
HAL Id: hal-01924416
https://hal.science/hal-01924416v1

Preprint submitted on 15 Nov 2018 (v1), last revised 21 Sep 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic structures on typed decorated rooted trees
Loïc Foissy

To cite this version:

Loïc Foissy. Algebraic structures on typed decorated rooted trees. 2018. �hal-01924416v1�

https://hal.science/hal-01924416v1
https://hal.archives-ouvertes.fr


Algebraic structures on typed decorated rooted trees

Loïc Foissy

Fédération de Recherche Mathématique du Nord Pas de Calais FR 2956
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville

Université du Littoral Côte dOpale-Centre Universitaire de la Mi-Voix
50, rue Ferdinand Buisson, CS 80699, 62228 Calais Cedex, France

email: foissy@univ-littoral.fr

Contents

1 Typed decorated trees 3
1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Multiple prelie algebras 5
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Guin-Oudom extension of the prelie products . . . . . . . . . . . . . . . . . . . . 6
2.3 Operad of typed trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Koszul dual operad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Structure of the prelie products 13
3.1 A nonassociative permutative coproduct . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Prelie algebra morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Hopf algebraic structures 16
4.1 Enveloping algebra of gD,T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Dual construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Hochschild cohomology of coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Hopf algebra morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Bialgebras in cointeraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Abstract

Typed decorated trees are used by Bruned, Hairer and Zambotti to give a description of
a renormalisation process on stochastic PDEs. We here study the algebraic structures on
these objects: multiple prelie algebras and related operads (generalizing a result by Chapoton
and Livernet), noncommutative and cocommutative Hopf algebras (generalizing Grossman
and Larson’s construction), commutative and noncocommutative Hopf algebras (generaliz-
ing Connes and Kreimer’s construction), bialgebras in cointeraction (generalizing Calaque,
Ebrahimi-Fard and Manchon’s result). We also define families of morphisms and in particular
we prove that any Connes-Kreimer Hopf algebra of typed and decorated trees is isomorphic
to a Connes-Kreimer Hopf algebra of non typed and decorated trees (the set of decorations
of vertices being bigger), trough a contraction process.

Keywords. typed tree; combinatorial Hopf algebras; prelie algebras; operads.

AMS classification. 05C05, 16T30, 18D50, 17D25.
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Introduction

Bruned, Hairer and Zambotti used in [3] typed trees in an essential way to give a systematic
description of a canonical renormalisation procedure of stochastic PDEs. Typed trees are rooted
trees which edges are decorated by elements of a fixed set T of types. They also appear in a
context of low dimension topology in [14] (there, described as nested parentheses) and for the
description of combinatorial species in [1]. We here study several algebraic structures on these
trees, generalizing results of Connes and Kreimer, Chapoton and Livernet, Grossman and Larson,
Calaque, Ebrahimi-Fard and Manchon.

We first define grafting products of trees, similar to the prelie product of [5]. For any type
t, we obtain a prelie product ‚t on the space gD,T of T -typed trees which vertices are decorated
by elements of a set D: for example, if | and | are two types, if a, b, c P D, then:

a
b

‚ c “ a

cb

` a
b

c

, a
b

‚ c “ a

cb

` a
b

c

.

Then gD,T , equipped with all these products, is a T -multiple prelie algebra (Definition 3), and
we prove in Corollary 9 that it is the free T -multiple prelie algebra generated by D, generalizing
the result of [6]. Consequently, we obtain a combinatorial description of the operad of T -multiple
prelie algebras in terms of T -typed trees with indexed vertices (Theorem 11): for example,

1
2

˝1 1
2

“ 1

32

` 1
2
3

, 1
2

˝2 1
2

“ 1
2
3

.

We also give a desription of the Koszul dual operad and of its free algebras in Propositions 12
and 13, generalizing a result of [5].

For any family λ “ pλtqtPT with a finite support, the product ‚λ “
ř

λt‚t is prelie: using the
Guin-Oudom construction [16, 15], we obtain a Hopf algebraic structureHGLλD,T “ pSpgD,T q, ‹λ,∆q
on the symmetric algebra generated by T -typed and D-decorated trees, that is to say on the
space of T -typed and D-decorated forests. The coproduct ∆ is given by partitions of forests into
two forests and the ‹λ product is given by grafting. For example:

a
b

‹λ c “ a
b

c ` λ a

cb

` λ a
b

c

` λ a

cb

` λ a
b

c

.

In the non-typed case, we get back the Grossman-Larson Hopf algebra of trees [9]. Dually, we
obtain Hopf algebras HCKλD,T , generalizing the Connes-Kreimer Hopf algebra [7] of rooted trees.
For example:

∆CKλp a
b

q “ a
b

b 1` 1b a
b

` λ a b b ,

∆CKλp a

cb

q “ a

cb

b 1` 1b a

cb

` λ a
b

b c ` λ a
c

b b ` λ2 a b b c ,

∆CKλp a

cb

q “ a

cb

b 1` 1b a

cb

` λ a
b

b c ` λ a
c

b b ` λλ a b b c .

This Hopf algebra satisfies a universal property in Hochschild cohomology, as the Connes-
Kreimer’s one. We describe it in the simpler case where T is finite (Theorem 22). We finally
give a second coproduct δ on HCKλD,T , such that HCKλD,T is a Hopf algebra in the category of
pSpgD,T q,m, δq-right comodules, generalizing the result of [4]. This coproduct δ is given by a
contraction-extraction process. For example, in the non-decorated case:

δp q “ b ,

δp q “ b ` b ,

δp q “ b ` 2 b ` b ,

δp q “ b ` b ` b ` b .
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We are also interested in morphisms between these objects. Playing linearly with types, we
prove that if λ and µ are both nonzero, then the prelie algebras pgD,T , ‚λq and pgD,T , ‚µq are
isomorphic (Corollary 18). Consequently, if λ and µ are both nonzero, the Hopf algebras HGLλD,T

and HGLµD,T are isomorphic; dually, the Hopf algebras HCKλD,T and HCKµD,T are isomorphic (Corollary
24). Using Livernet’s rigidity theorem [11] and a nonassociative permutative coproduct defined
in Proposition 14, we prove that if λ ‰ 0, then pgD,T , ‚λq is, as a prelie algebra, freely generated
by a family of typed trees D1 “ T pt0qD,T satisfying a condition on the type of edges outgoing the
root (Corollary 15). As a consequence, the Hopf algebra HCKλD,T of typed and decorated trees is
isomorphic to a Connes-Kreimer Hopf algebra of non typed and decorated trees HCKD1 , and an
explicit isomorphism is described with the help of contraction in Proposition 26.

This paper is organized as follows: the first section gives the basic definition of typed rooted
trees and enumeration results, when the number of types and decorations are finite. The sec-
ond section is about the T -multiple prelie algebra structures on these trees and the underlying
operads. The freeness of the prelie structures on typed decorated trees and its consequences are
studied in the third section. In the last section, the dual Hopf algebras HGLλD,T and HCKλD,T are
defined and studied.

Notations 1. 1. We denote by K a commutative field of characteristic zero. All the objects
(vector spaces, algebras, coalgebras, prelie algebras. . .) in this text will be taken over K.

2. For any n P N, we denote by rns the set t1, . . . , nu.

3. For any set T , we denote by KT the set of family λ “ pλtqtPT of elements of K indexed by
T , and we denote by KpT q the set of elements λ P KT with a finite support. Note that if
T is finite, then KT “ KpT q.

1 Typed decorated trees

1.1 Definition

Definition 1. Let D and T be two nonempty sets.

1. A D-decorated T -typed forest is a triple pF,dec, typeq, where:

• F is a rooted forest. The set of its vertices is denoted by V pF q and the set of its edges
by EpF q.

• dec : V pF q ÝÑ D is a map.

• type : EpF q ÝÑ T is a map.

If the underlying rooted forest of F is connected, we shall say that F is a D-decorated
T -typed tree.

2. For any finite set A, we denote by TT pAq the set of A-decorated T -typed trees T such that
V pT q “ A and dec “ IdA, and by FT pAq the set of A-decorated T -typed forests F such
that V pF q “ A and dec “ IdA.

