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Abstract

Typed decorated trees are used by Bruned, Hairer and Zambotti to give a description of
a renormalisation process on stochastic PDEs. We here study the algebraic structures on
these objects: multiple prelie algebras and related operads (generalizing a result by Chapoton
and Livernet), noncommutative and cocommutative Hopf algebras (generalizing Grossman
and Larson’s construction), commutative and noncocommutative Hopf algebras (generaliz-
ing Connes and Kreimer’s construction), bialgebras in cointeraction (generalizing Calaque,
Ebrahimi-Fard and Manchon’s result). We also define families of morphisms and in particular
we prove that any Connes-Kreimer Hopf algebra of typed and decorated trees is isomorphic
to a Connes-Kreimer Hopf algebra of non typed and decorated trees (the set of decorations
of vertices being bigger), trough a contraction process.

Keywords. typed tree; combinatorial Hopf algebras; prelie algebras; operads.

AMS classification. 05C05, 16T30, 18D50, 17D25.



Introduction

Bruned, Hairer and Zambotti used in [3]| typed trees in an essential way to give a systematic
description of a canonical renormalisation procedure of stochastic PDEs. Typed trees are rooted
trees which edges are decorated by elements of a fixed set T of types. They also appear in a
context of low dimension topology in [14] (there, described as nested parentheses) and for the
description of combinatorial species in [1]. We here study several algebraic structures on these
trees, generalizing results of Connes and Kreimer, Chapoton and Livernet, Grossman and Larson,
Calaque, Ebrahimi-Fard and Manchon.

We first define grafting products of trees, similar to the prelie product of [5]. For any type
t, we obtain a prelie product e; on the space gp 7 of T-typed trees which vertices are decorated
by elements of a set D: for example, if | and | are two types, if a, b, c € D, then:

.C

IZo.c:b\/caJrE, Pewe = VA + 1o,

Then gp, 7, equipped with all these products, is a 7T-multiple prelie algebra (Definition 3), and
we prove in Corollary 9 that it is the free T-multiple prelie algebra generated by D, generalizing
the result of [6]. Consequently, we obtain a combinatorial description of the operad of T-multiple
prelie algebras in terms of T-typed trees with indexed vertices (Theorem 11): for example,

vl 2o,
We also give a desription of the Koszul dual operad and of its free algebras in Propositions 12
and 13, generalizing a result of [5].

For any family A\ = (\)e7 with a finite support, the product ey = >} \;e; is prelie: using the
Guin-Oudom construction [16, 15|, we obtain a Hopf algebraic structure Hg%ﬁ = (S(gp,7), *x, Q)
on the symmetric algebra generated by T-typed and D-decorated trees, that is to say on the
space of T-typed and D-decorated forests. The coproduct A is given by partitions of forests into
two forests and the x) product is given by grafting. For example:

b c ¢ b c 1°
1o %y ee = IZ.c+A\A+)\}Z+ Verala,

In the non-typed case, we get back the Grossman-Larson Hopf algebra of trees [9]. Dually, we
obtain Hopf algebras 7—[%{?7 generalizing the Connes-Kreimer Hopf algebra |7] of rooted trees.
For example:

ACKAI) = 1o @1+ 1@ 1o + Nea @ b,
b ¢
ACEN (Vo) = V®1+1®V+)\Ia®.c+)\la® b4+ Mea ® ebac,

c

b c
ACKARL) Z V@1 410 Vit A @ e + AL @ b + Moao @ wac,

This Hopf algebra satisfies a universal property in Hochschild cohomology, as the Connes-

Kreimer’s one. We describe it in the simpler case where 7 is finite (Theorem 22). We finally

give a second coproduct § on ’Hglgﬁ, such that ’HCKA is a Hopf algebra in the category of

(S(gp,7), m,d)-right comodules, generalizing the result of [4]. This coproduct ¢ is given by a
contraction-extraction process. For example, in the non-decorated case:
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We are also interested in morphisms between these objects. Playing linearly with types, we
prove that if A and p are both nonzero, then the prelie algebras (gp 7,e)) and (gp,7,e,) are
isomorphic (Corollary 18). Consequently, if A and p are both nonzero, the Hopf algebras HgLT*
and HD ¥ are isomorphic; dually, the Hopf algebras ’HCKA and HD 7 are isomorphic (Corollary

24). Usmg Livernet’s rigidity theorem [11] and a nonassomatlve permutative coproduct defined

in Proposition 14, we prove that if X # 0, then (gp 7, e,) is, as a prelie algebra, freely generated
by a family of typed trees D' = Tfét%) satisfying a condition on the type of edges outgoing the
root (Corollary 15). As a consequence, the Hopf algebra Hg? of typed and decorated trees is

isomorphic to a Connes-Kreimer Hopf algebra of non typed and decorated trees HD, , and an
explicit isomorphism is described with the help of contraction in Proposition 26.

This paper is organized as follows: the first section gives the basic definition of typed rooted
trees and enumeration results, when the number of types and decorations are finite. The sec-
ond section is about the T-multiple prelie algebra structures on these trees and the underlying
operads. The freeness of the prelie structures on typed decorated trees and its consequences are
studied in the third section. In the last section, the dual Hopf algebras ”HgLT* and Hg? are
defined and studied.

Notations 1. 1. We denote by K a commutative field of characteristic zero. All the objects
(vector spaces, algebras, coalgebras, prelie algebras...) in this text will be taken over K.

2. For any n € N, we denote by [n] the set {1,...,n}.

3. For any set T, we denote by K7 the set of family A = (\)se7 of elements of K indexed by
T, and we denote by K(7) the set of elements A € K7 with a finite support. Note that if
T is finite, then K7 = K(T).

1 Typed decorated trees

1.1 Definition

Definition 1. Let D and T be two nonempty sets.
1. A D-decorated T -typed forest is a triple (F,dec, type), where:

e [ is a rooted forest. The set of its vertices is denoted by V(F') and the set of its edges
by E(F).

o dec: V(F) — D is a map.

e type: E(F) — T is a map.

If the underlying rooted forest of F' is comnected, we shall say that F is a D-decorated
T -typed tree.

