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Abstract

Typed decorated trees are used by Bruned, Hairer and Zambotti to give a description of
a renormalisation process on stochastic PDEs. We here study the algebraic structures on
these objects: multiple prelie algebras and related operads (generalizing a result by Chapoton
and Livernet), noncommutative and cocommutative Hopf algebras (generalizing Grossman
and Larson’s construction), commutative and noncocommutative Hopf algebras (generaliz-
ing Connes and Kreimer’s construction), bialgebras in cointeraction (generalizing Calaque,
Ebrahimi-Fard and Manchon’s result). We also define families of morphisms and in par-
ticular we prove that any Connes-Kreimer Hopf algebra of typed and decorated trees is
isomorphic to a Connes-Kreimer Hopf algebra of non—typed and decorated trees (the set of
decorations of vertices being bigger), through a contraction process, and finally obtain the
Bruned-Hairer-Zambotti construction as a subquotient.
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Introduction

Bruned, Hairer and Zambotti used in [3, [4] typed trees in an essential way to give a systematic
description of a canonical renormalisation procedure of stochastic PDEs. Typed trees are rooted
trees in which edges are decorated by elements of a fixed set T of types. They also appear in
a context of low dimension topology in [16] (there, described as nested parentheses) and for the
description of combinatorial species in [I]. We here study several algebraic structures on these
trees, generalizing results of Connes and Kreimer [8], Chapoton and Livernet [7], Grossman and
Larson [11], Calaque, Ebrahimi-Fard and Manchon [5].

In the work of Bruned, Hairer and Zambotti, the considered trees are typed, with a finite
set of types denoted by £, and labeled. We here forget about the labels and study the algebraic
structures induced by types. We first define grafting products of trees, similar to the pre-Lie
product of [6]. For any type ¢, we obtain a pre-Lie product e; on the space gp 7 of T-typed trees
which vertices are decorated by elements of a set D. For example, if | and | are two types, if
a, b, ce D, then:

b

I, VAN

b b;
Iflo:.cz\'a—i— .

2 o 0o

Then gp 7, equipped with all these products, is a 7-multiple pre-Lie algebra (Definition ,
also called matching pre-Lie algebras in [21]: for any types t and ¢/, for any z,y, 2 € gp 7,

CL"‘t/(y‘tz)*(x‘t/y)%z:CU‘t(Z‘t/y)*(x‘tZ)‘t'y-

We prove in Corollary that it is the free T-multiple pre-Lie algebra generated by D, gener-
alizing the result of [7]. Consequently, we obtain a combinatorial description of the operad of
T-multiple pre-Lie algebras in terms of 7-typed trees with indexed vertices (Theorem : for
example,

3
02

3
2 3
HRHLVARH o lioll
We also give a desription of the Koszul dual operad and of its free algebras in Propositions [2.10]
and generalizing a result of [6].

For any family A = (A\¢)e7 with a finite support, the product ey = >} A\;e; is pre-Lie: using the
Guin-Oudom construction [18,[17], we obtain a Hopf algebraic structure HgL% = (S(gp,7), *x, Q)
on the symmetric algebra generated by 7T-typed and D-decorated trees, that is to say on the
space of T-typed and D-decorated forests. The coproduct A is given by partitions of forests into
two forests and the x, product is given by grafting. For example:

(& 'C

b boe ¢ b

b boe b
Ia‘*)\oC:Iaoc—‘—Alv‘l—‘-)\l a_‘_AE\/.a_‘_)\:IO«‘

In the non-typed case, we get back the Grossman-Larson Hopf algebra of trees [I1]. Dually, we
obtain Hopf algebras ”Hgff(}, generalizing the Connes-Kreimer Hopf algebra [§] of rooted trees.
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For example:

ACKA(I —I ®1+1®I FA e ® o0

b ¢ b b ¢ b ¢
AN (Vo) = Vigl+1@ VG+A| I“®-C+M lo@us +02 ca@ov o,

b c

b ¢ b c¢
b 0 €
APV = Vegl+1® Vera le@ee tale@ e 1A A e @eree,

This Hopf algebra satisfies a universal property in Hochschild cohomology, as does the Connes-
Kreimer’s Hopf algebra. We describe it 1n the simpler case where 7T is finite (Theorem [4.3] . We
finally give a second coproduct § on ’HD T such that HCI;A is a Hopf algebra in the category
of (S(gp,7), m,d)-right comodules, generahzmg the result of [5]. This coproduct ¢ is given by a

contraction-extraction process. For example, in the non-decorated case:

We are also interested in morphisms between these objects. We prove that if A and p are
both nonzero, then the pre-Lie algebras (gp 7, e5) and (gp 7, e,) are isomorphic (Corollary.

Consequently, if A and p are both nonzero, the Hopf algebras HGL* and HDLT are isomorphic;
dually, the Hopf algebras ’HCKA nd %DT are isomorphic (Corollary . Using Livernet’s

rigidity theorem [13] and a nonassociative permutative coproduct defined in Proposition we
prove that if A # 0, then (gp7,e)) is, as a pre-Lie algebra, freely generated by a family of

typed trees D' = T(to)
. As a consequence, the Hopf algebra HCK* of typed and decorated trees is isomorphic to

a Connes—Krelmer Hopf algebra of non typed and decorated trees HD/ , and an explicit isomor-
phism is described with the help of contraction in Proposition .7}

satisfying a condition on the type of edges born from the root (Corollary

This paper is organized as follows: the first section gives the basic definition of typed rooted
trees and enumeration results, when the number of types and decorations are finite. The second
section is about the T-multiple pre-Lie algebra structures on these trees and the underlying
operads.. The freeness of the pre-Lie structures on typed decorated trees and its consequences
are studied in the third section. In the last section, the dual Hopf algebras HSL% and Hg{(ﬁ
are defined and studied and related to the constructions of Bruned, Hairer and Zambotti |3], 4]:
forgetting the labels, the two coproducts they use on a family of typed and partially decorated
trees are a subquotient of a the construction presented here.

Notations 0.1. e We denote by K a commutative field of characteristic zero. All the objects
(vector spaces, algebras, coalgebras, pre-Lie algebras. . .) in this text will be taken over K.

e For any n € N, we denote by [n] the set {1,...,n}.

e For any set 7, we denote by K7 the set of family A\ = (\;);e7 of elements of K indexed by
T, and we denote by K(T) the set of elements A € K7 with a finite support. Note that if
T is finite, then K7 = KT,



1 Typed decorated trees

1.1 Definition

Definition 1.1. Let D and T be two nonempty sets.
1. A D-decorated T -typed forest is a triple (F,dec, type), where:

e F is a rooted forest. The set of its vertices is denoted by V(F') and the set of its edges
by E(F).

o dec: V(F)— D is a map.
e type: E(F) — T is a map.

If the underlying rooted forest of F' is connected, we shall say that F is a D-decorated
T -typed tree.

2. If (F,decp, typer) and (G, decg, typeg) are two D-decorated T -typed forests, they are iso-
morphic if there exists a rooted forest isomorphism f from F to G such that for any vertex
v of F, decq(f(v)) = decp(v) and for any edge e of F, typeq(f(e)) = typer(e)

3. For any finite set A, we denote by T (A) the set of A-decorated T -typed trees T such that
V(T) = A and dec = Id 4, and by Fr(A) the set of A-decorated T -typed forests F' such that
V(F) = A and dec = Id4.