3. For any n ě 0, we denote by TD,T pnq the set of isoclasses of D-decorated T -typed trees T
such that |V pT q| “ n and by FD,T pnq the set of D-decorated T -typed forests F such that
|V pF q| “ n. We also put:

TD,T “
ğ

ně0

TD,T pnq, FD,T “
ğ

ně0

FD,T pnq.
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Example 1. We shall represent the types of the edges by different colors and the decorations of
the vertices by letters alongside them. If T contains two elements, represented by | and |, then:

FD,T p1q “ t d , d P Du,

FD,T p2q “ t a b , a
b

, a
b

, a, b P Du,

FD,T p3q “ t a b c , a
b

c , a
b

c , a

cb

, a

cb

, a

cb

, a
b

c

, a
b

c

, a
b

c

, a
b

c

, a, b, c P Du.

Note that for any a, b, c P D:

a b “ b a, a

cb

“ a

bc

, a

cb

“ a

bc

, a

cb

“ a

bc

.

Moreover:

FD,T pr1sq “ t 1u,

FD,T pr2sq “ t 1 2 , 1
2

, 2
1

, 1
2

, 2
1

u,

FD,T pr3sq “

$

’

’

’

’

&

’

’

’

’

%

1 2 3 , 1
2

3 , 1
3

2 , 2
1

3 , 2
3

1 , 3
1

2 , 3
2

1 , 1
2

3 , 1
3

2 , 2
1

3 , 2
3

1 , 3
1

2 , 3
2

1 ,

1

32

, 2

31

, 3

21

, 1

32

, 1

23

, 2

31

, 2

13

, 3

21

, 3

12

, 1

32

, 2

31

, 3

21

,

1
2
3

, 1
3
2

, 2
1
3

, 2
3
1

, 3
1
2

, 3
2
1

, 1
2
3

, 1
3
2

, 2
1
3

, 2
3
1

, 3
1
2

, 3
2
1

, 1
2
3

, 1
3
2

, 2
1
3

, 2
3
1

, 3
1
2

, 3
2
1

, 1
2
3

, 1
3
2

, 2
1
3

, 2
3
1

, 3
1
2

, 3
2
1

,

/

/

/

/

.

/

/

/

/

-

.

Remark 1. If |T| “ 1, all the edges of elements of FD,T have the same type: we work with
D-decorated rooted forests. In this case, we shall omit T in the indices describing the forests,
trees, spaces we are considering.

1.2 Enumeration

We assume here that D and T are finite, of respective cardinality D and T . For all n ě 0, we
put:

tD,T pnq “ |TT ,Dpnq|, fD,T pnq “ |FT ,Dpnq|,

TD,T pXq “
8
ÿ

n“1

tD,T pnqX
n, FD,T pXq “

8
ÿ

n“0

fD,T pnqX
n.

As any element of FT ,D can be uniquely decomposed as the disjoint union of its connected
components, which are elements of TD,T , we obtain:

FD,T pXq “
8
ź

n“1

1

p1´XnqtD,T pnq
. (1)

We put T “ tt1, . . . , tT u. For any d P D, we consider:

Bd :

"

pFD,T q
T ÝÑ TD,T

pF1, . . . , FT q ÝÑ BdpF1, . . . , FT q,

where BdpF1, . . . , FT q is the tree obtained by grafting the forests F1, . . . , Fn on a common root
decorated by d; the edges from this root to the roots of Fi are of type ti for any 1 ď i ď T .
Then Bd is injective, homogeneous of degree 1, and moreover TD,T is the disjoint union of the
BdppFD,T q

T q, d P D. Hence:

TD,T pXq “ DXpFD,T q
T “ DX

8
ź

n“1

1

p1´XnqtD,T pnqT
. (2)

Note that (2) allows to compute tD,T pnq by induction on n, and (1) allows to deduce fD,T pnq.
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Lemma 2. For any n P N,

tD,T pnq “
tTD,1pnq

T
.

Proof. By induction on n. If n “ 1, tD,T p1q “ D and tTD,1 “ TD, which gives the result. Let
us assume the result at all ranks k ă n. Then tD,T pnqT is the coefficient of Xn in:

TDX
n´1
ź

k“1

1

p1´XkqtD,T pkqT
“ TDX

n´1
ź

k“1

1

p1´XkqtTD,1pkq
,

which is precisely tTD,1pnq.

Example 2. We obtain:

tD,T p1q “ D,

tD,T p2q “ D2t,

tD,T p3q “
D2T p3D ` 1q

2
,

tD,T p4q “
D2T p8S2T 2 ` 3DT ` 1q

3
,

tD,T p5q “
D2T p125D3T 3 ` 54D2T 2 ` 31DT ` 6q

24
,

tD,T p6q “
D2T p162D4T 4 ` 80D3T 3 ` 45D2T 2 ` 10DT ` 3q

15
,

tD,T p7q “
D2T p16807D5T 5 ` 9375D4T 4 ` 5395D3T 3 ` 2025D2T 2 ` 838DT ` 120q

720

Specializing, we find the following sequences of the OEIS [18]:

T zD 1 2 3 4

1 A0081 A038055 A038059 A136793
2 A00151 A136794
3 A006964
4 A052763
5 A052788
6 A246235
7 A246236
8 A246237
9 A246238
10 A246239

2 Multiple prelie algebras

We here fix a nonempty set T of types of edges.

2.1 Definition

Definition 3. A T -multiple prelie algebra is a family pV, p‚tqtPT q, where V is a vector space and
for all t P T , ‚t is a bilinear product on V such that:

@t, t1 P T , @x, y, z P V, x ‚t1 py ‚t zq ´ px ‚t1 yq ‚t z “ x ‚t pz ‚t1 yq ´ px ‚t zq ‚t1 y.

For any t P T , pV, ‚tq is a prelie algebra. More generally, for any family λ “ pλtqtPT P KpT q,
putting ‚λ “

ř

λt‚t, pV, ‚λq is a prelie algebra.

5



Proposition 4. Let D be any set; we denote by gD,T the vector space generated by TD,T . For
any T, T 1 P TD,T , v P V pT q and t P T , we denote by T ‚pvqt T 1 the D-decorated T -typed tree
obtained by grafting T 1 on v, the created edge being of type t. We then define a product ‚t on
gD,T by:

@T, T 1 P TD,T , T ‚t T
1 “

ÿ

vPV pT q

T ‚
pvq
t T 1.

Then pgD,T , p‚tqtPT q is a T -multiple prelie algebra.

Proof. Let T, T 1, T 2 be elements of TD,T and t1, t2 P T .

pT ‚t1 T
1q ‚t2 T

2 ´ T ‚t1 pT
1 ‚t2 T

2q

“
ÿ

vPV ertpT q,v1PV ertpT q\V ertpT 1q

pT ‚
pvq
t1 T 1q ‚

pv1q
t2 T 2 ´

ÿ

vPV ertpT q,v1PV ertpT 1q

T ‚
pvq
t1 pT

1 ‚
pv1q
t2 T 2q

“
ÿ

vPV ertpT q,v1PV ertpT q

pT ‚
pvq
t1 T 1q ‚

pv1q
t2 T 2

`
ÿ

vPV ertpT q,v1PV ertpT 1q

pT ‚
pvq
t1 T 1q ‚

pv1q
t2 T 2 ´ T ‚

pvq
t1 pT

1 ‚
pv1q
t2 T 2q

“
ÿ

vPV ertpT q,v1PV ertpT q

pT ‚
pvq
t1 T 1q ‚

pv1q
t2 T 2

“
ÿ

vPV ertpT q,v1PV ertpT q

pT ‚
pv1q
t2 T 2q ‚

pvq
t1 T 1

“ pT ‚t2 T
2q ‚t1 T

1 ´ T ‚t2 pT
2 ‚t1 T

1q.

So gD,T is indeed a T -multiple prelie algebra.

Example 3. If a,b, c P D and |, | P T :

a
b

‚ c “ a

cb

` a
b

c

, a
b

‚ c “ a

cb

` a
b

c

.

2.2 Guin-Oudom extension of the prelie products

Notations 2. Let V be a vector space. We denote

V ‘T “
à

tPT
V δt.

