus, we use the following numerical tech-
nique for this specific case. Conventionally, hard sphere
systems are described by using the following pair poten-
tial v;; between particle ¢ and j,

iy = J oo (ri < 0y),
vij(rij) = { 0 (rij > 0ij),

=1, (B1)

Equivalently, we can adopt the following modeling by

=BV (EY xd)~U0(r)) o { 1 (SN with A > A or B ¢ B), Where rij = [ri —1jl, 045 = (04 +05)/2.

0 (=N with A ¢ B).
(A1)
Consequently, we get Smix(rd’, ) ~ —In (F7Na!Ng!) =

—N(XalnXa + XglnXp) = Sr(rﬁizz) We numerically
confirm this argument for binary hard sphere mixtures
below.

The above argument can easily be generalised to a fi-

nite M-components systems.

2. Numerical test

We test the above argument numerically for N = 1000
binary hard spheres in three dimensions by changing the
concentration of the species A, X4, and the size ratio
R =op/oa. We measure Spix by the method explained
in Sec. III.

Figure 4(a) shows Smix/N for equimolar mixtures
(Xa = Xp = 0.5) at ¢ = 0.45 as a function of R.
As expected, Smix/N vanishes in the monodisperse limit,
R — 1. On the other hand, for R 2 1.3, Spix/N con-

verges to S(M=2)/N = —XalnXpA — XglnXg = In2

indicated b;utxhe horizontal straight line. Thus, we nu-
merically confirm Spix = Sl(rﬁizz) for binary mixtures
with sufficiently large size ratio, and the monodisperse
limit discussed in the above. Furthermore, our numeri-
cal measurement smoothly connects the two cases around
1 < R < 1.3. Thus we no longer need to take any arbi-
trary decision about the mixing entropy?® of any given
physical system.

We find the above trend (Spix/N — 0 at R — 1 and

Smix = Sl(rf\i{(:% for larger R) for larger volume fraction,
¢ 2 0.45. Since the R ~ 1 region is difficult to study for
¢ 2 0.5 due to crystallization, we show the data at ¢ =
0.45. Tt is likely that the crossover between monodisperse

and bidisperse limits occurs at a smaller R value when ¢

using a finite potential ¥;; but fixing instead 8 = oc:

=0 350
B8 = 0. (B2)

Thus, we perform the thermodynamic integration of
Eq. (26) using AUpix from 8 = 0 to 8 = oo for the hard
sphere systems described by Eq. (B2).
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