4. For anyn =0, we denote by Tp 7(n) the set of isomorphism classes of D-decorated T -typed
trees T' such that |V (T')| = n and by Fp 7(n) the set of isomorphism classes of D-decorated
T -typed forests F' such that |V (F)| = n. We also put:

Tpr = | | Tor(n), Fp 1= | |Fpr(n).

n=0 n=0

Ezxample 1.1. We shall represent the decorations of the vertices by letters alongside them. If T
contains two elements, represented by | and !, then:

Fpr(1) ={.4,de D},

FD,T(Q):{ W Wb IZ IZ abefD}v

Fp7(3) = b b boo b b s l: IZ YZ I:
) - M ! .« .
covree Love Do VNNV T e Te le abceD

Note that for any a, b, c € D:

.
Q
;
<o
I
.
<o
;
Q
<
I
<
D\.
I
3
~
RS
-«
g‘o”:
I
.0
«
p‘oe'



Moreover:
Fpr([1]) = {1},
For@) = .. 101010 )

( 3\
.1.2.3,11.3,11.2712.3712.1,13.2,13.1,

92 '3 '1 '3 '1 '2
dla3 4142 4243 42,1 13.2,13.1,

2 3 1 3 1 2 2 3 3 2 1 1 2 2 3 1 3 1 2
Fp.7([3]) = < Vi, Ve, Vs Wi Wi, ./2 ‘./27 s, ./3 N, N2, Vs, -

3 2 3 1 2 1 2 1

lz ls [1 [3 [1 [2 IS P I P P
| | | 1 [ I

1, 1, 27 27 3, 3. el o1 42 42 43 4¢3

03 92 93 g1 92 o1 43 42 43 41 42 1

62 43 41 93 4§41 42 42 43 41 43 41 42
Il I1 Iz IQ 13 I3 el o1 42 42 4¢3 43

\ ) ) ) ) ) ) ) ) 9 ) ) )

Remark 1.1. If |T] = 1, all the edges of elements of Fp 7 have the same type: we work with
D-decorated rooted forests. In this case, we shall omit 7 in the indices describing the forests,
trees, spaces we are considering.

1.2 Enumeration

We assume here that D and 7T are finite, of respective cardinality D and T'. For all n > 0, we
put:

tp,r(n) = [T7,p(n)], fpr(n) = [Frp(n)l,
Tpr(X)= Z tp,r(n)X", Fpr(X) = Z fpor(n)X"
n=1 n=0

As any element of Fr p can be uniquely decomposed as the disjoint union of its connected
components, which are elements of Tp 7, we obtain:

oo
1
FD,T(X) = 1_[1 (1 — XTL)tD,T(n)‘ (1)
n=
We put 7 = {t1,...,tr}. For any d € D, we consider:

By: { (Fpr)" — Tor
(Fi,...,Fr) — By(F,...,Fy),

where By(Fy,..., Fr) is the tree obtained by grafting the forests Fi,..., Fj,, on a common root
decorated by d; the edges from this root to the roots of F; are of type t; for any 1 < i < T.
Then By is injective, homogeneous of degree 1, and moreover Tp 7 is the disjoint union of the
By((Fp7)T), d e D. Hence:

(2)

TD,T(X) = DX(FDT = DX 1_[ Xn tpr(n)T"

Note that allows to compute tp r(n) by induction on n, and allows to deduce fpr(n).

Lemma 1.2. For anyn e N,
trpi(n)

tpr(n) = —%



Proof. By induction on n. If n = 1, tp (1) = D and trp = TD, which gives the result. Let
us assume the result at all ranks k& < n. Then tp 7(n)T is the coefficient of X™ in:

n—1 n—1
1 1
DX ]!_[1 (1 _ Xk)tD,T(lc)T =TDX 11_11 (1 _ Xk)tTD,l(k') ’

which is precisely t7p.1(n). O

Ezxample 1.2. We obtain:

tpr(l) =D,
tpr(2) = DT,
D2T(3DT + 1
tpr(3) = ZTOPTHD)
D?T(8D*T? + 3DT + 1)
tpr(4) = 3 ;
D?*T(125D3T3 + 54D*T? + 31DT + 6)
tpr(5) = 51 ;
D?*T(162D*T* + 80D3T3 + 45D?T? + 10DT + 3)
tp,r(6) = 5 )
o (7) D?T(16807D°T® + 9375D*T* + 5395D3T3 + 2025D2T? + 838DT + 120)
D, T =

720

Specializing, we find the following sequences of the OEIS [20]:

ro| 1 | 2 | 3 | 4
1 A0081 | A038055 | A038059 | A136793
A00151 | A136794

A006964
A052763
A052788
A246235
A246236
A246237
A246238
A246239

© 00 J O T = W N

[
]

We shall give tables of values of tp (k) in the appendix.

2 Multiple pre-Lie algebras
We here fix a nonempty set T of types of edges.

2.1 Definition

Definition 2.1. A T -multiple pre-Lie algebra is a family (V, (e4)e7), where V' is a vector space
and for all t € T, e is a bilinear product on V such that:

Vt,t' e T, Vr,y,2z€V, zoy(yerz)—(zopy)ez=xe(z0py) — (xe2)eyy.

Remark 2.1. For any t € T, (V,e;) is a pre-Lie algebra. More generally, for any family A =
(A)ier € KT putting ey = 31 \jey, (V, ey) is a pre-Lie algebra.



Proposition 2.2. Let D be any set; we denote by gp 1 the vector space generated by Tp . For

any T,T" € Tp7, ve V(T) and t € T, we denote by T ogv) T’ the D-decorated T -typed tree
obtained by grafting T' on v, the created edge being of type t. We then define a product e; on
gp,7 by:

VT, T' € TpT, TeT = Y Te'T.
veV (T)

Then (gp,T, (8¢)te7) is a T-multiple pre-Lie algebra.
Proof. Let T, T',T" be elements of Tp 7 and t/,¢" € T.
(T @y T/) ® 41 T” -T @y (T/ ® 4 T”)
- ) (T o) T') o}y 1" - > Tl (T s
veVert(T),v'eVert(T)uVert(T") veVert(T),v'eVert(T')
= (T o) T') o
veVert(T),v'eVert(T)
+ Z (T .t(;U) Tl) .t(}j,) T// _T .S}) (T/ °
veVert(T),v'eVert(T)
- Z (T og,v) T OS,)/) T"
veVert(T),v'eVert(T)
— Z (T .(U/) T//) .(v) T/
t// t/
veVert(T),v'eVert(T)
= (T .t” T”) .t/ T/ _ T .t” (T” .t’ T/)

(v") "

t//

(V)
p T//

(v") "

t//

So gp, 7 is indeed a T-multiple pre-Lie algebra. O
Example 2.1. If ab, ce Dand |, | € T:

b

b [b b . s
Iao|.02va+ a Ia.:.c:\’a+

SIS

2.2 Guin-Oudom extension of the pre-Lie products

Notations 2.1. Let V be a vector space. We denote

Vel = PV,
teT

Lemma 2.3. If for any t € T, e is a bilinear product on a vector space V, we define o :
(VOT)82 _, V&T by
26t @ 2’6y = (T 0y ).

Then (V, (8)teT) is a T-multiple pre-Lie algebra if, and only if, (VOT o) is a pre-Lie algebra.
Proof. Let x,2', 2" € V, t,t',t" € T. Then:
26y @ (/0 @ 2"5yn) — (w6, @ 2'0y) @ "5y = ((:B oy ') o’ —x ey (2 oy 1‘”)) ¢,
which implies the result. O
Notations 2.2. The symmetric algebra S(V') is given its usual coproduct A, making it a bialgebra:
VeeV, Alz) =zQ@1+1®x.

We shall use Sweedler’s notation: for any w e S(V), A(w) = Y w) @ w®.



Theorem 2.4. Let V be a T -multiple pre-Lie algebra. One can define a product
o :S(V)® S (VET) — S(V)
in the following way: for any u,ve S(V), we S(VOT), zeV, teT,

Lew ZE(U)),

uel =u,

wew=Y (weuw®) (veu®),

uew(xd) = (uew)e,x—xe(we ),

where o, is extended to S(V)®V and S (V@T) ®V by:

k
Vei,...,xp,x €V, t1,...,t, €T, a:l...xkota;zExl...(a:iotx)...xk,
=1
k
(@161,) .- (zk0y,) o1 = > (2161,) ... (i o4 2)dy,) ... (xkSy,).-
=1

Proof. Uniqueness. The last formula allows to compute x ¢ w for any x € V and w € S (V@T)
by induction on the length of w; the other ones allow to compute u e w for any u € S(V') by
induction on the length on u. So this product e is unique.