Lemma 5. If for any t P T , ‚t is a bilinear product on a vector space V , we define ‚ :
pV ‘T qb2 ÝÑ V ‘T by:

xδt ‚ x1δt1 “ px ‚t1 yqδt.

Then pV, p‚tqtPT q is a T -multiple prelie algebra if, and only if, pV ‘T , ‚q is a prelie algebra.

Proof. Let x, x1, x2 P V , t, t1, t2 P T . Then:

xδt ‚ px
1δt1 ‚ x

2δt2q ´ pxδt ‚ x
1δt1q ‚ x

2δt2 “
`

px ‚t1 x
1q ‚t2 x

2 ´ x ‚t1 px
1 ‚t2 x

2q
˘

δt,

which implies the result.

Notations 3. The symmetric algebra SpV q is given its usual coproduct ∆, making it a bialgebra:

@x P V, ∆pxq “ xb 1` 1b x.

We shall use Sweedler’s notation: for any w P SpV q, ∆pwq “
ř

wp1q b wp2q.

6



Theorem 6. Let V be a T -multiple prelie algebra. One can define a product

‚ : SpV q b SpV bT q ÝÑ SpV q

in the following way: for any u, v P SpV q, w P SpV ‘T q, x P V , t P T ,

1 ‚ w “ εpwq,

u ‚ 1 “ u,

uv ‚ w “
ÿ

pu ‚ wp1qqpv ‚ wp2qq,

u ‚ wpxδtq “ pu ‚ wq ‚t x´ x ‚ pw ‚t xq,

where ‚t is extended to SpV q b V and SpV ‘T q b V by:

@x1, . . . , xk, x P V, t1, . . . , tk P T , x1 . . . xk ‚t x “
k
ÿ

i“1

x1 . . . pxi ‚t xq . . . xk,

px1δt1q . . . pxkδtkq ‚t x “
k
ÿ

i“1

px1δt1q . . . ppxi ‚t xqδtiq . . . pxkδtkq.

Proof. Unicity. The last formula allows to compute x ‚ w for any x P V and w P SpV ‘T q by
induction on the length of w; the other ones allow to compute u‚w for any u P SpV q by induction
on the length on u. So this product ‚ is unique.

Existence. Let us use the Guin-Oudom construction [15, 16] on the prelie algebra V bT . We
obtain a product ‚ defined on Spg‘T q such that for any u, v, w P Spg‘T q, x P V ‘T :

1 ‚ w “ εpwq,

u ‚ 1 “ u,

uv ‚ w “
ÿ

pu ‚ wp1qqpv ‚ wp2qq,

u ‚ wx “ pu ‚ wq ‚ x´ x ‚ pw ‚ xq.

Let f : T ÝÑ K be any nonzero map. We consider the surjective algebra morphism F :
SpV ‘T q ÝÑ SpV q, sending xδt to fptqx for any x P V , t P T . Its kernel is generated by the
elements Xt,t1x “ pfpt1qδt ´ fptqδt1qx, where x P V and t, t1 P T . We denote by J the vector
space generated by the elements Xt,t1x. Let us prove that for any w P SpV ‘T q, J ‚ w Ď J by
induction on the length n of w. If n “ 0, we can assume that w “ 1 and this is obvious. If
n “ 1, we can assume that w “ x1δt2 . Then:

Xt,t1x ‚ w “ pfpt
1qδt ´ fptqδt1qx ‚t2 x

1 “ Xt,1t1x ‚t2 x
1 P J.1

Let us assume the result at rank n´ 1. We can assume that w “ w1x1δt, the length of w1 being
n´ 1. For any x P J :

x ‚ w “ px ‚ w1q ‚ x1 ´ x ‚ pw1 ‚ x1q.

The length of w1 and w1 ‚x1 is n´ 1, so x ‚w1 and x ‚ pw1 ‚x1q belong to J . From the case n “ 1,
px ‚ w1q ‚ x1 P J , so x ‚ w P J .

For any x P J , u, v P SpV ‘T q:

xu ‚ v “ x ‚ vp1q
loomoon

PJ

pu ‚ vp2qq P KerpF q.

This proves that KerpF q ‚ SpV ‘T q Ď KerpF q. Hence, ‚ induces a product also denoted by ‚,
defined from SpV q b SpV bT q to SpV q. It is not difficult to show that it does not depend on the
choice of f and satisfies the required properties.

7



Definition 7. Let d P D, T1, . . . , Tk P TD,T , t1, . . . , tk P T . We denote by

Bd

¨

˝

ź

iPrks

Tiδti

˛

‚

the T -typed D-decorated tree obtained by grafting T1, . . . , Tk on a common root decorated by d,
the edge between this root and the root of Ti being of type ti for any i. This defines a map
Bd : S

`

V ectpTD,T q
‘T ˘ ÝÑ SpV ectpTD,T qq.

Lemma 8. For any d P D, T1, . . . , Tk P TD,T , t1, . . . , tk P T :

Bd

¨

˝

ź

iPrks

Tiδti

˛

‚“ d ‚
ź

iPrks

Tiδti .

Proof. We write F “
ź

iPrks

Tiδti . We proceed by induction on k. If k “ 0, then F “ 1 and

d ‚1 “ d “ Bdp1q. let us assume the result at rank k´1, with k ě 1. We can write F “ F 1Tδt,
with lengthpF 1q “ k ´ 1, T “ Tk and t “ tk. Then:

d ‚ F “ p d ‚ F 1q ‚ Tδt ´ d ‚ pF 1 ‚ Tδtq

“ BdpF
1q ‚t T ´BdpF

1 ‚t T q

“ BdpF
1Tδtq `BdpF

1 ‚t T q ´BdpF
1 ‚t T q

“ BdpF q.

So the result holds for all k ě 0.

Corollary 9. Let A be a T -multiple prelie algebra and, for any d P D, ad P A. There exists a
unique T -multiple algebra morphism φ : gD,T ÝÑ A, such that for any d P D, φp dq “ ad. In
other words, gT ,D is the free T -multiple prelie algebra generated by D.

Proof. Unicity. Using the Guin-Oudom product and lemma 8, φ is the unique linear map induc-
tively defined by:

φ

¨

˝Bd

¨

˝

ź

iPrks

Tiδti

˛

‚

˛

‚“ ad ‚
ź

iPrks

φpTiqδti .

Existence. Let T, T 1 P TD,T and t P T . Let us prove that φpT ‚t T 1q “ φpT q ‚t φpT
1q by

induction on n “ |T |. If n “ 1, we assume that T “ d . Then T ‚t T 1 “ BdpT
1δtq, so:

φpT ‚t T
1q “ ad ‚ pφpT

1qδt “ ad ‚t φpT
1q “ φpT q ‚t φpT

1q.

Let us assume the result at all ranks ă |T |. We put:

T “ Bd

˜

k
ź

i“1

Tiδti

¸

.

8



By definition of the prelie product of gD,T in terms of graftings:

T ‚ T 1 “ Bd

˜

k
ź

i“1

TiδtiT
1δt

¸

`

k
ÿ

j“1

Bd

˜

ź

i‰j

TiδtipTj ‚t T
1qδtj

¸

,

φpT ‚ T 1q “ ad ‚
k
ź

i“1

φpTiqδtiφpT
1qδt `

k
ÿ

j“1

ad ‚
ź

i‰j

φpTiqδtipφpTj ‚t T
1qqδtj

“ ad ‚
k
ź

i“1

φpTiqδtiφpT
1qδt `

k
ÿ

j“1

ad ‚
ź

i‰j

φpTiqδtipφpTjq ‚t φpT
1qqδtj

“ ad ‚
k
ź

i“1

φpTiqδtiφpT
1qδt ` ad ‚

˜˜

k
ź

i“1

φpTiqδti

¸

‚ φpT 1qδt

¸

“

˜

ad ‚
k
ź

i“1

φpTiqδti

¸

‚ φpT 1qδt

“ φpT q ‚t φpT
1q.

So φ is a T -multiple prelie algebra morphism.

Remark 2. In other words, gD,T is the free T -multiple prelie algebra generated by D.

2.3 Operad of typed trees

We now describe an operad of typed trees, in the category of species. We refer to [2, 12, 13] for
notations and definitions on operads.