2. For any finite set A, we denote by T1(A) the set of A-decorated T -typed trees T such that
V(T) = A and dec = Idy, and by Fr(A) the set of A-decorated T -typed forests F such
that V(F) = A and dec = Id4.

3. For any n > 0, we denote by Tp 7(n) the set of isoclasses of D-decorated T -typed trees T
such that |V(T)| = n and by Fp1(n) the set of D-decorated T -typed forests F' such that
|[V(F)| = n. We also put:

Tpr = | | Tor(n), Fp7 = | | Fo7(n).

n=0 n=0



Ezxample 1. We shall represent the types of the edges by different colors and the decorations of
the vertices by letters alongside them. If 7 contains two elements, represented by | and |, then:

FD,T(l) = {.d, de D},

Fp7(2) = {ae0, 1, 10, a,b e D},

b ¢c b c

b ob <5 s b 1o B :zc)
]F'D,T(B) = {.a.b.c’Ia.c7.a.c’ Va’ fav v, Ea)‘a Iay‘a a, b CED}

Note that for any a, b, c € D:

b c c b b c c b b c c b
. o o« » o« »
el b —— ob e a — a \a: a §a — 6 a

) )

Moreover:
Fp7([1]) = {1},
Fpr([2]) = {+1e2, 11, 12, 11, 12},

2 3 1 2 2 3 ol o3 ol 2
el 62 o 3 Il 3 Il 2 I2 3 I2 1 IS 2 IS 17.1 3 ol e 27.2.3,.2.1’.3.27.3.17

233 1312

Fp 7([3]) = V1 \/2 VJ ,/1 f1 ./2 ./2 /3 fs, .17 .2,..3

3 2 3 1 93 02 o3 ol 02 o1l o3 o2 3 ol o2 o1
}2}3}1}: }1£QIQISIIIsIII 2 {2 {3 {1 33 {1 {2
1,01, 02,02, 63,63, 01, 01,02, 02, 3, ¢3 Il’Il,12712713,137.1’.17.2’.2’.37.3

Remark 1. If |T| = 1, all the edges of elements of Fp s have the same type: we work with
D-decorated rooted forests. In this case, we shall omit 7 in the indices describing the forests,
trees, spaces we are considering.

1.2 Enumeration

We assume here that D and T are finite, of respective cardinality D and T'. For all n = 0, we
put:

tp,r(n) = Trp(n), fp,r(n) = [Frp(n)l,
TD’T(X) = Z tD’T(n)X", FD’T(X) = Z vaT(n)X".
n=0

As any element of F7 p can be uniquely decomposed as the disjoint union of its connected
components, which are elements of Tp 7, we obtain:

FD,T(X) = 1_[ (1 — XTll)tD,T(n)' (1)

We put 7 = {t1,...,tr}. For any d € D, we consider:

Bd:{ FEp )T — Tpr
(Fl, .,FT) — Bd(Fl,...,FT),

where By(Fy, ..., Fr) is the tree obtained by grafting the forests Fi,..., Fj,, on a common root
decorated by d; the edges from this root to the roots of F; are of type t; for any 1 < i < T.
Then By is injective, homogeneous of degree 1, and moreover Tp 7 is the disjoint union of the
By((Fp7)T), d e D. Hence:

Tpr(X) = DX(Fpr)" = DX H — X)o7 ®

Note that (2) allows to compute tp r(n) by induction on n, and (1) allows to deduce fp r(n).



Lemma 2. For anyn e N,
trp(n)
7T .

Proof. By induction on n. If n = 1, tp (1) = D and trp; = TD, which gives the result. Let
us assume the result at all ranks £ < n. Then tp r(n)T is the coefficient of X™ in

tpr(n) =

n—1
1
DX H Xk tp, (k)T =TDX H Xk)tTD,l(k)’

which is precisely t7p.1(n). O

Ezxample 2. We obtain:

tpr(1) = D,
tp7(2) = D*,
D?*T(3D + 1
tp(3) = (2),
D?*T(85%T? + 3DT + 1
tora) = ZTETT !
D?*T(125D3T3 + 54D*T? + 31DT + 6)
tpr(5) = 54 ;
D?*T(162D*T* 4+ 80D3T3 + 45D?T? + 10DT + 3)
7fD,T(6) = 15 ;
t(7) D?T(16807D°T® + 9375D*T* + 5395D3T3 + 2025D2T? + 838DT + 120)
DT =

720
Specializing, we find the following sequences of the OEIS [18]:

T\D 1 2 | 3 | 4
A0081 | A038055 | A038059 | A136793
A00151 | A136794

A006964
A052763
A052788
A246235
A246236
A246237
A246238
A246239

© 00 N O Ot W~
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2 Multiple prelie algebras
We here fix a nonempty set 7 of types of edges.

2.1 Definition

Definition 3. A T-multiple prelie algebra is a family (V, (e4)e7), where V' is a vector space and
for allt € T, e is a bilinear product on V such that:

vt.t' e T, Vx,y,z€V, rxoy(yez)—(ropy)eyz=xe(z0py)— (xe 2)ey.

For any t € T, (V, ;) is a prelie algebra. More generally, for any family A = (\;);er € K7,
putting ey = >  \;e;, (V) e)) is a prelie algebra.



Proposition 4. Let D be any set; we denote by gp 7 the vector space generated by Tp . For

any T,T" € Tp 7, ve V(T) and t € T, we denote by T .gv) T’ the D-decorated T -typed tree
obtained by grafting T' on v, the created edge being of type t. We then define a product e; on

gp,7 by:
VT, T' € Tp7, TeT = T T
veV (T)
Then (gp.7, (8¢)teT) is a T -multiple prelie algebra.
Proof. Let T, T',T" be elements of Tp 7 and t',¢" € T.
(T .t’ T/) .t” T” — T .t’ (T/ .t// T”)
- ) (T o) T') o 1" > T o) (1" o)) T")
veVert(T),v'eVert(T)uVert(T") veVert(T),v'eVert(T")
- (T o ') o
veVert(T),v'eVert(T)

(v")
t;’-/’ T//

+ >, @ T T T o) (T e T)
veVert(T),v'eVert(T")
- Z (T og,v) T/) og,l,/) T"

veVert(T),v'eVert(T)
— Z (T °
veVert(T),v'eVert(T)
=(TowT") oy T —T o (T" 0y T").