Egistence. Let us use the Guin-Oudom construction [I7, 18] on the pre-Lie algebra VO7. We
obtain a product e defined on S (V®T) such that for any u,v,w e S (V®T), zeVoT:

lew =¢e(w),

uel=u,

uv e w =Z (uow(l)) (vow(2)>,

uewr =(uew)exr—xe(wex).

Let f : T —> K be any nonzero map. We consider the surjective algebra morphism F' :
S (V®T) —> S(V), sending xd; to f(t)x for any = € V, t € T. Its kernel is generated by the
elements X, px = (f(t')0 — f(t)op)z, where x € V and ¢,t' € T. We denote by J the vector
space generated by the elements X; yx. Let us prove that for any w € § (V@T), Jew < J by
induction on the length n of w. If n = 0, we can assume that w = 1 and this is obvious. If
n = 1, we can assume that w = 2’d;». Then:

Xepzow = (f(t')0 — f(t)0p)x o ' = Xy rpw o 2’ € J!

Let us assume the result at rank n — 1. We can assume that w = w’z’d;, the length of w’ being
n — 1. For any z € J:

row= (rew)ex —ze(w ez
The length of w" and w' e 2’ is n—1, so x e w’ and z e (w’ e z’) belong to J. From the case n = 1,
(xow)eax'eJ, soxewelJ.

For any x € J, u,v € S(V®T):

TUeV = (mov(l)) (uov(2)> € Ker(F).

———
eJ

This proves that Ker(F') o S (V®T) < Ker(F). Hence, o induces a product also denoted by e,
defined from S(V)® S(VET) to S(V). Tt is not difficult to show that it does not depend on the
choice of f and satisfies the required properties. O



Definition 2.5. Letde D, T1,..., T, € Tp1, t1,...,tx € T. We denote by

i€[k]

the T -typed D-decorated tree obtained by grafting T1, ..., T on a common root decorated by d,
the edge between this root and the root of T; being of type t; for any i. This defines a map
By : S (Vect(Tp1)®T) — S(Vect(Tp,7)).

Lemma 2.6. For anyde D, Ty,..., T, € Tp 1, t1,...,t, €T

Bd H E&tl = +de H Eétz
i€[k] i€[k]

Proof. We write F' = H T;6¢,. We proceed by induction on k. If £ = 0, then F' = 1 and
i€[k]

«d o1 = «d = By(l). let us assume the result at rank k& — 1, with £ > 1. We can write
F = F'Té;, with length(F') = k —1, T = Ty, and t = t;,. Then:

cioF = (edeoF)eT§ — odo(F oT6)
= By(F') o, T — By(F' &, T)
= By(F'T6;) + By(F' 4 T) — Bg(F' o, T)
= By(F).

So the result holds for all k£ > 0. O

Corollary 2.7. Let A be a T-multiple pre-Lie algebra and, for any d € D, aqg€ A. There exists
a unique T -multiple algebra morphism ¢ : gp 7 —> A, such that for any d € D, ¢(+4) = aq. In
other words, g7 p is the free T-multiple pre-Lie algebra generated by D.

Proof. Uniqueness. Using the Guin-Oudom product and lemma [2.6 ¢ is the unique linear map
inductively defined by:

¢ Ba| [T || =aae [] ¢(T)6:
1€[k] i€[k]

Emistence. Let T,T' € Tp1 and t € T. Let us prove that ¢(T e, T') = ¢(T) ¢ ¢(T”") by
induction on n = |T|. If n = 1, we assume that T'= «d. Then T &, T’ = By(T"4;), so:

(T o T’) =aq e (¢(T/)5t = Qg % ¢(T,) = o(T) o ¢(T/)-

Let us assume the result at all ranks < |T'|. We put:

k
T = By (HT@) .

i=1

9



By definition of the pre-Lie product of gp 7 in terms of grafting:

k
T e T/ = Bd (H TZ-5,51.T’5t> Z Bd (HT&& 7 ®t T 5tj> ’

i=1 i#j

¢(T.T’):ad.1—[¢ 5t<bT’5t+ZadoH¢ )0t (6(T; 0 T'))3y,

gl 1#]
=ad°H¢ 5t¢T/5t+Zad°H¢ )01, (0(T5) o0 9(T))y,
7j=1 1#]

ad.H¢ )01, (T 5t+ado<<n¢) 5,:1) T’)5>
(ad.H¢ ) H(T")6;

= ¢(T) o $(T").

So ¢ is a T-multiple pre-Lie algebra morphism. O

2.3 Operad of typed trees

We now describe an operad of typed trees, in the category of species. We refer to [2], [14] [15] for
notations and definitions on operads.

Notations 2.3. Let A be a finite set. If T'e Ty (A) and a € T

1. The subtrees formed by the connected components of the set of vertices, descendants of a
(a excluded) are denoted by Tl(a), . ,Tr(LZ). The type of the edge from a to the root of Ti(a)
is denoted by t;.

2. The tree formed by the vertices of T" which are not in Tl(a), ..

is denoted by To(a).

. ,Téz), at the exception of a,

Proposition 2.8. For any nonempty finite set A, we denote by Py (A) the vector space generated
by Tr(A). We define a composition o on Py in the following way: for any T € T1(A), T' €
T7(B) and a € A,

To, 7' = Y (o (T ) 0 T) ) o) 0)

V1, Ung €V (T)

With this composition, Py is an operad in the category of species.

(a)
Proof. Note that the tree ( . ((Téa) oll0) T’) (tl) Tl(a)> . > (t 2 T, , which is shortly denote
by T og\v) T’, is obtained in the following process:

1. Delete the branches Tl(a), e T,g‘i) coming from a in T. One obtains a tree 7", and a is a
leaf of T".

2. Identify a € V(T") with the root of T".
3. Graft Tl(a) on vi,. . ., Téj) on vy, .

This obviously does not depend on the choice of the indexation of Tl(a), e ,T}L:).
Let T € T+ (A), T' € T+(B), T" € T+(C).

10



e Ifa’,a" € A, with @’ # d”, then:
(T O T/) O T" — Z (T .E;l,/) T/) .(” ) T"
v’EV(T’)na/ 7,UIIEV'(T//)’ﬂa//

— Z (T .(” ) T//) ( 9| T
’U’EV(T’)”O/ 7,UIIEV'(T//)’ﬂa//
= (T Oa// T”) Oa/ T,,

e If ' € A and V' € B, then:

(T oy T') oy T" = Z <T ‘((://) T/) l(;” )
”L)’EV(T’)na/ ,”L)”EV(T”)nb”

_ 3 Tl (17 e T7)

’L)’EV(T’)na/ ,’U”EV(T”)nb/’
= T Oq’ (T, Oy T”),

Moreover, <o oy T' = T for any tree T', and if a € V(T'), T ey «2T. So Pr is indeed an operad
in the category of species. O

Consequently, the family (P7(n)),=0 is a "classical" operad, which we denote by Pr.

Ezample 2.2.

3
02

3
2 23 12 2 12
Ilolilz.\‘/l—i-il :10211:.1,

)

Remark 2.2. Another operad on typed trees is introduced in [9]. It is a typed version of the
operad of nonassociative, permutative operad of [I3], and is different from ours.

In the non-typed case, this theorem is proved in [7]:
Theorem 2.9. The operad of T -multiple pre-Lie algebras is isomorphic to Py, via the isomor-
2
phism ® sending, for anyt e T, e to the tree Il, where the edge is of type t.