Notations 4. If T P TT pAq and a P T :

1. The subtrees formed by the connected components of the set of vertices, descendants of a
(a excluded) are denoted by T paq1 , . . . , T

paq
na . The type of the edge from a to the root of T paqi

is denoted by ti.

2. The tree formed by the vertices of T which are not in T paq1 , . . . , T
paq
na , at the exception of a,

is denoted by T paq0 .

Proposition 10. For any nonempty finite set A, we denote by PT pAq the vector space generated
by TT pAq. We define a composition ˝ on PT in the following way: for any T P TT pAq, T 1 P
TT pBq and a P A,

T ˝a T
1 “

ÿ

v1,...,vnaPV pT
1q

p. . . ppT
paq
0 ‚

pt0q
λ T 1q ‚pt1qv1 T

paq
1 q . . .q ‚

pt
paq
na q

vna T paqna .

With this composition, PT is an operad in the category of species.

Proof. Note that the tree p. . . ppT paq0 ‚
pt0q
λ T 1q ‚

pt1q
v1 T

paq
1 q . . .q ‚

pt
paq
na q

vna Tna , which is shortly denote by
T ‚

pvq
λ T 1, is obtained in the following process:

1. Delete the branches T paq1 , . . . , T
paq
na coming from a in T . One obtains a tree T 2, and a is a

leaf of T 2.

2. Identify a P V pT 2q with the root of T 1.

3. Graft T paq1 on v1,. . ., T
paq
na on vna .

9



This obviously does not depend on the choice of the indexation of T paq1 , . . . , T
paq
na .

Let T P TT pAq, T 1 P TT pBq, T 2 P TT pCq.

• If a1, a2 P A, with a1 ‰ a2, then:

pT ˝a1 T
1q ˝a2 T

2 “
ÿ

v1PV pT 1qna1 ,v2PV pT 2qna2

pT ‚
pv1q
a1 T 1q ‚

pv2q
a2 T 2

“
ÿ

v1PV pT 1qna1 ,v2PV pT 2qna2

pT ‚
pv2q
a2 T 2q ‚

pv1q
a1 T 1

“ pT ˝a2 T
2q ˝a1 T

1.

• If a1 P A and b2 P B, then:

pT ˝a1 T
1q ˝b2 T

2 “
ÿ

v1PV pT 1qna1 ,v2PV pT 2qnb2

pT ‚
pv1q
a1 T 1q ‚

pv2q
b2 T 2

“
ÿ

v1PV pT 1qna1 ,v2PV pT 2qnb2

T ‚
pv1q
a1 pT

1 ‚
pv2q
b2 T 2q

“ T ˝a1 pT
1 ˝b2 T

2q.

Moreover, a ‚λ T “ T for any tree T , and if a P V pT q, T ‚λ aT . So PT is indeed an operad in
the category of species.

Consequently, the family pPT pnqqně0 is a "classical" operad, which we denote by PT .

Example 4.

1
2

˝1 1
2

“ 1

32

` 1
2
3

, 1
2

˝2 1
2

“ 1
2
3

.

In the non-typed case, this theorem is proved in [6]:

Theorem 11. The operad of T -multiple prelie algebras is isomorphic to PT , via the isomorphism

Φ sending, for any t P T , ‚t to the tree 1
2

, where the edge is of type t.

Proof. The operad of T -multiple prelie algebras is generated by the binary elements ‚t, t P T ,
with the relations

@t, t1 P T , ‚t1 ˝2 ‚t ´ ‚t ˝1 ‚t1 “ p‚t ˝2 ‚t1 ´ ‚t1 ˝1 ‚tq
p23q.

Firstly, if t and t1 are elements of T , symbolized by | and |, by the preceding example:

1
2

˝1 1
2

´ 1
2

˝2 1
2

“ 1

32

“

˜

1

32

¸p23q

“

ˆ

1
2

˝1 1
2

´ 1
2

˝2 1
2

˙p23q

.

So the morphism φ exists. Let us prove that it is surjective: let T P TT pnq, we show that it
belongs to ImpΦq by induction on n. It is obvious if n “ 1 or n “ 2. Let us assume the result
at all ranks ă n. Up to a reindexation we assume that:

T “ B1pT1δt1 . . . Tkδtkq,

where for any 1 ď i ă j ď k, if x P V pTiq and y P V pTjq, then x ă y. We denote by T 1i the
standardization of Ti. By the induction hypothesis on n, T 1i P ImpΦq for all i. We proceed by
induction on k. The type tk will be represented in red. If k “ 1, then:

T “ 1
2

˝2 T1 P ImpΦq.

10



Let us assume the result at rank k ´ 1. We put T 1 “ B1pT1δt1 . . . Tk´1δtk´1
q. By the induction

hypothesis on n, T 1 P ImpΦq. Then:

1
2

˝1 T
1 “ T ` x,

where x is a sum of trees with n vertices, such that the fertility of the root is k ´ 1. Hence,
x P ImpΦq, so T P ImpΦq.

Let D be a set. The morphism φ implies that the free PT-algebra generated by D, that is to
say gD,T , inherits a T -multiple prelie algebra structure defined by:

@x, y P gD,T , x˝y “ 1
2

¨ pxb yq,

where ¨ is the PT -algebra structure of gD,T . For any trees T , T 1 in TD,T , by definition of the
operadic composition of PT :

T ˝t T
1 “

ÿ

vPV pT q

T ‚
pvq
t T 1,

so ˝t “ ‚t for any t. As pgD,T , p‚tqtPT q is the free T -multiple prelie algebra generated by D, Φ is
an isomorphism.

Remark 3. Let us assume that T is finite, of cardinality T . Then the components of PT are
finite-dimensional. As the number of rooted trees which vertices are the elements of rns is nn´1,
for any n ě 0 the dimension of PT pnq is Tn´1nn´1, and the formal series of PT is:

fT pXq “
ÿ

ně1

dimpPT pnqq
n!

Xn “
ÿ

ně1

pTnqn´1

n!
Xn “

f1pTXq

T
.

2.4 Koszul dual operad

If T is finite, then PT is a quadratic operad. Its Koszul dual can be directly computed:

Proposition 12. The Koszul dual operad P !
T of PT is generated by ˛t, t P T , with the relations:

@t, t1 P T , ˛t1 ˝1 ˛t “ ˛t ˝2 ˛t1 , ˛t1 ˝1 ˛t “ p˛t ˝1 ˛t1q
p23q.

The algebras on P !
T are called T -multiple permutative algebras: such an algebra A is given bilinear

products ˛t, t P T , such that:

@x, y, z P A, px ˛t yq ˛t1 z “ x ˛t py ˛t1 zq,

px ˛t yq ˛t1 z “ px ˛t1 zq ˛t y.

In particular, for any t, ˛t is a permutative product.

Of course, the definition of T -multiple permutative algebras makes sense even if T is infinite.
Permutative algebras are introduced in [5]. If A is a T -multiple permutative algebra, then for
any pλtqtPT P KpT q, ˛a “

ř

λt˛t is a a permutative product on A.

Proposition 13. Let V be a vector space. Then V bSpV ‘T q is given a T -multiple permutative
algebra structure:

@t P T , v, v1 P V,w,w1 P SpV ‘T q, pv b wq ˛t pv
1 b w1q “ v b ww1pv1δtq.

This T -multiple permutative algebra is denoted by PT pV q. For any T -multiple permutative alge-
bra V and any linear map φ : V ÝÑ A, there exists a unique morphism Φ : PT pV q ÝÑ A such
that for any v P V , Φpv b 1q “ φpvq.

11



Proof. Let t, t1 P T , v, v, v2 P V , w, w1, w2 P SpV ‘T q.

pv b w ˛t v
1 b w1q ˛t1 v

2 b w2

“ v b w ˛t pv
1 b w1 ˛t1 v

2 b w2q

“ pv b w ˛t v
1 ˛t1 v

2 b w2q b w1

“ v b ww1w2pv1δtqpv
2δt1q,

so PT pV q is T -multiple permutative.