(') T//) .E})) T

t//

So gp,7 is indeed a T-multiple prelie algebra. O
Ezample 3. If a,b, ce D and |, | € T:

LY IR P4

I

2.2 Guin-Oudom extension of the prelie products

Notations 2. Let V be a vector space. We denote

Vel = PV,
teT

Lemma 5. If for any t € T, e is a bilinear product on a vector space V, we define o :
(VOTY®2 — VOT py:
xot @ '8y = (T o y)dy.

Then (V, (8)te7) is a T-multiple prelie algebra if, and only if, (VO @) is a prelie algebra.
Proof. Let x,2',2" e V, t,t',t" € T. Then:
2l o (2'0y @ 2" 0pr) — (w0p @ 2'6y) @ "oy = ((1’ oy &') oy " —x oy (' e 95”)) Ot,
which implies the result. O
Notations 3. The symmetric algebra S(V') is given its usual coproduct A, making it a bialgebra:
VeV, Alz) =21+ 1®u.

We shall use Sweedler’s notation: for any w e S(V), A(w) = S w® @ w®.



Theorem 6. Let V be a T-multiple prelie algebra. One can define a product
e : S(V)@S(VET) — S(V)
in the following way: for any u,ve S(V), we S(VOT), zeV, teT,

lew = e(w),
uel=u,
uv o w = E(U o wM)(vew?),

uew(xd) = (uew)e,x—xe(we x),

where o is extended to S(V) @V and S(VOT) @V by:

k
Vo,...,xp,c €V, t1,... t, €T, xl...xkotxzExl...(xiotm)...:vk,
=1
k
(€101,) - - (k) @1 @ = > (210 ... (i o 2)0,) .. (w1,
i=1

Proof. Unicity. The last formula allows to compute x  w for any z € V and w € S(V®T) by
induction on the length of w; the other ones allow to compute uew for any u € S(V') by induction
on the length on u. So this product e is unique.

Ezistence. Let us use the Guin-Oudom construction [15, 16] on the prelie algebra V&7 . We
obtain a product e defined on S(g®7) such that for any u,v,w € S(g®7), z € VOT:

lew =¢e(w),
uel=u,
uv e w = Z(u o M) (v e w®),

uewr =(uew)exr—ze(wex).

Let f : T —> K be any nonzero map. We consider the surjective algebra morphism F :
S(VOT) — S(V), sending x6; to f(t)x for any x € V, t € T. Its kernel is generated by the
elements X, px = (f(t')0; — f(t)op)x, where x € V and ¢,¢' € T. We denote by J the vector
space generated by the elements X, 2. Let us prove that for any w € § (VOT), Jew < J by
induction on the length n of w. If n = 0, we can assume that w = 1 and this is obvious. If
n = 1, we can assume that w = 2’6y». Then:

Xt,t’x oW = (f(t/)(st — f(t)(st/)x L 3V 1'/ = Xt/t/x o, 1'/ € J./

Let us assume the result at rank n — 1. We can assume that w = w’z'd;, the length of w’ being
n — 1. For any x € J:
row= (rew)ezr —ze(wex).

The length of w’ and w' e 2’ is n— 1, so z e w’ and = e (w’ e z’) belong to J. From the case n = 1,
(xow)ex' e J, soxeweJ.

For any z € J, u,v e S(VOT):
zuev =gev(uev?)e Ker(F).
e
eJ

This proves that Ker(F) ¢ S(VOT) < Ker(F). Hence, o induces a product also denoted by e,
defined from S(V)® S(VET) to S(V). It is not difficult to show that it does not depend on the
choice of f and satisfies the required properties. O



Definition 7. Letde D, T1,..., T, € Tp 1, t1,...,tx, € T. We denote by

By | [] T,
i€[k]

the T -typed D-decorated tree obtained by grafting T4, ..., T, on a common root decorated by d,
the edge between this root and the root of T; being of type t; for any i. This defines a map
By: S (Vect(Tp1)®T) — S(Vect(Tp 7).

Lemma 8. For anyde D, T,..., T, € Tp 1, t1,...,t, € T:

Ba| [[Ti6e, | = eao [ | Tidn,.
i€[k] i€[k]

Proof. We write F' = H T;d:,. We proceed by induction on k. If & = 0, then F' = 1 and
1€[k]

ede]l = i = By(1). let us assume the result at rank k— 1, with k > 1. We can write F' = F'T0,,

with length(F') = k — 1, T = Ty, and t = t;,. Then:

ioF = (weF)eTs — cae(F oTH)
— By(F') o, T — Ba(F' &, T)
— By(F'T6;) + By(F' o, T) — Ba(F' #, T)
= By(F).

So the result holds for all k& > 0. ]

Corollary 9. Let A be a T -multiple prelie algebra and, for any d € D, ag € A. There exists a
unique T -multiple algebra morphism ¢ : gp 7 — A, such that for any d € D, ¢(+d) = aq. In
other words, g7 p is the free T-multiple prelie algebra generated by D.

Proof. Unicity. Using the Guin-Oudom product and lemma 8, ¢ is the unique linear map induc-
tively defined by:

¢ | Ba| [[Tor | | =aae [ | 6(T3)6:,.
i€[k] i€[k]

Existence. Let T,T" € Tpr and t € T. Let us prove that ¢(T e, T") = ¢(T) o, ¢(1") by
induction on n = |T|. If n = 1, we assume that 7' = «a. Then T ¢, T' = By(T"d;), so:

AT o T') = ag e (p(T")6 = ag et ¢(T") = H(T) o p(T").