Proof. The operad of T-multiple pre-Lie algebras is generated by the binary elements e;, t € T,
with the relations

Vt, t, (S T, .t’ 02 o, — 0y Ol .t’ = (.t 02 .t’ — .t’ Ol .t)(23)'
Firstly, if ¢ and ' are elements of 7, symbolized by | and |, by the preceding example:

23
A . A
» ] ]
Ilol.l—.lo211— = N1 = 110111—110211

0 L

So the morphism ¢ exists. Let us prove that it is surjective: let T' € Ty (n), we show that it
belongs to Im(®) by induction on n. It is obvious if n = 1 or n = 2. Let us assume the result at
all ranks < n. Up to a reindexation we assume that:

T = By(T16y, ... Ty6y,),

11



where for any 1 < i < j <k, if x € V(T;) and y € V(Tj), then z < y. We denote by T/ the
standardization of T;. By the induction hypothesis on n, T/ € Im(®) for all i. We proceed by
induction on k. The type t; will be represented in red. If £ = 1, then:

2
T =11 oy Ty € Tm(®).

Let us assume the result at rank &k — 1. We put 77 = By(T10y, ... Tx—10t,_,). By the induction
hypothesis on n, 7" € Im(®). Then:

2
11 OlT/ZT—i-ZL‘,

where x is a sum of trees with n vertices, such that the fertility of the root is &k — 1. Hence,
x € Im(®), so T € Im(P).

Let D be a set. The morphism ¢ implies that the free Pr-algebra generated by D, that is to
say gp,7, inherits a 7-multiple pre-Lie algebra structure defined by:

V%?JEQD,T7VE€7-7 xo:yzi (.’IJ@y),
where - is the Pr-algebra structure of gp 7. For any trees T', T” in T'p 7, by definition of the
operadic composition of Py
To, T = Z T.gv) T/,
veV (T)

so oy = e, for any t. As (gp 7, (¢)te7) is the free T-multiple pre-Lie algebra generated by D, ®
is an isomorphism. O

Remark 2.3. Let us assume that 7 is finite, of cardinality 7. Then the components of Py are
finite-dimensional. As the number of rooted trees which vertices are the elements of [n] is n" 1,

for any n = 0 the dimension of Py (n) is 7" 'n"~! and the formal series of Py is:

fo(x) = 3 BP0 (T ATX)

! !
n>1 n n>1 v T

2.4 Koszul dual operad
If T is finite, then Py is a quadratic operad. Its Koszul dual can be directly computed:

Proposition 2.10. The Koszul dual operad 77%— of Pr is generated by o4, t € T, with the relations:
Vt, t/ S 7-, <>tl o1 <>t = <>t 09 <>t’7 <>t/ o1 Qt — (Ot 01 Ot/)(QS)-

The algebras on 77%- are called T-multiple permutative algebras. Such an algebra A is given
bilinear products o¢, t € T, such that:

Va,y,z € A, (xory) op 2z =x 0 (yop 2),
(xory)op z = (T oy 2) o1 y.
In particular, for any t, o is a permutative product.

Of course, the definition of 7T-multiple permutative algebras makes sense even if T is infinite.
Permutative algebras are introduced in [6]. If A is a 7-multiple permutative algebra, then for
any (A\¢)eT € KT, o, = > Ator is a a permutative product on A.

12



Proposition 2.11. LetV be a vector space. Then VS (V®T) is given a T -multiple permutative
algebra structure:

Vte T, v, e V,w,w' e S (VeaT) , (vw) o (V@uw') =v@uww (V).

This T -multiple permutative algebra is denoted by Py (V). For any T -multiple permutative alge-
bra V' and any linear map ¢ : V —> A, there exists a unique morphism ® : Pr(V) — A such
that for anyv eV, (v ®1) = ¢(v).

Proof. Let t,t' € T, v, v,v" € V, w, v, w" € S (VOT).
(v®w oy v/®w’) op V" QU =v@w oy (v'@w'ot/ v”@w”)
= (v®w o v op v”@w”)@w'
= v @ ww'w” (V&) (v"dy),

so Pr(V) is T-multiple permutative.

Existence of ®. Let ty,...,ty € T,v,v1,...,v, € V. Weinductively define ®(v&®(v16,) . .. (vkde,))
by:
P(v®1) = ¢(v),
(v ® (v101,) .- (Viby,,)) = PV ® (V1dy,) ... (Vk—16¢,_,)) 01, P(vg) if k> 1.
Let us prove that this does not depend on the order chosen on the factors v;d;, by induction on
k. If kK =0 or 1, there is nothing to prove. Otherwise, if i < k:
(v ® (0101) - - - (V101 ) (Vi 10t ) - - (VkO,)) 01, D(i)
= ((I)(v ® (vl&tl) s (Ui*16t¢71)(vi+15ti+1) s (vk—létkfl)) Oty QS(Uk)) ©t; gb(vl)
= (®(v® (v101)) - - - (Vi-10t,_, ) (Vit10t; ) - -+ (k101 ,)) ©1; P(vi)) 01, D(vk)
= ®(v® (16,) - - (Vk-101;,,)) o1, P(vk)
= O(v® (vidy,) - .- (Vgdy,,))-
So & is well-defined. Let us prove that @ is a 7-multiple permutative algebra morphism. Let
0,0 €V, w,w' = (v1dy,) ... (0xS,) € S (VOT), and t € T. Let us prove that ®(v@wov'@u") =
®(v®w) o (v ®w') by induction on k. If k = 0:
PvRwo v ®1) = P(v@w's))
— D@ w) o B
=P(v@w) o ®(v ®1).
Otherwise, we put w” = (v1dy,) ... (vk—16¢,_,). Then:
Plv@wor v @u') = (v @ ww” (v'6;)(vidy,))
= (v @ wuw" (V') o1, P(v)
=P(vuwor v @u") oy Pug)
= (2(v@w) o 2(v' @ ")) o, P(vi)
= 2(v@w) o ((v' @ ") oy, P(uy))
=d(v@uw') oy (v @w').

So @ is a T-multiple permutative algebra morphism.

Uniqueness. For any v,vq,...,vp €V, t1,...,tp € T:
V® (v10y,) ... (Vgbe,,) = (V® (v16¢,) - . (Vk—10¢,_,)) Ot Vk-

It is then easy to prove that Pr(V) is generated by V ® 1 as a T-multiple permutative algebra.
Consequently, ® is unique. O

13



Remark 2.4. 1. We proved that Py (V) is freely generated by V, identified with V ® 1. Con-
sequently, P%—(n) has the same dimension as the multilinear component of V &® S (V®T)
with V' = Vect(X1,...,X,), that is to say:

Vect(Xi ® (detl) e (Xi—lfsti_l)(Xi+15t,-+1) e (Xnétn), 1<1<n, t; € T),

SO:

dim(Pr(n)) = nT™ 1.
The formal series of 'P%— is:

im ! n n—1 !
o0 - % P 05 T g - A

n=1 n=1

2. It is possible to prove that 73%- is a Koszul operad (and, hence, Py too) using the rewriting
method of [14].

3 Structure of the pre-Lie products

3.1 A nonassociative permutative coproduct

Proposition 3.1. For allt €T, we define a coproduct p; : gp 17 — 9%27 by:

VI =By | [| T, | € To.r, pe(T)= > Ba| ] T |®@Tibrs,.
ie[k] JE[k] ie[k], i#j

Then:
1. Forallt,t' €T, (pr®Id) o py = ((py ®1d) o Pt)(23)-

2. For any =,y € gp.7, t,t' € T, with Sweedler’s notations py(z) = Y2t @ 22,
pe(z ey y) = 5t,t’55 Ry + Z 2Dt o YR @ 4 Z 2D ® 2@ o y.
3. For any p = (u)eer € K7, we put:

pu= D 1upi: 9T — 95
teT

This makes sense, as any tree in Tp 1 does not vanish only under a finite number of p;.
Then p, is a nonassociative permutative (NAP) coproduct; for any x,y € gp 1, by the
second point, using Sweeder’s notation for p,:

pulz o y) = (Z At#t) r@y+ Y aWr ey y@a@r + 3 an @z ey
teT

In particular, if Z Aepie = 1, (9,7, ®x, pu) is a NAP pre-Lie bialgebra in the sense of [13].
teT

Proof. 1. For any tree T

(pr@Id)opy(T)= > Ba| [] T |®@Tpots® Tyby, v,

p,q€[k],p#q ie[k],i#p,q
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which implies the result.