Existence of Φ. Let t1, . . . , tk P T , v, v1, . . . , vk P V . We inductively define Φpvbpv1δt1q . . . pvkδtkqq
by:

Φpv b 1q “ φpvq,

Φpv b pv1δt1q . . . pvkδtkqq “ Φpv b pv1δt1q . . . pvk´1δtk´1
qq ˛tk φpvkq if k ě 1.

Let us prove that this does not depend on the order chosen on the factors viδti by induction on
k. If k “ 0 or 1, there is nothing to prove. Otherwise, if i ă k:

Φpv b pv1δt1q . . . pvi´1δti´1qpvi`1δti`1q . . . pvkδtkqq ˛ti φpviq

“ pΦpv b pv1δt1q . . . pvi´1δti´1qpvi`1δti`1q . . . pvk´1δtk´1
qq ˛tk φpvkqq ˛ti φpviq

“ pΦpv b pv1δt1q . . . pvi´1δti´1qpvi`1δti`1q . . . pvk´1δtk´1
qq ˛ti φpviqq ˛tk φpvkq

“ Φpv b pv1δt1q . . . pvk´1δtk´1
qq ˛tk φpvkq

“ Φpv b pv1δt1q . . . pvkδtkqq.

So Φ is well-defined. Let us prove that Φ is a T -multiple permutative algebra morphism. Let
v, v1 P V , w, w1 “ pv1δt1q . . . pvkδtkq P SpV

‘T q, and t P T . Let us prove that Φpvbw˛t v
1bw2q “

Φpv b wq ˛t Φpv1 b w1q by induction on k. If k “ 0:

Φpv b w ˛t v
1 b 1q “ Φpv b wpv1δtqq

“ Φpv b wq ˛t φpv
1q

“ Φpv b wq ˛t Φpv1 b 1q.

Otherwise, we put w2 “ pv1δt1q . . . pvk´1δtk´1
q. Then:

Φpv b w ˛t v
1 b w1q “ Φpv b ww2pv1δtqpvkδtkqq

“ Φpv b ww2pv1δtqq ˛tk φpvkq

“ Φpv b w ˛t v
1 b w2q ˛tk φpvkq

“ pΦpv b wq ˛t Φpv1 b w2qq ˛tk φpvkq

“ Φpv b wq ˛t pΦpv
1 b w2q ˛tk φpvkqq

“ Φpv b w1q ˛t Φpv1 b w1q.

So Φ is a T -multiple permutative algebra morphism.

Unicity. For any v, v1, . . . , vk P V , t1, . . . , tk P T :

v b pv1δt1q . . . pvkδtkq “ pv b pv1δt1q . . . pvk´1δtk´1
qq ˛tk vk.

It is then easy to prove that PT pV q is generated by V b 1 as a T -multiple permutative algebra.
Consequently, Φ is unique.

Remark 4. We proved that PT pV q is freely generated by V , identified with V b 1. Conse-
quently, P !

T pnq has the same dimension as the multilinear component of V b SpV ‘T q with
V “ V ectpX1, . . . , Xnq, that is to say:

V ectpXi b pX1δt1q . . . pXi´1δti´1qpXi`1δti`1q . . . pXnδtnq, 1 ď i ď n, tj P T q,
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so:
dimpP !

T pnqq “ nTn´1.

The formal series of P !
T is:

f !T pXq “
ÿ

ně1

dimpP !
T pnqq

n!
Xn “

ÿ

ně1

Tn´1

pn´ 1q!
Xn “ XexppTXq “

f !1pTXq

T
.

It is possible to prove that P !
T is a Koszul operad (and, hence, PT too) using the rewriting

method of [12].

3 Structure of the prelie products

3.1 A nonassociative permutative coproduct

Proposition 14. For all t P T , we define a coproduct ρt : gD,T ÝÑ gb2D,T by:

@T “ Bd

¨

˝

ź

iPrks

Tiδti

˛

‚P TD,T , ρtpT q “
ÿ

jPrks

Bd

¨

˝

ź

iPrks, i‰j

Tiδti

˛

‚b Tjδt,tj .

Then:

1. For all t, t1 P T , pρt b Idq ˝ ρt1 “ ppρt1 b Idq ˝ ρtqp23q.

2. For any x, y P gD,T , t, t1 P T , with Sweedler’s notations ρtpxq “
ř

xp1qt b xp2qt,

ρtpx ‚t1 yq “ δt,t1xb y `
ÿ

xp1qt ‚t1 y b x
p2qt `

ÿ

xp1qt b xp2qt ‚t1 y.

3. For any µ “ pµtqtPT P KT , we put:

ρµ “
ÿ

tPT
µtρt : gD,T ÝÑ gb2D,T .

This makes sense, as any tree in TD,T does not vanish only under a finite number of ρt.
Then ρµ is a nonassociative permutative (NAP) coproduct; for any x, y P gD,T , by the
second point, using Sweeder’s notation for ρµ:

ρµpx ‚λ yq “

˜

ÿ

tPT
λtµt

¸

xb y `
ÿ

xp1qµ ‚λ bx
p2qµ `

ÿ

xp1qµ b xp2qµ ‚b .

In particular, if
ÿ

tPT
λtµt “ 1, pgD,T , ‚λ, ρµq is a NAP prelie bialgebra in the sense of [11].

Proof. 1. For any tree T :

pρt b Idq ˝ ρt1pT q “
ÿ

p,qPrks,p‰q

Bd

¨

˝

ź

iPrks,i‰p,q

Tiδti

˛

‚b Tpδtp,t b Tqδtq ,t1 ,

which implies the result.
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2. For any tree T, T 1:

ρtpT ‚t1 T
1q “ ρt

¨

˝Bd

¨

˝

ź

iPrks

TiδtiT
1δt1

˛

‚`
ÿ

iPrks

Bd

¨

˝

ź

jPrks,j‰i

Tjδtj pTi ‚t1 T
1qδti

˛

‚

˛

‚

“ Bd

¨

˝

ź

iPrks

Tiδti

˛

‚b T 1δt,t1 `
ÿ

iPrks

Bd

¨

˝

ź

jPrks,j‰i

TjδtjT
1δt1

˛

‚b Tiδti,t

`
ÿ

iPrks

Bd

¨

˝

ź

jPrks,j‰i

Tjδtj

˛

‚b pTi ‚t1 T
1qδti,t1

`
ÿ

i‰jPrks

Bd

¨

˝

ź

pPrks,p‰i,j

TpδtppTj ‚t1 T
1qδtj

˛

‚b Tiδti,t

“ T b T 1δt,t1 `
ÿ

iPrks

Bd

¨

˝

ź

jPrks,j‰i

Tjδtj

˛

‚‚t1 T
1 b Tiδti,t

`
ÿ

iPrks

Bd

¨

˝

ź

jPrks,j‰i

Tjδtj

˛

‚b Ti ‚t1 T
1δti,t

“ T b T 1δt,t1 ` T
p1qt ‚t1 T

1 b T p2qt ` T p1qt b T p2qt ‚t1 T
1.

3. Obtained by summation.

Corollary 15. If λ P KpT q is nonzero, let us choose t0 P T such that λt0 ‰ 0. The prelie algebra
pgD,T , ‚λq is freely generated by the set Tpt0qD,T of T -typed D-decorated trees T such that there is
no edge outgoing the root of T of type t0.

Proof. For any tree T , we denote by αT the number of edges outgoing the root of T of type T0.
Our aim is to prove that pgD,T , ‚λq is freely generated by the trees T such that αT “ 0. We
define a family of scalar b by:

@t P T , µt “

$

&

%

0 if t ‰ t0,
1

λt0
if t “ t0.

Note that ρµ “
1

λt0
ρt0 . By proposition 14, pgD,T , ‚λ, ρµq is a NAP prelie bialgebra, so by

Livernet’s rigidity theorem [11], it is freely generated by Kerpρµq “ Kerpρt0q. Obviously, if
αT “ 0, T P Kerpρt0q. Let us consider x “

ÿ

TPTD,T

xTT P Kerpρt0q. We consider the map:

Υ :

#

gD,T b gD,T ÝÑ gD,T

T b T 1 ÝÑ T ‚
rootpT q
t0

T 1.

By definition of ρt0 , for any tree T , Υ ˝ ρt0pT q “ αTT . Consequently:

0 “ Υ ˝ ρt0pxq “
ÿ

TPTD,T

xTαTT.