Let us assume the result at all ranks < |T'|. We put:

k
T = By (HT@) .

i=1

8



By definition of the prelie product of gp 7 in terms of graftings:

k
ToT’:Bd<HTi5tiT’5t> ZBd<HT5t Tje T 5)

i=1 i#j

(T T —ad.ﬂqs 5t¢T’6t+ZadoH¢ )01, (6(T; 0 T'))6y,

7j=1 1#]

—adoﬂcb )61, T’5t+2adoﬂ¢ )6, (6(T5) o0 H(T"))dy,

i#]

_ad.H¢ )0t &( 5t+ad0<<1_[(;5 ) T')5>
:<ad.H¢ ) &(T")6;

= ¢(T) & o(T").
So ¢ is a T-multiple prelie algebra morphism. O

Remark 2. In other words, gp 7 is the free T-multiple prelie algebra generated by D.

2.3 Operad of typed trees

We now describe an operad of typed trees, in the category of species. We refer to |2, 12, 13| for
notations and definitions on operads.

Notations 4. If T € Ty (A) and a € T

1. The subtrees formed by the connected components of the set of vertices, descendants of a

a excluded) are denoted by ooy dng . e type of the edge from a to the root of 7’
luded) are denoted by T\%, ... T\”. Th f the edge f h £ 7
is denoted by t;.

(a )

2. The tree formed by the vertices of T' which are not in T ,TT(LZ) , at the exception of a,

is denoted by Té ),
Proposition 10. For any nonempty finite set A, we denote by P1(A) the vector space generated

by Tr(A). We define a composition o on Py in the following way: for any T € Tr(A), T' €
Tr(B) and a€ A,

T Oq T/ — Z ( N ((To(a) .g\tO) T/) .I(Jtll) Tl(a)) . ) (t ) T( )
V1., Ung €V (T)

With this composition, Py is an operad in the category of species.

(@) g(t0) vy o(12) (o) (1557 o i
Proof. Note that the tree (... ((Tj T') ey T1") . ..) &,¢” T, , which is shortly denote by

T of\v) T’, is obtained in the following process:

1. Delete the branches Tl(a), . ,Téz) coming from a in T. One obtains a tree 7", and a is a
leaf of T".

2. Identify a € V(T") with the root of T".

3. Graft Tl(a) on vy,. . ., T,sz) on vy, .



This obviously does not depend on the choice of the indexation of Tl(a), e ,Téz).

Let T € T (A), T' € T+ (B), T" € T+ (C).

e If a’,a" € A, with @’ # a”, then:

(T oy T') ogr T" = D (T o) Ty &) 7"
’U/EV(T/)na/ ,v”eV(T”)"a”
= Z (T 'S'}'N) ") 0((;//) T

v’GV(T’)na/ ,v”GV(T”)na”
= (T Oa// T”) Oa/ T/,

o Ifa’ € A and b € B, then:

(T Oy’ T’) Opr T” = Z (T .((17;;’) T’) .g}j//) T”
VeV (T a! w"eV (T") ™"
- 2. T ol (1" o T

v/EV(T/)nfl/ ,’U”EV(T”)nb”
=T o4/ (T’ Oy T”).

Moreover, «a ¢y T' =T for any tree T, and if a € V/(T'), T e ««T. So Pr is indeed an operad in
the category of species. O

Consequently, the family (P7(n)),>0 is a "classical" operad, which we denote by Pr.

Ezxzample 4.

3 3
2 2 23 1o o2 2 ]2
I1ol ol = W1+ a1, el O9 I =10,

In the non-typed case, this theorem is proved in [6]:

Theorem 11. The operad of T -multiple prelie algebras is isomorphic to Py, via the isomorphism

® sending, for any t € T, e to the tree I?, where the edge is of type t.

Proof. The operad of T-multiple prelie algebras is generated by the binary elements e;, t € T,
with the relations

/ 23
Vi, t' e T, e/ 0y 0, — 0,01 8y = (8,09 0y — @ 01 ‘t)( ),

Firstly, if ¢t and ¢’ are elements of T, symbolized by | and |, by the preceding example:
(23) (23)
2 3 2 3
o B Doyl = WA (\) _ (:? o 2 1oy :?) |

So the morphism ¢ exists. Let us prove that it is surjective: let T' € Ty (n), we show that it
belongs to Im(®) by induction on n. It is obvious if n = 1 or n = 2. Let us assume the result
at all ranks < n. Up to a reindexation we assume that:

T = Bi(T\6y, ... Tidy,),

where for any 1 < i < j <k, if z € V(T;) and y € V(T}), then z < y. We denote by 7] the
standardization of 7;. By the induction hypothesis on n, T} € Im(®) for all i. We proceed by
induction on k. The type t; will be represented in red. If k = 1, then:

T =11 0y Ty € Im(®).

10



Let us assume the result at rank £ — 1. We put 7" = By (T16¢, ... Tx—16t,_,). By the induction
hypothesis on n, 7" € Im(®). Then:

2 /
Loy TV =T+,

where z is a sum of trees with n vertices, such that the fertility of the root is k — 1. Hence,
x € Im(®), so T € Im(P).

Let D be a set. The morphism ¢ implies that the free Pr-algebra generated by D, that is to
say gp,7, inherits a T-multiple prelie algebra structure defined by:

2
anyEGD,Ta oy = Il ($®y)7

where - is the Pr-algebra structure of gp 7. For any trees T', T” in Tp 7, by definition of the
operadic composition of Pr:
To, T = Z T.Ev) T,
veV(T)

so o = e for any t. As (gp 7, (e)te7) is the free T-multiple prelie algebra generated by D, ® is
an isomorphism. ]

Remark 3. Let us assume that 7 is finite, of cardinality 7. Then the components of Py are
finite-dimensional. As the number of rooted trees which vertices are the elements of [n] is n”~!,
for any n > 0 the dimension of Py (n) is 7" 'n"~!, and the formal series of Py is:

fr(X) =3 dim(Pr(n)) yn _ 3 (Tn)" ! o _ HI(TX)

! |
n>1 n =1 T

2.4 Koszul dual operad
If T is finite, then Py is a quadratic operad. Its Koszul dual can be directly computed:

Proposition 12. The Koszul dual operad 73%/ of Pt is generated by o, t € T, with the relations:
Vt7 t, € Ta Opr 01 O = O 09 O/ Opr 01 O = (Ot o1 Qt,)(23)'

The algebras on 73%- are called T -multiple permutative algebras: such an algebra A is given bilinear
products o¢, t € T, such that:

Va,y,z € A, (T ory) oy z =m0 (Yo 2),
(xory)op z = (T op 2) o1 y.
In particular, for any t, o is a permutative product.