2. For any tree T,T":

pe(T oy T') =py | Ba | [[ T T'00 |+ > Ba| ] Tyoe,(Ti oy T')6,
i€[k] i€[k] YELARED)

= By H Tid, | @ T 0 + Z By H Tj01, T 0y | @ Tidy, 0
i€[k] i€[k] je[k],j#t

+ Z By H Tj0t, ® (T; oy T/)(Sti,t’
i€[k] Jelk],j#i

+ Z Bd H Tpdtp (71] L T/)dtj ® E(sti’t
i#je(k] pe[k].p#i.j

=TQT'6rp + Z By H Tjoy, | o¢ T' ® Tids, 0
e \jelkly=i

+ Z Bd H J“’jétj ®712 .t’ Tléti7t
ic[k] jelkl.j#i

—TRT Sy + T 0y T'@TPt + TWt @T@1 o, T,
3. Obtained by summation. O

Corollary 3.2. If A € KT s nonzero, let us choose ty € T such that Aty # 0. The pre-Lie

algebra (gp.7,)) is freely generated by the set Tgo)T of T -typed D-decorated trees T such that
there is mo edge outgoing the root of T of type tg.

Proof. For any tree T', we denote by a7 the number of edges outgoing the root of T of type Tj.
Our aim is to prove that (gp 7,e)) is freely generated by the trees T such that ar = 0. We
define a family of scalar b by:

0 if t # to,

1
— if t = t.
Aty

VteT, ot =

1
Note that p, = Xpto. By proposition |3.1, (gp,7,ex,pu) is a NAP pre-Lie bialgebra, so by
0

Livernet’s rigidity theorem [13], it is freely generated by Ker(p,) = Ker(ps). Obviously, if

ar =0, T € Ker(py,). Let us consider x = Z x7T € Ker(py,). We consider the map:
TGTDJ*

T gp, 7 ® gD, T —> OD,T
' TRT — Teo" T

By definition of py,, for any tree T, Y o p;,(T') = arT. Consequently:

So if ap # 0, zp = 0, and x is a linear span of trees such that ap = 0 : the set of trees T such
that ar = 0 is a basis of Ker(py,). O
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If |D| = D and |T| = T, the number of elements of T(Dt?f)r of degree n is denoted by t}, 7(n);
it does not depend on ty. By direct computations:

tlD,T(1> = D7
tpr(2) = DT —1),
D*(T - 1)(3DT — D + 1)
2 )
D*(T —1)(16D?*T? — 8D*T + D? + 6 DT — 3D + 2)
c :

tpr(3) =

tpr(4) =

In the particular case D = 1, T' = 2, we recover sequence A005750 of the OEIS.

3.2 Pre-Lie algebra morphisms

Notations 3.1. Let T and 7" be two sets of types. We denote by M7 77(K) the space of matrices
M = (myy)@p)eT =77, such that for any t' € T, (myy )t € K™ . 1f T = 77, we shall simply
write M7 (K). If M € My 1(K) and M' € M7 7+(K), then:

/ /
MM = (Z My My g

) S MT,T” (K)
veT’ ()T xT"

If Ae K7 and e K7, then:

MM = < Z mut/)\t/) € K(T), MTILL = (Z mtﬂy,u,t) € KT/
teT HeT!

teT! teT
In particular, M (K) is an algebra, acting on K on the left and on K7 on the right.

Definition 3.3. Let M € My 1+(K). We define a map ®pr : Hp 1 — Hp, 1, sending F € Fp 1

to the forest obtained by replacing type(e) by Z My type(e)t for any e € E(F), F being considered

teT
as linear in any of its edges. The restriction of ®y; to gp 7 is denoted by ¢ : gp, 77 — 9p,7-

Ezample 3.1. If T contains two elements, the first one represented by | and the second one by

[ o (6% /6 .
it M= (’7 5>,foranyx,y,z€D.

oY

Yy Y
dm L =OéI’“'+7”,

oY y oV
our [ b | =5l ol
Yy =z Yy oz Yy oz Yy oz (-1
» » . o« 2
Om \’w :aﬁvx+a5\’ﬂc+/8"y ‘/1—1—75 W o,

Remark 3.1. For any M € My 1(K), M" € My 7#(K), ®pro @pp = Posagp.

Proposition 3.4. Let A e K(7), peK” and M e M1 (K). Then ¢pr is a pre-Lie morphism
from (gp 77, x) to (9p,7,®m) and a NAP coalgebra morphism from (gp, 77, ppsr7,) to (80,75 Pu)-
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Proof. Let T,T" € Tp . For any t € T, for any v e V(T):

oM (T '%U) T') = Z my 1o (T') oy ¢M(T/)7

t'eT

SO:

Sn(TonT') = D7 muhdu(T) oy dar(T') = dar(T) oax Sar(T).
t,t'eT

We proved that ¢y is a pre-Lie algebra morphism from (gp 77, ) to (gp,7, ®amn)-
For any T' € Tp 7

pioom(T) = Z mey (dm @ dar) o pp(T),

veT
S0:
puo dn(T) = D my (s ® dar) 0 pu(T) = (dar @ bar) © parr,(T).
t,t'eT
So ¢ : (8p,77, PvT ) — (80,75 pu) is @ NAP coalgebra morphism. O

Corollary 3.5. For any A ee K7) and € K7, such that Z Aepir = 1, for any to € T, the NAP
teT
pre-Lie bialgebras (gp,7, ®x, pu) and (gp,7, 81y, pty) are isomorphic.

Proof. Let us denote by A9 the element of K(7) defined by:
AD = 5

Note that for any M e M7 (K), invertible, s : (gp,7, 0\, P0T,) — (9D,75 @ a5 Pp) 8
an isomorphism. In particular, for a well-chosen M, M MO = X: we can assume that A = \(©
without loss of generality. Then, by hypothesis, p;, = 1. We define a matrix M € M7 (K) in the

following way:
de 1 if t = 1o,
mgy = .
O ¢ — pyr0t ¢, Otherwise.

Then M is invertible. Moreover, MA© = X©) and M Ty = A9 So ¢y is an isomorphism from
(90,7, ®A®, PA®) to (9,7, ®x, pu)- O

Proposition 3.6. Let A\ € K7 and to € T. We define a pre-Lie algebra morphism Py -

(900) - ®) — (gD,7,92), sending «7 to T for any T' € T(DtO)T. Then 1)y, is a pre-Lie algebra
D, T ’

wsomorphism if, and only if, Ay, # 0.

Proof. If Ay, # 0, then by corollary (gp,7, ) is freely generated by T(Dt(})r, S0 1y, is an
isomorphism. If Ay, = 0, then it is not difficult to show that any tree 7" with two vertices, with
its unique edge of type tg, does not belong to Im(,). O

4 Hopf algebraic structures

We here fix A\ e K(T),
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4.1 Enveloping algebra of gp 1

Using again the Guin-Oudom construction, we obtain the enveloping algebra of (gp7,e)). We
first identify the symmetric coalgebra S(gp ) with the vector space generated by Fp 7, which
we denote by Hp 7. Its product m is given by disjoint union of forests, its coproduct by:

vT1,...,Th € Tp.r, AT Ty = [[Te] [
Ic[n] iel il

We denote by ey the Guin-Oudom extension of ey to Hp 7 and %, the associated associative
product.

Theorem 4.1. For any F' € Fp 7, T1,...,T, € Tp7:

FoTi..T,= ) [T ( (F o) T1> ) o),

V1,...,0n€V(F), \i€[n]

t1,estn€T
Fx,Ty...T, = Z (Fo,\HT,) HT
Ic[n] i€l il

The Hopf algebra (Hp 1,%*x, A) is denoted by HgLT*. Moreover, for any M € My 1(K), for any

Ae KT &, is a Hopf algebra morphism from HgL%, to ”HgLf,@“. The extension of Yy, as a

Hopf algebra morphism from 7—[1(;(%0) to Hg%ﬁ s denoted by Wy, ; it is an isomorphism if, and only
D, T
if, Aty # 0.