So if αT ‰ 0, xT “ 0, and x is a linear span of trees such that αT “ 0 : the set of trees T such
that αT “ 0 is a basis of Kerpρt0q.
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If |D| “ D and |T | “ T , the number of elements of Tpt0qD,T of degree n is denoted by t1D,T pnq;
it does not depend on t0. By direct computations:

t1D,T p1q “ D,

t1D,T p2q “ D2pT ´ 1q,

t1D,T p3q “
D2pT ´ 1qp3DT ´D ` 1q

2
,

t1D,T p4q “
D2pT ´ 1qp16D2T 2 ´ 8D2T `D2 ` 6DT ´ 3D ` 2q

6
.

In the particular case D “ 1, T “ 2, one recovers sequence A005750 of the OEIS.

3.2 Prelie algebra morphisms

Notations 5. Let T and T 1 be two sets of types. We denote byMT ,T 1pKq the space of matrices
M “ pmt,t1qpt,t1qPT ˆT 1 , such that for any t1 P T 1, pmt,t1qtPT P KpT q. If T “ T 1, we shall simply
writeMT pKq. If M PMT ,T 1pKq and M 1 PMT 1,T 2pKq, then:

MM 1 “

˜

ÿ

t1PT 1
mt,t1m

1
t1,t2

¸

pt,t2qPT ˆT 2
PMT ,T 2pKq.

If λ P KpT 1q and µ P KT , then:

Mλ “

˜

ÿ

t1PT 1
mt,t1λt1

¸

tPT

P KpT q, MJµ “

˜

ÿ

tPT
mt,t1µt

¸

t1PT 1
P KT 1 .

In particular,MT pKq is an algebra, acting on KpT q on the left and on KT on the right.

Definition 16. Let M PMT ,T 1pKq. We define a map ΦM : HD,T 1 ÝÑ HD,T , sending F P FD,T

to the forest obtained by replacing typepeq by
ÿ

tPT
mt,typepeqt for any e P EpF q, F being considered

as linear in any of its edges. The restriction of ΦM to gD,T 1 is denoted by φM : gD,T 1 ÝÑ gD,T .

Example 5. If T contains two elements, the first one being represented in red and the second

one in green, if M “

ˆ

α β
γ δ

˙

, for any x, y, z P D:

φM p x

y

q “ α x

y

` γ x

y

, φM p x

y

q “ β x

y

` δ x

y

, φM p x

zy

q “ αβ x

zy

` αδ x

zy

` βγ x

zy

` γδ x

zy

.

Remark 5. For any M PMT ,T 1pKq, M 1 PMT 1,T 2pKq, ΦM ˝ ΦM 1 “ ΦMM 1 .

Proposition 17. Let λ P KpT q, µ P KT and M P MT ,T 1pKq. Then φM is a prelie morphism
from pgD,T 1 , ‚λq to pgD,T , ‚Mλq and a NAP coalgebra morphism from pgD,T 1 , ρMJµq to pgD,T , ρµq.

Proof. Let T, T 1 P TD,T . For any t P T , for any v P V pT q:

φM pT ‚
pvq
t T 1q “

ÿ

t1PT
mt1,tφM pT q ‚t1 φM pT

1q,

so:

φM pT ‚λ T
1q “

ÿ

t,t1PT
mt1,tλtφM pT q ‚t1 φM pT

1q “ φM pT q ‚Mλ φM pT
1q.

We proved that φM is a prelie algebra morphism from pgD,T 1 , ‚λq to pgD,T , ‚Mλq.
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For any T P TD,T :

ρt ˝ φM pT q “
ÿ

t1PT
mt,t1pφM b φM q ˝ ρt1pT q,

so:

ρµ ˝ φM pT q “
ÿ

t,t1PT
mt,t1µtpφM b φM q ˝ ρt1pT q “ pφM b φM q ˝ ρMJµpT q.

So φM : pgD,T 1 , ρMJµq ÝÑ pgD,T , ρµq is a NAP coalgebra morphism.

Corollary 18. For any λ PP KpT q and µ P KT , such that
ÿ

tPT
λtµt “ 1, for any t0 P T , the NAP

prelie bialgebras pgD,T , ‚λ, ρµq and pgD,T , ‚t0 , ρt0q are isomorphic.

Proof. Let us denote by λp0q the element of KpT q defined by:

λ
p0q
t “ δt,t0 .

Note that for any M P MT pKq, invertible, φM : pgD,T , ‚λp0q , ρMJµq ÝÑ pgD,T , ‚Mλp0q , ρµq is
an isomorphism. In particular, for a well-chosen M , Mλp0q “ λ; we can assume that λ “ λp0q

without loss of generality. Then, by hypothesis, µt0 “ 1. We define a matrix M PMT pKq in the
following way:

mt,t1 “

#

δt,t0 if t1 “ t0,

δt,t1 ´ µt1δt,t0 otherwise.

Then M is invertible. Moreover, Mλp0q “ λp0q and MJµ “ λp0q. So φM is an isomorphism from
pgD,T , ‚λp0q , ρλp0qq to pgD,T , ‚λ, ρµq.

Proposition 19. Let λ P KpT q, and t0 P T . We define a prelie algebra morphism ψt0 :

pgTpt0qD,T
, ‚q ÝÑ pgD,T , ‚λq, sending T to T for any T P Tpt0qD,T . Then ψt0 is a prelie algebra

isomorphism if, and only if, λt0 ‰ 0.

Proof. If λt0 ‰ 0, then by corollary 15, pgD,T , ‚λq is freely generated by Tpt0qD,T , so ψt0 is an
isomorphism. If λt0 “ 0, then it is not difficult to show that any tree T with two vertices, with
its unique edge of type t0, does not belong to Impψt0q.

4 Hopf algebraic structures

We here fix a family λ P KpT q.

4.1 Enveloping algebra of gD,T

Using again the Guin-Oudom construction, we obtain the enveloping algebra of pgD,T , ‚λq. We
first identify the symmetric coalgebra SpgD,T q with the vector space generated by FD,T , which
we denote by HD,T . Its product m is given by disjoint union of forests, its coproduct by:

@T1, . . . , Tk P TD,T , ∆pT1 . . . Tnq “
ÿ

IĎrns

ź

iPI

Ti b
ź

iRI

Ti.

We denote by ‚λ the Guin-Oudom extension of ‚λ to HD,T and ‹λ the associated associative
product.

16



Theorem 20. For any F P FD,T , T1, . . . , Tn P TD,T :

F ‚λ T1 . . . Tn “
ÿ

v1,...,vnPV pF q,
t1,...,tnPT

¨

˝

ź

iPrns

λti

˛

‚p. . . pF ‚
pv1q
t1

T1q . . .q ‚
pvnq
tn Tn,

F ‹λ T1 . . . Tn “
ÿ

IĎrns

˜

F ‚λ
ź

iPI

Ti

¸

ź

iRI

Ti.

The Hopf algebra pHD,T , ‹λ,∆q is denoted by HGLλD,T . Moreover, for any M PMT ,T 1pKq, for any
λ P KpT 1q, ΦM is a Hopf algebra morphism from HGLλD,T 1 to H

GLMλ
D,T . The extension of ψt0 as a

Hopf algebra morphism from HGL
Tpt0qD,T

to HGLλD,T is denoted by Ψt0; it is an isomorphism if, and only

if, λt0 ‰ 0.

In particular, if T “ ttu and λt “ 1, we recover the Grossman-Larson Hopf algebra [9].

4.2 Dual construction

Proposition 21. Let T P TD,T .

1. A cut c of T is a nonempty subset of EpT q; it is said to be admissible if any path in the
tree from the root to a leaf meets at most one edge in c. The set of admissible cuts of T is
denoted by AdmpT q.

2. If c is admissible, one of the connected components of T zc contains the root of c: we denote
it by RcpT q. The product of the other connected components of T zc is denoted by P cpT q.

Let λ P KT . We define a multiplicative coproduct ∆CKλ on the algebra pHD,T ,mq by:

@T P TD,T , ∆CKλpT q “ T b 1` 1b T `
ÿ

cPAdmpT q

˜

ź

ePc

λtypepeq

¸

RcpT q b P cpT q.