Of course, the definition of 7T-multiple permutative algebras makes sense even if 7 is infinite.
Permutative algebras are introduced in [5]. If A is a 7-multiple permutative algebra, then for
any (A\¢)wer € KT, o, = > Ator is a a permutative product on A.

Proposition 13. Let V be a vector space. Then V®S(V@T) is given a T -multiple permutative
algebra structure:

Vie T, v,v € V,w,w' e S(VOT), (v@w) o (vVV@uw) =v®uww (V).

This T -multiple permutative algebra is denoted by Pr(V). For any T -multiple permutative alge-
bra V' and any linear map ¢ : V — A, there exists a unique morphism ® : Pr(V) — A such
that for anyv eV, (v ®1) = ¢(v).

11



Proof. Let t, t' € T, v, v, v" e V, w, w', w" € S(VOT).

(W@wor v @u') op v @w”
=v@wo; (V@w op v @uw")
=wQuwov op v @u")@uw

= v @ ww'w” (v'6)(v"dy),

so Pr(V) is T-multiple permutative.

Existence of ®. Let ty,...,ty € T,v,v1,...,v, € V. Weinductively define ®(v&®(v16,) . .. (vkde,))
by:
P(v®1) = d(v),
Q(v® (v10y,) - .. (Vge,,)) = PV ® (V16¢,) - .. (Vk—10¢,_,)) Ot P(vg) if k=1

Let us prove that this does not depend on the order chosen on the factors v;d;, by induction on
k. If k=0 or 1, there is nothing to prove. Otherwise, if i < k:

(v @ (v16t,) - - - (Vie10t,_, ) (Vis16t41) - - - (Vk,.)) Oty D(v3)
= (@ ® (0101,) - - (Vi-101;_,) (Vis101;1,) - - - (Vk-10t,_,)) Oty D(vk)) 01, D(v3)
= (@ ® (0101,) - - - (Vi-101;_,) (Vis101;1,) - - - (Vk-104,,)) ©1; P(vi)) Oy, D(vk)
= D@ (010) - (v 161, ) o H(0)
= P(v® (v10¢,) - .- (Vby,.))-
So @ is well-defined. Let us prove that ® is a T-multiple permutative algebra morphism. Let
v,v eV, w, w = (v1dy,) ... (vidy,) € S(VOT), and t € T. Let us prove that ®(v@wo v’ @w”) =
P(v®w) oy (v ®w') by induction on k. If k = 0:
PrvRwor v ®1) = P(v@w's;))
— Do @ w) o 4(t)
=P(vRw) o PV ®1).
Otherwise, we put w” = (v16¢,) - .. (Vg—10¢,_, ). Then:
Plv@wor v @u') = (v @ ww” (v'6;) (vkdy,,))
= (v @ww"(v'6;)) o1, d(vi)
=Pd(v@uworv' @) o, P(vg)
= (2(v@w) ot (v @w")) o1, B(vk)
= 2(v@w) ot (2(v' @w") o, d(vr))
=b(vRuw) o P(v @uw').

So ® is a T-multiple permutative algebra morphism.

Unicity. For any v,v1,...,vp €V, t1,...,tp € T:

V® (010g,) - .. (Vgdt, ) = (V® (v16¢,) - - . (Vk—10¢,_,)) ©t,, V-

It is then easy to prove that Pr(V) is generated by V ® 1 as a T-multiple permutative algebra.
Consequently, ® is unique. O

Remark 4. We proved that Pr(V) is freely generated by V, identified with V ® 1. Conse-
quently, P-(n) has the same dimension as the multilinear component of V ® S(V®7T) with
V =Vect(Xy,...,X,), that is to say:

Vect(Xi X (Xlétl) e (Xifléti,l)(Xi+15ti+1) (X 5tn) <i1<n tj € T)

12



SO:

dim(Pr(n)) = nT" 1.

The formal series of 73%- is:

i - 3, 2B 5

n=1

HTX)
T

= Xexp(TX) =

It is possible to prove that ’P%— is a Koszul operad (and, hence, Py too) using the rewriting
method of [12].

3 Structure of the prelie products

3.1 A nonassociative permutative coproduct

Proposition 14. For allt e T, we define a coproduct p; : gp7 — 9%27 by:

VT = By H Tio, | € To,r, pe(T) = Z By H Tiot; | @ Tjor ;-
ic[k] Jje[k] ie[k], i#j

Then:
1. Forallt,t' € T, (ps ®Id) o py = ((py ® Id) o p)?).

2. For any x,y € gp,T, t,t' € T, with Sweedler’s notations pi(x) = S
pi(x o y) =5t,t'$®y+2$(l °t'y®x +Za: Loy .
3. For any p = (u)eer € K7, we put:

2
= Z utpt - 9o, — 9%7--
teT

This makes sense, as any tree in Tp 7 does not vanish only under a finite number of p;.
Then p, is a nonassociative permutative (NAP) coproduct; for any x,y € gp 1, by the
second point, using Sweeder’s notation for p,,:

pu(T ory) = (Z/\tﬂt>x®y+29€ ko) ®a “+Z:c @z o
teT

In particular, if Z Aepe =1, (gp,7, 9, pu) is a NAP prelie bialgebra in the sense of [11].
teT

Proof. 1. For any tree T

(Pt®1d) Pt/( ): Z By H Ti‘;ti ®Tp5tp,t®Tq5tq,t/a

p,q€[k],p#q ie[k],i#p,q

which implies the result.
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2. For any tree T,T":

pr(T oy T)=p | Ba | [[ 6o T'0w |+ > Ba| ] Tyoe,(Ti ow T')s,
i€[k] i€[k] Je[k],j#i

=B | [ [ T |®T'6w + X, Ba| ] L6, T'60 |@Tidia
1€[k] i€[k] Jelk],j#i

+ Z By H Tjor, | @ (T; o4 T')d4, 10
e \jelkly=i

+ >, By [] 700, (T; 00 T8, | @ Tidt,s
i#jelk] pe[k].p#i,j

=TT+ ), Ba| [] Tid, |ov T'@Tidr.
ie[k] jelk].j#i

+ 2, Ba| ] Tide, |@Tiew T'61
1€[k] Jelk],j#i

=TQRT'6rp + TWt o T'@T@t 4 Tt @ T2 o, T
3. Obtained by summation. O

Corollary 15. If A € K(7) is nonzero, let us choose to € T such that Aty # 0. The prelie algebra

(gp.7, %)) is freely generated by the set T(Dtog- of T -typed D-decorated trees T such that there is
no edge outgoing the root of T of type tg.