In particular, if 7 = {t} and A\; = 1, we recover the Grossman-Larson Hopf algebra [11].

4.2 Dual construction

Proposition 4.2. Let T' € Tp 7.

1. A cut ¢ of T is a nonempty subset of E(T); it is said to be admissible if any path in the
tree from the root to a leaf meets at most one edge in c. The set of admissible cuts of T is
denoted by Adm(T).

2. If ¢ is admissible, one of the connected components of T\c contains the root of c: we denote
it by R°(T"). The product of the other connected components of T\c is denoted by P¢(T).

Let Ne KT. We define a multiplicative coproduct A°Kx on the algebra (Hp,7,m) by:

VT € Tp.T, ANT) =T@1+10T+ ). <1_[ Atype(e)> RE(T) ® P°(T).
ceAdm(T) \egc
Then (Hp,,m, ACYEN) s a Hopf algebra, which we denote by Hg,}fﬁ
Proof. We first assume that A € K(7). Let us define a nondegenerate pairing (—, —) on Hp,7 by:
VE,F' € Fp T, (F,F"y = éppsp,

where sp is the number of symmetries of F. Let us consider three forests F, F’, F”. We put:

F= [] ™, = [] 1%, F'= ] 1.

TET’D,T TET’D,T TET’D,T
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Then:

@am.Fery= 3, 1] 4

>< H TCT7F”>

a=b+cTeTp T " TeTp T TeTp,+
)\ !
Z 61) a’éc a” al ' ,,'SF’SF”
a=b+c
)\t! /) //l aT+aT

= 5a,a’+a”maT ‘ar:Sp
797"

A
= 5a,a’+a”)\t!5Tt
= OF,pFrSF
— (F,F'F".

Therefore:

Vz,y,z € HpT, (Ax),y @ z) = {w,yz).

Let F, G be two forests and T" be a tree. Observe that if F' is a forest with at least two trees,
then F' ) G does not contain any tree, so (F'x\ G,T) = 0. If F = 1, then (F ) G,T) # 0 if,
and only if, G = T'; moreover, (1 ) T,T) = 1. If F' is a tree, then:

<F *\ G,T> = <F LD\ G,T>.

Moreover, if F' = By(F') and G =T} ... Tj:

FeyG= > > HAt Bd<HT5tF’ HT5t>,

IC[k] (t;)eT* \i€lk i€l il

where e is the pre-Lie product on 9%7’ induced by the 7T -multiplie pre-Lie structure. Conse-

quently, we can inductively define a coproduct ACKx : Hp,7 — Hp,7 @ Hp,7, multiplicative
for the product m, such that, if we denote for any tree T, Acx(T) = A(T) —1®T, for any tree
T = Bd(T15t1 .. Tkétk)

AT = (Baold) | [TAY (16, ®1+ A 1®T) | (3)
i€[k]

Then, for any z,y,z € Hp,7:
<:E *AY, Z> = <$ Ry, ACK)‘ (Z)>
A quite easy induction on the number of vertices of trees proves that this coproduct is indeed the

one we define in the statement of the proposition. As (—, —) is nondegenerate, (Hp 1, m, ACEN)

is a Hopf algebra, dual to ’HGLA

In the general case, for any x € Hp 1, there exists a finite subset 7" of T such that € Hp 1.
Putting A = A7, N e KT = KT, s0:
(A“Mr @ 1d) 0 A (2) = (AYFY @1d) 0 AYKN (z)
— (Id @ AYKx) o ACKN (1)
— (Id @ AN o APKA(g).

Hence, A) is coassociative, and Hgl? is a Hopf algebra. O
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Ezample 4.1. Let us fix a subset 77 of T and choose (A¢)e7 such that:

)\t:{lifteT’,

0 otherwise.

For any tree T' € Tp 7, let us denote by Admy(T") the set of admissible cuts ¢ of T" such that
the type of any edge in ¢ belongs to 7’. Then:

APNT)=T®1+10T+ ). RYT)®PT).
ceAdm/ (T)

Remark 4.1. 1. If T = {t} and A\, = 1, we recover the usual Connes-Kreimer Hopf algebra of
D-decorated rooted trees, which we denote by HgK , and its duality with the Grossman-
Larson Hopf algebra |8, 12} [19].

2. If 7 and D are finite, for any A € K7, both Hglgf and ’Hg%ﬁ are graded Hopf algebra (by
the number of vertices), and their homogeneous components are finite-dimensional. Via
the pairing (—, —), each one is the graded dual of the other.

4.3 Hochschild cohomology of coalgebras

For the sake of simplicity, we assume that the set of types T is finite and we put T = {t1,...,tn}.

Let (C, A) be a coalgebra and let (M,dr,0r) be a C-bicomodule. We define a complex, dual
to the Hochschild complex for algebras, in the following way:

1. For any n > 0, H, = L(M,C®").

2. For any L € Hy:

b(L) = Id® L) o6y + Y (-1)!Id® D @ AQIA®" ) o L + (—1)"" (L ®1d) o dR.
i=1

In particular, one-cocycles are maps L : M — C such that:
AoL=(Id®L)od; + (LRId) o dg.

We shall consider in particular the bicomodule (M, dr,dr) such that:

Ve e C, {5L(x) =1e
dr(z) = A(x).

If C is a bialgebra, then M®¥ is also a bicomodule:

6L<® x,;)zl@ &R i,

1<i<N 1<i<N
Va, € C,
1 (2)
[ @ n)- ® Pe [T o2
1<i<N 1<i<N 1<i<N
CKy

We denote by 1 = (1) € K7, and we take C' = Hp7- One can identify S (Vect(Tp,7)®7T)
and C®N | 267, being identified with 1901 @ 2 ® 19— for any x € Tp7and 1 <i< N. Then
for any d, By : C®N — (C is a 1-cocycle. Moreover, there is a universal property, proved in the
same way as for the Connes-Kreimer’s one [§]:
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Theorem 4.3. Let B be a commutative bialgebra and, for any d € D, let Ly : C®N — C be a
1-cocycle:

Vde D, Va, € B, AoLd< X :c> -1 ® xi—i—Ld( %) x§1)> ® [ =
1<i<N 1<i<N 1<i<N 1<i<N

There exists a unique bialgebra morphism ¢ : Hg[% —> (' such that for any d € D, ¢po Lg =

By o ¢®N.

4.4 Hopf algebra morphisms

Our aim is, firstly, to construct Hopf algebras morphisms between ’;‘—[CKA and ’Hg[gf‘; secondly,

to construct Hopf algebra isomorphisms between HCK* and H%K for a well-chosen D'.
Proposition 4.4. Let M € M7 (K), A € KT. Then &y : HD#U—H7£?isw%ﬁ
algebra morphism.

Proof. ®)r is a obviously an algebra morphism. Let T' € Tp 1.

+ )] II(ZWMWWﬁJ®MUﬂTD®¢M@%ﬂ)

ceAdm(T) esc \teT
=y (T)®1+1Q Pp(T)
+ 3 T N ype(e)@ar (RE(T)) @ @ (PE(T))

ceAdm(T') e€c
= ((I)M ® (I)M) (¢] AMTa(T).

So @,y is a coalgebra morphism from HD TJ)[ " to HCK* O

Corollary 4.5. Let A\, i € K7, both nonzero. Then HCK* and Hglgf‘ are isomorphic Hopf
algebras.

Proof. There exists M € M+(K), invertible, such that M "X = p. Then ®,; is an isomorphism
between HDT and HCK* O

Definition 4.6. Let us fiz to € T. For any F € Fp 7, we shall say that {T4,..., Ty} <, F if the
following conditions hold:

o {Th,...,T}} is a partition of V(F). Consequently, for any i € [k|, T; € Fp 7, by restriction.
e Foranyic€ k], T; € ']I‘go)T.

If{Ty, ..., Ty} <y, F, we denote by F/{T1,...,T}} the forest obtained by contracting T; to a single
vertex for any i € [k], decorating this vertex by T;, and forgetting the type of the remaining edges.