Then pHD,T ,m,∆
CKλq is a Hopf algebra, which we denote by HCKλD,T .

Proof. We first assume that λ P KpT q. Let us define a nondegenerate pairing x´,´y on HD,T by:

@F, F 1 P FD,T , xF, F 1y “ δF,F 1sF ,

where sF is the number of symmetries of F . Let us consider three forests F, F 1, F 2. We put:

F “
ź

TPTD,T

T λt , F 1 “
ź

TPTD,T

T a
1
T , F 2 “

ź

TPTD,T

T a
2
T .

Then:

x∆pF q, F 1 b F 2y “
ÿ

a“b`c

ź

TPTD,T

λt!

µt!cT !
x

ź

TPTD,T

Tµt , F 1yx
ź

TPTD,T

T cT , F 2y

“
ÿ

a“b`c

δb,a1δc,a2
λt!

a1T !a2T !
sF 1sF 2

“ δa,a1`a2
λt!

a1T !a2T !
a1T !a2T !s

a1T`a
2
T

T

“ δa,a1`a2λt!s
λt
T

“ δF,F 1F 2sF

“ xF, F 1F 2y.
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Therefore:

@x, y, z P HD,T , x∆pxq, y b zy “ xx, yzy.

Let F,G be two forests and T be a tree. Observe that if F is a forest with at least two trees,
then F ‹λ G does not contain any tree, so xF ‹λ G,T y “ 0. If F “ 1, then xF ‹λ G,T y ‰ 0 if,
and only if, G “ T ; moreover, x1 ‹λ T, T y “ 1. If F is a tree, then:

xF ‹λ G,T y “ xF ‚λ G,T y.

Moreover, if F “ BdpF
1q and G “ T1 . . . Tk:

F ‚λ G “
ÿ

IĎrks

ÿ

ptiqPT k

¨

˝

ź

iPrks

λti

˛

‚Bd

˜

ź

iPI

TiδtiF
1 ‚

ź

iRI

Tiδti

¸

,

where ‚ is the prelie product on gTD,T induced by the T -multiplie prelie structure. Consequently,
we can inductively define a coproduct ∆CKλ : HD,T ÝÑ HD,T b HD,T , multiplicative for the
product m, such that, if we denote for any tree T , ∆CKpT q “ ∆pT q ´ 1 b T , for any tree
T “ BdpT1δt1 . . . Tkδtkq:

∆
CK
λ pT q “ pBd b Idq

¨

˝

ź

iPrks

p∆
CK
λ pTiqδti b 1` λti1b Tiq

˛

‚. (3)

Then, for any x, y, z P HD,T :

xx ‹λ y, zy “ xxb y,∆
CKλpzqy.

A quite easy induction on the number of vertices of trees proves that this coproduct is indeed the
one we define in the statement of the proposition. As x´,´y is nondegenerate, pHD,T ,m,∆

CKλq

is a Hopf algebra, dual to HGLλD,T .

In the general case, for any x P HD,T , there exists a finite subset T 1 of T such that x P HD,T 1 .
Putting λ1 “ λ|T 1 , λ1 P KT 1 “ KpT 1q, so:

p∆CKλbIdq˝∆CKλpxq “ p∆CKλ1bIdq˝∆CKλ1 pxq “ pIdb∆CKλ1 q˝∆CKλ1 pxq “ pIdb∆CKλq˝∆CKλpxq.

Hence, ∆λ is coassociative, and HCKλD,T is a Hopf algebra.

Example 6. Let us fix a subset T 1 of T and choose pλtqtPT such that:

λt “

#

1 if t P T 1,
0 otherwise.

For any tree T P TD,T , let us denote by AdmT 1pT q the set of admissible cuts c of T such that
the type of any edge in c belongs to T 1. Then:

∆CKλpT q “ T b 1` 1b T `
ÿ

cPAdmT 1 pT q

RcpT q b P cpT q.

Remark 6. 1. If T “ ttu and λt “ 1, we recover the usual Connes-Kreimer Hopf algebra of
D-decorated rooted trees, which we denote by HCKD , and its duality with the Grossman-
Larson Hopf algebra [7, 10, 17].

2. If T and D are finite, for any λ P KT , both HCKλD,T and HGLλD,T are graded Hopf algebra (by
the number of vertices), and their homogeneous components are finite-dimensional. Via
the pairing x´,´y, each one is the graded dual of the other.
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4.3 Hochschild cohomology of coalgebras

For the sake of simplicity, we assume that the set of types T is finite and we put T “ tt1, . . . , tNu.

Let pC,∆q be a coalgebra and let pM, δL, δRq be a C-bicomodule. One defines a complex,
dual to the Hochschild complex for algebras, in the following way:

1. For any n ě 0, Hn “ LpM,Cbnq.

2. For any L P Hn:

bnpLq “ pIdb Lq ˝ δL `
n
ÿ

i“1

p´1qipIdbpi´1q b∆b Idbpn´iqq ˝ L` p´1qn`1pLb Idq ˝ δR.

In particular, one-cocycles are maps L : M ÝÑ C such that:

∆ ˝ L “ pIdb Lq ˝ δL ` pLb Idq ˝ δR.

We shall consider in particular the bicomodule pM, δL, δRq such that:

@x P C,

#

δLpxq “ 1b x,

δRpxq “ ∆pxq.

If C is a bialgebra, then MbN is also a bicomodule:

@xt P C,

$

’

’

’

’

’

&

’

’

’

’

’

%

δL

˜

â

1ďiďN

xi

¸

“ 1b
â

1ďiďN

xi,

δR

˜

â

1ďiďN

xi

¸

“
â

1ďiďN

x
p1q
i b

ź

1ďiďN

x
p2q
i .

We denote by 1 “ p1qtPT P KT , and we take C “ HCK1

D,T . One can identify SpV ectpTD,T q
‘T q and

CbN , xδTi being identified with 1bpi´1q b x b 1bpn´iq for any x P TD,T and 1 ď i ď N . Then
for any d, Bd : CbN ÝÑ C is a 1-cocycle. Moreover, there is a universal property, proved in the
same way as for the Connes-Kreimer’s one [7]:

Theorem 22. Let B be a commutative bialgebra and, for any d P D, let Ld : CbN ÝÑ C be a
1-cocycle:

@d P D, @xt P B, ∆ ˝ Ld

˜

â

1ďiďN

xi

¸

“ 1b
â

1ďiďN

xi ` Ld

˜

â

1ďiďN

x
p1q
i

¸

b
ź

1ďiďN

x
p2q
i .

There exists a unique bialgebra morphism φ : HCK1

D,T ÝÑ C such that for any d P D, φ ˝ Ld “
Bd ˝ φ

bN .

4.4 Hopf algebra morphisms

Our aim is, firstly, to construct Hopf algebras morphisms between HCKλD,T and HCKµD,T ; secondly,
to construct Hopf algebra isomorphisms between HCKλD,T and HCKD1 for a well-chosen D1.

Proposition 23. Let M P MT ,T 1pKq, λ P KT . Then ΦM : HCKMJλD,T 1 ÝÑ HCKλD,T is a Hopf
algebra morphism.
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Proof. ΦM is a obviously an algebra morphism. Let T P TD,T .

∆λ ˝ ΦM pT q “ ΦM pT q b 1` 1b ΦM pT q

`
ÿ

cPAdmpT q

ź

ePc

˜

ÿ

tPT
mt,typepeqλt

¸

ΦM pR
cpT qq b ΦM pP

cpT qq

“ ΦM pT q b 1` 1b ΦM pT q

`
ÿ

cPAdmpT q

ź

ePc

pMJλqtypepeqΦM pR
cpT qq b ΦM pP

cpT qq

“ pΦM b ΦM q ˝∆MJapT q.

So ΦM is a coalgebra morphism from HCKMJλD,T 1 to HCKλD,T .

Corollary 24. Let λ, µ P KT , both nonzero. Then HCKλD,T and HCKµD,T are isomorphic Hopf
algebras.

Proof. There exists M PMT pKq, invertible, such that MJλ “ µ. Then ΦM is an isomorphism
between HCKµD,T and HCKλD,T .