Proof. For any tree T', we denote by a7 the number of edges outgoing the root of 1" of type Tp.
Our aim is to prove that (gp 7, e) is freely generated by the trees T' such that ar = 0. We
define a family of scalar b by:

Oift;éto,

Vit =
€7, He T to.
Ato

1
Note that p, = Xpto. By proposition 14, (gp.7,ex,pu) is a NAP prelie bialgebra, so by

0
Livernet’s rigidity theorem [11], it is freely generated by Ker(p,) = Ker(py,). Obviously, if

ar =0, T € Ker(p,). Let us consider z = Z xrT € Ker(py,). We consider the map:
TGT’D,T

T)

T { g0, 7 ®gp, T —> 9D,T
’ T

T ® T/ - T .;got(
By definition of py,, for any tree T', Y o py, (T') = arT. Consequently:

0="Topy(x)= 2 xrarT.

TGT’D,T

So if ap # 0, x7 = 0, and x is a linear span of trees such that ap = 0 : the set of trees T such
that ar = 0 is a basis of Ker(py,). O
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If |D| = D and |T| = T, the number of elements of ']I‘(Dt?)T of degree n is denoted by t}, 1(n);
it does not depend on ty. By direct computations:

t/D,T<1) = D7
tpr(2) = DT —1),
D*(T - 1)(3DT — D + 1)
2 )
D*(T —1)(16D?*T? — 8D?*T + D? + 6 DT — 3D + 2)

thy (4) = )
br(4) ;

In the particular case D = 1, T' = 2, one recovers sequence A005750 of the OEIS.

tpr(3) =

3.2 Prelie algebra morphisms

Notations 5. Let T and T’ be two sets of types. We denote by M 7(K) the space of matrices
M = (myp)tp)eT<77, such that for any t' € T', (my )T € KT, If T = 77, we shall simply
write M7 (K). If M € My 1(K) and M’ € M7 7+(K), then:

MM/ = ( Z mt7t/m£/7t//> € MT,T// (K)
t'eT’ (tteTxT"

If Ae K7 and pe K7, then:

MM = ( Z mtvt/)\t/) € K(T), MT/,L = (Z mtyt/‘ut> € KT,
teT teT!

veT! teT
In particular, M7 (K) is an algebra, acting on K(7) on the left and on K7 on the right.

Definition 16. Let M € My 7+(K). We define a map ®yr: Hp 70 —> Hp,1, sending F € Fp 1

to the forest obtained by replacing type(e) by Z My type(e)t for any e € E(F), I being considered
teT
as linear in any of its edges. The restriction of ®pr to gp 7 is denoted by ¢y : g9p, 77 — 9D, 7-

Example 5. If T contains two elements, the first one being represented in red and the second

one in green, if M = (3 §>’ for any x,y,z € D:

y Yy z Yy z
T

Yz Yy z Y z
or(1e) = ale 441, our(le) = Ble + 652, o (V2) = aB Ve + ad Ve + By Vo + 45 Vo
Remark 5. For any M € My 7(K), M’ € My 74(K), ®pro ®pp = @ppap.

Proposition 17. Let A € KT, e K7 and M € M1 (K). Then ¢ is a prelie morphism
from (gp 77, 05) to (9p,7,9mr) and a NAP coalgebra morphism from (gp.77, pps7,) to (90,75 Pp)-

Proof. Let T,T" € Tp . For any t € T, for any v e V(T):

ou(T o T') = N my 1or(T) oy dus(T),
t'eT

SO:

o (T o\ T") = Z my Ao (T) oy dpr(T') = s (T) onrn dar(T).
tt'eT

We proved that ¢,/ is a prelie algebra morphism from (gp 77, ex) to (gp,7, ®m2)-
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For any T € Tp 7

pt o du (T tht’ (dm @ dur) o pur(T),
t'eT
so:
puo dn(T) = D mypp(danr ® dar) © pu(T) = (dar ® dar) © porm,(T).
tt'eT
So ¢ = (8D, 77, PvT ) — (80,7, pp) is @ NAP coalgebra morphism. O

Corollary 18. For any A e K(T) and e KT, such that Z Apie = 1, for any tg € T, the NAP

teT
prelie bialgebras (gp,7, ®x, pu) and (§p,T, 81y, pto) are isomorphic.

Proof. Let us denote by A(©) the element of K(7) defined by:
A = 614

Note that for any M € M7 (K), invertible, dar : (9p,7, or©, P07,) — (8D,75 ®ara@5 ) 18
an isomorphism. In particular, for a well-chosen M, MA© = X: we can assume that A = \(©)
without loss of generality. Then, by hypothesis, i, = 1. We define a matrix M € My (K) in the

following way:
Ot to if t' = to,
M =

Ot v — Ot Otherwise.

Then M is invertible. Moreover, MA© = X(©) and My = MO So ¢y is an isomorphism from
(90,75 ®x, PA®) tO (9D,7, ®x, Pu)- O

Proposition 19. Let A € K7, and ty € T. We define a prelie algebra morphism Yy :

)

(gT(t0)7.) — (gp,7,9)), sending v to T for any T € ’]I‘(to Then 1y, is a prelie algebra
DT

isomorphism if, and only if, Ay, # 0.

Proof. If Ay, # 0, then by corollary 15, (gp7,e) is freely generated by Tg%)—, SO Yy, 1s an

isomorphism. If Ay, = 0, then it is not difficult to show that any tree T" with two vertices, with
its unique edge of type tp, does not belong to Im(i,). O

4 Hopf algebraic structures

We here fix a family A e K(7).