Then F/{T1,..., Ty} is a Tlgfgz—decomted forest.

Proposition 4.7. Let A\e K7, tg e T. Let us consider the map:

FeFpr — Z [T Awpe |FATL .. Til).
{T17'-'7Tk‘}<tOF EEE(F)\I_IE(Ti)

Then Vi is a Hopf algebra morphism from HCKA to HEE 7o) It is an isomorphism if, and only
D, T

Zf, )‘to #0.
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Proof. First case. We first assume that D and 7 are finite. In this case, ’Hglgf is the graded

dual of HgLTA, with the Hopf pairing (—, —); grading HT“ y by the number of vertices of the
) D, T

decorations, H%{E) is the graded dual of H'?(’;JO) . Moreover, W} is the transpose of W, of propo-
D.T DT
sition so is a Hopf algebra morphism. If Ay, # 0, Wy, is an isomorphism, so ¥ also is.
General case. Let x,y € Hp,7. There exist finite D', 7', such that z,y € Hp 77; we can

assume that tg € 7'. We denote by \ = Aj77. Then, by the preceding case, denoting by W}, the
restriction of W} to Hpr v

U () = W) (2y) = W) ()T} (y) = U5, (2) 05, (9).
ACK 0 W () = ACKY 0 W) (2) = (T}, @ T),) 0 ACKN (2) = (U], @ U},) 0 AK (a),

so U is a Hopf algebra morphism.

Let us assume that Ay, # 0. If Uf (x) = 0, then W} (x) = 0. As aj, # 0, by the first case,
x =0, so ¥} is injective. Moreover, there exists z € Hpr 77, such that W} (z) = y; so U (2) =y,
and Wi is surjective.

Let us assume that Ay, = 0. Let 7" be a tree with two vertices, such that its unique edge is of

type tg. As T ¢ ']I‘(DtO)T, ®,,(T') has a unique term, given by the partition X = {{z1}, {z2}}, where
x1 and z9 are the vertices of T'. Hence:

Ui (T) = N\oT' =0,
so Uy is not injective. O

Example 4.2. Here, T contains two elements, | and !. In order to simplify, we omit the
decorations of vertices. We put:

i 2/ 1 ;
T = o, Y=, z = v o, U=+ , V= e
Applying\Illz
IR v (Vy=x Vi
‘P"](I)=A|I% \I/*l([ )=)\2|lx,
) z H z y
\I/"](.\/.):Al)\:.v.m—i—)\lly, \I}*l(; ):)\l)\:[r +)\|Iy+.u7
T T x I Z . )
o V4 =)\ Vz+2)\:ly+.z’ UE (4 ) = \2 lz_’_)\:ly_i_)\:lz_i_.v'
| - | .

Remark 4.2. Although it is not indicated, ¥y, and ¥} depend on A.
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4.5 Bialgebras in cointeraction

By [10], for any A € K(7)| the operad morphism 6, : PreLie — P, which send e to e, where
PreLie is the operad of pre-Lie algebras, induces a pair of cointeracting bialgebras for any finite
set D. By construction, the first bialgebra of the pair is Hgifr* Let us describe the second one.

Definition 4.8. Let F'€ Frp. We shall say that {Ty,..., Ty} < F' if:
1. {Th, ..., Ty} is a partition of V(F'). Consequently, for any i € [k, T; € Fp 1, by restriction.
2. For anyie€ [k], T; € Tpr.

If{Ty,..., Ty} < F and dec : [k] — D, we denote by (F/{Ti,...,Ty},dec) the forest obtained
by contracting T; to a single vertex, and decorating this vertex by dec(i), for all i € [k]. This is
an element of Fp 1.

Proposition 4.9. If D is finite, H/D,T is the free commutative algebra generated by pairs (T, d),
where T'€ T+ p and d € D. The coproduct is given, for any F' € Fp 7, d € D, by:

sED= Y S (FAT...., Ty} dec),d) @ (Th, dec(1)) ... (Ty, dec(k)).
{Ty,....Tx }<oF dec:[k]—D

Then ( /D,Tv m,d) is a bialgebra, and ’Hglgf is a coalgebra in the category of H’D,T—comodules

via the coaction given, for any T € Tp 1, by:

5Ty = )] > (TATY, ..., T}, dec) @ (T1, dec(1)) . .. (Ty, dec(k)).

{T1,..., T }<T dec:[k]—D

Corollary 4.10. Let us assume that D is given a semigroup law denoted by +. If F' € Frp,
and {Ty,..., Ty} < F, then naturally T; € T p for any i and the T -typed forest F/{Th,..., Ty}
1 given a D-decoration, decorating the vertexr obtained in the contradiction of T; by the sum of
the decorations of the vertices of T;. Then Hp 7 is given a second coproduct 6 such that for any
Fe FDJ’:

()= >, F/ATy,....T}®T... Tk
{Tl,...,Tk}<1F

Then (Hp,7,m,9) is a bialgebra and ’7’-[16;17(-A is a coalgebra in the category of Hp 7-comodules via
the coaction 9.

Proof. We denote by I the ideal of HQD,T generated by pairs (7', d) such that T'e Tp 7 and d € D,
with:
d # Z dec(v).

veV(T)

The quotient %’DJ-/I is identified with Hp 7, trough the surjective algebra morphism:

Hpr — Hor
Fifd= Z dec(v),
(F,d)eFp7TxD —> veV (F)
0 otherwise.

Let us prove that I is a coideal. Let T' € Ty p, d € D, {I1,...,T;} < F, dec : [k] — D such
that ((T'/{Th,...,Tx},dec),d) ¢ I and for any 4, (T;,dec(i)) ¢ I. Then:

k
Vi e [k], > dec(v) = dec(i), > dec(i) = d.
i=1

’UEV(Ti)
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Hence:

2 dec(v Z Z dec(v Zdec

veV (T i=1veV (T;)

so (T,d) ¢ 1. Consequently, if T eI, then ((T/{T1,...,Tk},dec),d) € I or at least one of the
(T;,dec(i)) belongs to I. Hence:

S(I)cI®HpT+®HpT®I.

So I is a coideal. The coproduct induced on Hp 7 by the morphism @ is precisely the one given
in the setting of this Corollary. 0

In particular, if D is reduced to a single element, denoted by =, if we give it its unique
semigroup structure (* + % = *), We obtain again the result of [5].

4.6 The Bruned-Hairer-Zambotti construction

We now consider the coproducts on typed trees in [3, Theorem 2.2.16], the first one with A(F) =
21(F) and the second one with A(F) = A (F) of [3, Definition 2.4.1]. By definition [3, Definition
2.26] of admissible subtrees, according to the notations we choose in this paper:

e Let £ be a finite set of types. The considered trees are L-typed and the leaves are L-
decorated. Considering that the internal vertices of such a tree are in fact decorated by an
element 0 ¢ £, these trees form a subset of Ty, p) » Which we denote by T/..

e The first coproduct A is given on any tree T € T’ by:

AT - Y BT
ceAdm’(T)

where Adm'(T) is the set of admissible cuts of T such that the set of leaves of R¢(T) is a
subset of leaves of T' (note that automatically, the leaves of P¢(T") are also leaves of T').

e The second coproduct is given on any tree T € T', by:

A(T) = Z TAT,.... i} @1 ... Tk,
{Tl,...,Tk}<l’T

where the sum runs over all {T1,...,T;} < T such that the leaves of T'/{T1,..., Ty} are
leaves of T'.

We denote by H). the subalgebra of H,, o o generated by bfT;. Then (H},m,A.) and
(H).,m, d) are bialgebras.

Let us give to £ any product x making it a commutative associative semigroup. We extend
this structure to £ u {0} by:

vVt e L u {0}, Oxt=tx0=0.