Definition 25. Let us fix t0 P T . For any F P FD,T , we shall say that tT1, . . . , Tku Ÿt0 F if the
following conditions hold:

• tT1, . . . , Tku is a partition of V pF q. Consequently, for any i P rks, Ti P FD,T , by restriction.

• For any i P rks, Ti P T
pt0q
D,T .

If tT1, . . . , TkuŸt0F , we denote by F {tT1, . . . , Tku the forest obtained by contracting Ti to a single
vertex for any i P rks, decorating this vertex by Ti, and forgetting the type of the remaining edges.
Then F {tT1, . . . , Tku is a T pt0qD,T -decorated forest.

Proposition 26. Let λ P KT , t0 P T . Let us consider the map:

Ψ˚t0 :

$

’

’

’

&

’

’

’

%

HD,T ÝÑ HTpt0qD,T

F P FD,T ÝÑ
ÿ

tT1,...,TkuŸt0F

¨

˝

ź

ePEpF qz\EpTiq

λtypepeq

˛

‚F {tT1, . . . , Tku.

Then Ψ˚t0 is a Hopf algebra morphism from HCKλD,T to HCK
Tpt0qD,T

. It is an isomorphism if, and only

if, λt0 ‰ 0.

Proof. First case. We first assume that D and T are finite. In this case, HCKλD,T is the graded
dual of HGLλD,T , with the Hopf pairing x´,´y; grading HTpt0qD,T

by the number of vertices of the

decorations, HCK
Tpt0qD,T

is the graded dual of HGL
Tpt0qD,T

. Moreover, Ψ˚t0 is the transpose of Ψt0 of propo-

sition 19, so is a Hopf algebra morphism. If λt0 ‰ 0, Ψt0 is an isomorphism, so Ψ˚t0 also is.

General case. Let x, y P HD,T . There exist finite D1, T 1, such that x, y P HD1,T 1 ; we can
assume that t0 P T 1. We denote by λ1 “ λ|T 1 . Then, by the preceding case, denoting by Ψ1t0 the
restriction of Ψ˚t0 to HD1,T 1 :

Ψ˚t0pxyq “ Ψ1t0pxyq “ Ψ1t0pxqΨ
1
t0pyq “ Ψ˚t0pxqΨ

˚
t0pyq,

∆CKλ ˝Ψ˚t0pxq “ ∆CKλ1 ˝Ψ1t0pxq “ pΨ
1
t0 bΨ1t0q ˝∆CKλ1 pxq “ pΨ˚t0 bΨ˚t0q ˝∆CKλpxq,

20



so Ψ is a Hopf algebra morphism.

Let us assume that λt0 ‰ 0. If Ψ˚t0pxq “ 0, then Ψ1t0pxq “ 0. As a1t0 ‰ 0, by the first case,
x “ 0, so Ψ˚t0 is injective. Moreover, there exists z P HD1,T 1 , such that Ψ1t0pzq “ y; so Ψ˚t0pzq “ y,
and Ψ˚t0 is surjective.

Let us assume that λt0 “ 0. Let T be a tree with two vertices, such that its unique edge is of
type t0. As T R T

pt0q
D,T , Φt0pT q has a unique term, given by the partition X “ ttx1u, tx2uu, where

x1 and x2 are the vertices of T . Hence:

Ψ˚t0pT q “ λt0T
1 “ 0,

so Ψ˚t0 is not injective.

Example 7. Here, T contains two elements, | and |. In order to simplify, we omit the decorations
of vertices. We put:

x “ , y “ , z “ , u “ , v “ .

Applying Ψ˚
|
:

Ψ˚| p q “ x, Ψ˚| p q “ λ2 x

xx

,

Ψ˚| p q “ λ x
x

, Ψ˚| p q “ λ2 x
x
x

,

Ψ˚| p q “ λ x
x

` y , Ψ˚| p q “ λλ x
x
x

` λ x

y

,

Ψ˚| p q “ λλ x

xx

` λ y
x

, Ψ˚| p q “ λλ x
x
x

` λ y
x

` u,

Ψ˚| p q “ λ2 x

xx

` 2λ y
x

` z , Ψ˚| p q “ λ2 x
x
x

` λ y
x

` λ x

y

` v .

Remark 7. Although it is not indicated, Ψt0 and Ψ˚t0 depend on λ.

4.5 Bialgebras in cointeraction

By [8], for any λ P KpT q, the operad morphism θa : Prelie ÝÑ PT , which send ‚ to ‚λ, where
Prelie is the operad of prelie algebras, induces a pair of cointeracting bialgebras for any finite
set D. By construction, the first bialgebra of the pair is HCKλD,T . Let us describe the second one.

Definition 27. Let F P FT ,D. We shall say that tT1, . . . , Tku Ÿ F if:

1. tT1, . . . , Tku is a partition of V pF q. Consequently, for any i P rks, Ti P FD,T , by restriction.

2. For any i P rks, Ti P TD,T .

If tT1, . . . , Tku Ÿ F and dec : rks ÝÑ D, we denote by pF {tT1, . . . , Tku,decq the forest obtained
by contracting Ti to a single vertex, and decorating this vertex by decpiq, for all i P rks. This is
an element of FD,T .

Proposition 28. If D is finite, H1D,T is the free commutative algebra generated by pairs pT, dq,
where T P TT ,D and d P D. The coproduct is given, for any F P FD,T , d P D, by:

δpF, dq “
ÿ

tT1,...,TkuŸF

ÿ

dec:rksÝÑD
ppF {tT1, . . . , Tku, decq, dq b pT1, decp1qq . . . pTk,decpkqq.
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Then pH1D,T ,m, δq is a bialgebra, and HCKλD,T is a coalgebra in the category of H1D,T -comodules
via the coaction given, for any T P TD,T , by:

δpT q “
ÿ

tT1,...,TkuŸT

ÿ

dec:rksÝÑD
ppT {tT1, . . . , Tku, decq b pT1,decp1qq . . . pTk,decpkqq.

Corollary 29. Let us assume that D is given a semigroup law denoted by `. If F P FT ,D, and
tT1, . . . , Tku Ÿ F , then naturally Ti P TT ,D for any i and the T -typed forest F {tT1, . . . , Tku is
given a D-decoration, decorating the vertex obtained in the contradiction of Ti by the sum of the
decorations of the vertices of Ti. Then HD,T is given a second coproduct δ such that for any
F P FD,T :

δpF q “
ÿ

tT1,...,TkuŸF

F {tT1, . . . , Tku b T1 . . . Tk.

Then pHD,T ,m, δq is a bialgebra and HCKλD,T is a coalgebra in the category of HD,T -comodules via
the coaction δ.

Proof. We denote by I the ideal of H1D,T generated by pairs pT, dq such that T P TD,T and d P D,
with:

d ‰
ÿ

vPV pT q

decpvq.

The quotient H1D,T {I is identified with HD,T , trough the surjective algebra morphism:

$ :

$

’

’

’

&

’

’

’

%

H1D,T ÝÑ HD,T

pF, dq P FD,T ˆD ÝÑ

$

’

&

’

%

F if d “
ÿ

vPV pF q

decpvq,

0 otherwise.

Let us prove that I is a coideal. Let T P TT ,D, d P D, tT1, . . . , Tku Ÿ F , dec : rks ÝÑ D such
that ppT {tT1, . . . , Tku,decq, dq R I and for any i, pTi, decpiqq R I. Then:

@i P rks,
ÿ

vPV pTiq

decpvq “ decpiq,
k
ÿ

i“1

decpiq “ d.

Hence:
ÿ

vPV pT q

decpvq “
k
ÿ

i“1

ÿ

vPV pTiq

decpvq “
k
ÿ

i“1

decpiq “ d,

so pT, dq R I. Consequently, if T P I, then ppT {tT1, . . . , Tku,decq, dq P I or at least one of the
pTi,decpiqq belongs to I. Hence:

δpIq Ď I bH1D,T `bH1D,T b I.

So I is a coideal. The coproduct induced on HD,T by the morphism $ is precisely the one given
in the setting of this Corollary.

In particular, if D is reduced to a single element, denoted by ˚, if we give it its unique
semigroup structure (˚ ` ˚ “ ˚), We obtain again the result of [4].
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