4.1 Enveloping algebra of gp 1

Using again the Guin-Oudom construction, we obtain the enveloping algebra of (gp7,e)). We
first identify the symmetric coalgebra S(gp7) with the vector space generated by Fp 7, which
we denote by Hp 7. Its product m is given by disjoint union of forests, its coproduct by:

VT1,...,Th € Tp.1, A(T =Y [[ne]]z-

Ic[n] i€l il

We denote by ey the Guin-Oudom extension of ey to Hp 7 and %, the associated associative
product.
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Theorem 20. For any F'e Fp 7, T1,...,T, € Tp7:

FeTi...T, = Y [Tr | (Fe ). o) T,
V1,...,0n€V(F), \i€[n]
t1,.tn€T
Fx,Ty...T, = Z (Fo,\HTi) HT
I<[n] iel i1

The Hopf algebra (Hp 7,*x, A) is denoted by HGL* Moreover, for any M € My 1(K), for any
Ae KT, &, is a Hopf algebm morphism fmm Hg%@ to HGL”“. The extension of Yy, as a
Hopf algebra morphism, from HCE (tm to ”HGLA is denoted by Wy, ; it is an isomorphism if, and only

if, Aty # 0.

In particular, if 7 = {t} and A\; = 1, we recover the Grossman-Larson Hopf algebra [9].

4.2 Dual construction
Proposition 21. Let T € Tp 1.

1. A cut ¢ of T is a nonempty subset of E(T); it is said to be admissible if any path in the
tree from the root to a leaf meets at most one edge in c. The set of admissible cuts of T is
denoted by Adm(T).

2. If ¢ is admissible, one of the connected components of T\c contains the root of c: we denote
it by R°(T). The product of the other connected components of T'\c is denoted by P(T).

Let \e KT. We define a multiplicative coproduct A°Kx on the algebra (Hp,7,m) by:
VT € Tp.T, ANT) =T@1+10T+ ). (H Atype(e)> R(T) ® P¢(T).
ceAdm(T) \egc
Then (Hp.7,m, AYEX) is a Hopf algebra, which we denote by ’HCKA
Proof. We first assume that A € K(7). Let us define a nondegenerate pairing (—, —) on Hp 7 by:
VE,F' € Fp T, <F,F/>=5F,FISF,

where s is the number of symmetries of F. Let us consider three forests F, F’, F”. We put:

F= [] ™, =[] 1%, =[] 7.

TETD,T TETD’T TE’]TD T

Then:

amprer= Y ] . < [T 7. [] 7o F"

a=b+c TeTp, T ! TeTp, T TeTp,
)\ |
= Z 517 a’dc a” a ' ,,'SF’SF”
a=b+c
)\ ! ! ,,| aT+aT

:5aa+a”ﬁaT T*ST

= 5a,a’+a”)\t!3T
= 0 F/FrSF
=(F,F'F").
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Therefore:

Vz,y,2 € Hp T, Az),y® z) = {w,y2).

Let F, G be two forests and T' be a tree. Observe that if F is a forest with at least two trees,
then F' ) G does not contain any tree, so (F' ) G,T) = 0. If F =1, then (F )y G,T) # 0 if,
and only if, G = T'; moreover, (1 ) T,T) = 1. If F' is a tree, then:

<F * A\ G,T> = <F LD\ G,T>

Moreover, if F = By(F') and G =T} ...Tj:

F.AG—Z > H)\t Bd<HT6t Hmti>,

[k] (t:)eT* \ielk i€l ¢l

where e is the prelie product on ggfr induced by the T-multiplie prelie structure. Consequently,

we can inductively define a coproduct ACKx : Hp,r — Hp,7 @ Hp,7, multiplicative for the
product m, such that, if we denote for any tree T, Ackg(T) = A(T) — 1® T, for any tree
T = Bd(Tl(stl e Tkétk)

AT = (BawId) | [ B (T8, © 1+ A 1®T)) | (3)
i€[k]

Then, for any z,y,z € Hp, 7
(x*xy,2) = {x @y, AN ().

A quite easy induction on the number of vertices of trees proves that this coproduct is indeed the

one we define in the statement of the proposition. As (—, —) is nondegenerate, (Hp 7, m, ACEN)

is a Hopf algebra, dual to ’}-[GLA

In the general case, for any x € Hp 1, there exists a finite subset 7' of T such that z € Hp 1.
Putting X' = A7, N e K" = K", so:
(AYFAQId)o AT (2) = (A“FN@Id)o A“KN (z) = (TdQATFN )0 ATKN () = (TdRATT>)o ACFN ().

Hence, A) is coassociative, and Hg{(ﬁ is a Hopf algebra. O

Ezample 6. Let us fix a subset 77 of T and choose (\¢)we7 such that:

)\t:{lifteT',

0 otherwise.

For any tree T' € Tp 7, let us denote by Adm(T') the set of admissible cuts ¢ of T' such that
the type of any edge in ¢ belongs to 7’. Then:

ANT)=T@1+10T+ », RYT)®P(T).
ceAdm(T)

Remark 6. 1. If T = {t} and A\, = 1, we recover the usual Connes-Kreimer Hopf algebra of
D-decorated rooted trees, which we denote by 7—[ , and its duality with the Grossman-
Larson Hopf algebra [7, 10, 17].

2. If T and D are finite, for any A € K7, both ’HCKA and ”Hg%ﬁ are graded Hopf algebra (by
the number of vertices), and their homogeneous components are finite-dimensional. Via
the pairing (—, —), each one is the graded dual of the other.
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4.3 Hochschild cohomology of coalgebras

For the sake of simplicity, we assume that the set of types T is finite and we put 7 = {t1,...,tn}.

Let (C,A) be a coalgebra and let (M, dr,dr) be a C-bicomodule. One defines a complex,
dual to the Hochschild complex for algebras, in the following way:

1. For any n > 0, H, = L(M,C®").

2. For any L € Hy:

b(L) = (Id®L) o by + Y (—=1)'(1d® D @ A® 1d®" ) o L + (—1)"* (L ® Id) o 6.
=1

In particular, one-cocycles are maps L : M — C such that:
Aol = (Id@L) O5L + (L@Id) O(sR.