We take \; = 1 for any ¢ € £ u {0}, and obtain with this data two coproducts A and § on
Hrogoy,c, the first one given by admissible cuts and the second one by contractions of subtrees.
The subalgebra H7. of £u{o},c generated by trees such that any internal vertex is decorated by 0
(note that the leaves of such a tree are decorated by L11{0}) is a subbialgebra for both coproducts.
We denote by I the ideal of H; generated by trees with at least one leaf decorated by 0. Then it is
a coideal for both coproducts, so the quotient algebra H'./I inherits two coproducts, still denoted
by A and §. This algebra is trivially identified with the algebra generated by T’,, that is to say
with H'.. By construction of the different coproducts, this identification is an isomorphism from
the Hopf algebra (H7/I,A) to (H}/I,A) and from the Hopf algebra (H//I,6) to (H/I,A).
In other words, the Bruned-Hairer-Zambotti construction of cointeracting bialgebras on typed
trees is a subquotient of the construction presented here.
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5 Appendix

5.1 Values of tp (k)

For D = 1:
(T\k[1]2] 3] 4 ] 5 6 7 8
1 1|1 2 4 9 20 48 115
2 1] 2 7 26 107 458 2058 9498
3 11 3] 15 82 495 3144 20875 142773
4 1] 4| 26 | 188 | 1499 12628 111064 1006840
5 1] 5| 40 | 360 | 3570 | 37476 410490 4635330
6 1] 6 | 57 | 614 | 7284 | 91566 1200705 | 16232820
7 1] 7 | 77 | 966 | 13342 | 195384 | 2984142 | 46990952
8 1] 8 | 100 | 1432 | 22570 | 377320 | 6578116 | 118238600
9 1] 9 | 126 | 2028 | 35919 | 674964 | 13225632 | 267188229
10 || 1|10 | 155 | 2770 | 54465 | 1136402 | 24723000 | 554540590
For D = 2:
Tk 1|2 3 4 5 6 7 8
1 2| 4 14 52 214 916 4116 18996
2 218 52 376 2998 25256 222128 2013680
3 2112 114 | 1228 14568 183132 2401410 32465640
4 2116 | 200 | 2864 | 45140 754640 13156232 236477200
) 2120 | 310 | 5540 | 108930 | 2272804 | 49446000 1109081180
6 2124 | 444 | 9512 | 224154 | 5606520 | 146204792 3930863232
7 2128 | 602 | 15036 | 413028 | 12043500 | 366122190 | 11475005616
8 2132 784 | 22368 | 701768 | 23373216 | 811575408 | 29052861280
9 2136 | 990 | 31764 | 1120590 | 41969844 | 1638712716 | 65965167108
10 || 2|40 | 1220 | 43480 | 1703710 | 70875208 | 3073688160 | 137426005200
For D = 3:
T\k|{ 1|2 3 4 5 6 7 8
1 319 | 45 246 1485 9432 62625 428319
2 3118 | 171 1842 21852 274698 3602115 48698460
3 3127 | 378 | 6084 107757 2024892 39676896 801564687
4 3136 | 666 | 14268 336231 8409780 219307188 5896294848
5 3145|1035 | 27690 | 814680 | 25444584 | 828506340 27812997990
6 3154|1485 | 47646 | 1680885 | 62954766 | 2458069074 | 98947750662
7 3163|2016 | 75432 | 3103002 | 135520812 | 6170116638 | 289616448690
8 3172|2628 | 112344 | 5279562 | 263423016 | 13701398868 | 734709311208
9 3181|3321 | 159678 | 8439471 | 473586264 | 27703353159 | 1670715963729
10 || 390 | 4095 | 218730 | 12842010 | 800524818 | 52018920345 | 3484841027040
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For D = 4:

k1] 2 | 3 1 5 6 7 8
1 4116 | 104 752 5996 50512 444256 4027360
2 || 4] 32 | 400 | 5728 90280 1509280 26312464 472954400
3 |[4] 48 | 888 | 19024 | 448308 11213040 292409584 7861726464
4 || 4| 64 | 1568 | 44736 | 1403536 | 46746432 1623150816 58105722560
5 | 4] 80 | 2440 | 86960 | 3407420 | 141750416 | 6147376320 274852010400
6 | 4] 96 | 3504 | 149792 | 7039416 | 351230688 | 18268531824 | 979612414944
7T | 41]112 | 4760 | 237328 | 13006980 | 756866096 | 45910215120 | 2871018269632
8 || 4] 128 | 6208 | 353664 | 22145568 | 1472317056 | 102037088448 | 7290356719488
9 || 4144 | 7848 | 502896 | 35418636 | 2648533968 | 206451156768 | 16590568445280
10 || 4 | 160 | 9680 | 689120 | 53917640 | 4479065632 | 387863411920 | 34625886677920
5.2 Values of t}, (k)
For D = 1:
T\k[1]2] 3 | 4 5 6 7 8
1 110] 0O 0 0 0 0 0
2 1)1 3 10 39 160 702 3177
3 112 9 46 268 1660 10845 73270
4 113] 18 | 124 | 963 7968 69236 621999
) 114] 30 | 260 | 2525 | 26136 | 283528 3178696
6 115]| 45 | 470 | 5480 | 68096 | 885805 11904160
7 16| 63 | 770 | 10479 | 151956 | 2304974 | 36110880
8 117 84 | 1176 | 18298 | 303296 | 5255964 | 94051770
9 ||1]|8|108|1704 | 29838 | 556464 | 10845732 | 218239560
10 || 1191352370 | 46125 | 955872 | 20696076 | 462558987
For D = 2:
kL] 2] 3 1 5 6 7 8
1 210 0 0 0 0 0 0
2 214 | 22 144 1090 8864 76162 678532
3 |2 8] 68 688 7886 96896 1250780 16713504
4 | 2)12] 138 | 1888 | 29004 476736 8213588 146342376
5 [|2]16] 232 | 4000 | 77060 | 1586304 | 34185344 761389360
6 2120| 350 | 7280 | 168670 | 4171744 | 107932710 | 2884827980
7T 12(24] 492 | 11984 | 324450 | 9370368 | 282934428 | 8822987856
8 2128 ] 658 | 18368 | 569016 | 18793600 | 648698792 | 23119514576
9 2132 848 | 26688 | 930984 | 34609920 | 1344232416 | 53898191520
10 || 2|36 | 1062 | 37200 | 1442970 | 59627808 | 2573660298 | 114661732500
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For D = 3:

T\t[[1]2] 3 4 5 6 7 8
1 3]0 0 0 0 0 0 0
2 3] 9] 72 705 7947 96588 1237728 16450389
3 [[3]18] 225 | 3408 58347 1072224 20685195 413084610
4 3|27 | 459 9405 216081 5315112 136987407 3650993163
5 3136 | 774 | 19992 576405 17763984 572991726 19100718828
6 [[31]45]1170| 36465 | 1264950 | 46852884 | 1815034140 | 72635168880
7 131541647 60120 | 2437722 | 105455952 | 4768982442 | 222723271080
8 [[31]63]2205 92253 | 4281102 | 211832208 | 10953036318 | 584744300226
9 [[3]72]2844 | 134160 | 7011846 | 390570336 | 22727284344 | 1365242802048
10 | 3813564 | 187137 | 10877085 | 673533468 | 43560017892 | 2907844041231
For D = 4:
TNE[1] 2 3 4 5 6 7 8
1 4] 0 0 0 0 0 0 0
2 4| 16 | 168 2192 32844 531200 9051376 159962784
3 41 32 | 528 | 10656 242792 5939968 152518064 4053650976
4 41 48 | 1080 | 29488 902100 29551104 1014147872 35989518528
5 4] 64 [ 1824 62784 | 2411024 | 98976256 | 4252211232 | 188790415552
6 |[4] 80 [2760 | 114640 | 5297820 | 261422336 | 13491005840 | 719200139360
7 4] 96 | 3888 | 189152 | 10218744 | 588999936 | 35487727184 | 2208096700896
8 [[4]112]5208 290416 | 17958052 | 1184031744 | 81574704960 | 5802692175744
9 [ 411286720 | 422528 | 29428000 | 2184360960 | 169377005376 | 13557899008896
10 |[ 4] 144 | 8424 | 589584 | 45668844 | 3768659712 | 324805399344 | 28894042642464
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