We shall consider in particular the bicomodule (M, 1, dr) such that:

Yz e C, {6[/('%') = 1®$7

Or(z) = A(x).

If C is a bialgebra, then M®¥ is also a bicomodule:

5L< () mi):1® &R i,

1<i<N 1<i<N
VacteC,
(1) (2)
OR ® Ti | = ® T ® H ;-
1<i<N 1<i<N 1<i<N

We denote by 1 = (1)e7 € K7, and we take C' = Hg[% One can identify S(Vect(Tp7)®7) and
CceN | 207, being identified with 1901 @ 2 @ 12" for any = € Tp7 and 1 <i < N. Then
for any d, By : C®N — (' is a 1-cocycle. Moreover, there is a universal property, proved in the
same way as for the Connes-Kreimer’s one |7]:

Theorem 22. Let B be a commutative bialgebra and, for any d € D, let Ly : C®N — C be a
1-cocycle:

VdeD, Va, € B, AoLd< ® a:i>:1® ® xi‘i'Ld( ® a:f-”)@ [T .

1<i<N 1<i<N 1<isN 1<i<N

There exists a unique bialgebra morphism ¢ : Hg{% — C such that for any d € D, ¢ o Lg =

By o ¢®N.

4.4 Hopf algebra morphisms

Our aim is, firstly, to construct Hopf algebras morphisms between Hgig—* and Hgigf; secondly,

to construct Hopf algebra isomorphisms between Hgff{ﬁ and Hg,K for a well-chosen D’.

oy C .
Proposition 23. Let M € M1 (K), A € K7. Then ®y; : ’I—th;-])ﬂA — ’H%ﬁA is a Hopf
algebra morphism.
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Proof. ®,r is a obviously an algebra morphism. Let T' € Tp 1.

Aoy (T)=2u(T)®1+ 1@ Pu(T)

+ > 11 (Z mt,type(e))\t> Py (RYT)) @ P (P(T))

ceAdm(T) esc \teT
=P (T)®1+ 1R P\ (T)
+ Z H(MT)‘)WPE(B)(I)M(RC(T)) ® O (PA(T))

ceAdm(T) e€c

= (Ppr @ Par) 0o Ayt (T).

So @,y is a coalgebra morphism from ’H MTA to HCK* O

Corollary 24. Let \,u € K7, both nonzero. Then HCKA and Hglgf‘ are isomorphic Hopf
algebras.

Proof. There exists M € M+(K), invertible, such that M A = . Then ®j; is an isomorphism
between H T and ”HCKA O]

Definition 25. Let us fix to € T. For any F € Fp 1, we shall say that {T4, ..., T} <, F if the
following conditions hold:

o {Th,...,T}} is a partition of V(F). Consequently, for any i € [k], T; € Fp 7, by restriction.
e Foranyie€ k], T; e ']I‘(Dto)r.

If{Ty,..., Tp}<y, F, we denote by F/{T1,..., Ty} the forest obtained by contracting T; to a single
vertex for any i € [k], decorating this vertex by T;, and forgetting the type of the remaining edges.

Then F/{T,..., Ty} is a Tp(?-decomted forest.
Proposition 26. Let A€ K7, tg e T. Let us consider the map:

HDT — H {to)
DT

o
0 FEFDJ’ E—— 2 H /\type(e) F/{Tl,...,Tk}.
{T1 7...,Tk}<1t0F eEE(F)\\_IE(Ti)
Then W is a Hopf algebra morphism from ’HCKA to HOK 7o) It is an isomorphism if, and only
D, T
Zf, )‘to # 0.
Proof. First case. We first assume that D and 7 are finite. In this case, Hglgf is the graded
dual of Hg%ﬁ, with the Hopf pairing (—, —); grading HT(tO) by the number of vertices of the
DT
decorations, HCK 7o) is the graded dual of HGtO) Moreover, W is the transpose of Wy, of propo-
D, T
sition 19, so is a Hopf algebra morphism. If )‘to # 0, ¥y, is an isomorphism, so ¥} also is.
General case. Let x,y € Hp,7. There exist finite D', 7', such that z,y € Hp 77; we can

assume that tg € 7'. We denote by A" = A\j». Then, by the preceding case, denoting by ¥} the
restriction of W} to Hp/ 77

Uy (xy) = W (wy) = Vg, (@)W, (y) = W (2)TF (y),
AN o Wy (2) = AKY 0 W) () = (W], ® T} ) 0 ATN () = (T ® ) 0 AN (2),
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so ¥ is a Hopf algebra morphism.

Let us assume that Ay, # 0. If W} (z) = 0, then ¥ (z) = 0. As aj, # 0, by the first case,
x =0, so ¥} is injective. Moreover, there exists z € Hpr 77, such that W} (z) = y; so U (2) =y,
and W} is surjective.

Let us assume that A\;;, = 0. Let T" be a tree with two vertices, such that its unique edge is of
type to. As T ¢ ’]I‘g%)-, ®,,(T) has a unique term, given by the partition X = {{x1}, {z2}}, where
x1 and zo are the vertices of T'. Hence:

Uy (T) = My T' =0,
so W} is not injective. O

Ezample 7. Here, T contains two elements, | and |. In order to simplify, we omit the decorations
of vertices. We put:

.
.
.

- oo

oo

z=., y=1 =", w="_, v =
Applying W#:
TH(L) = o, wr(V) = 2V,
wr(l) = Al ‘*(f ):VE,
wr(l) = 2L+, ‘*(f )= A EHIZ,
(V)= VoAl \If‘*(E )=\ EJFAIZJF.H,
(V) = ZAVANIE S v \Iff‘( ) = 2Iz+ I+ AL + ao

Remark 7. Although it is not indicated, ¥y, and ¥y depend on A.

4.5 Bialgebras in cointeraction

By [8], for any A € K(T) the operad morphism 6, : Prelie — P, which send e to ey, where
Prelie is the operad of prelie algebras, induces a pair of cointeracting bialgebras for any finite
set D. By construction, the first bialgebra of the pair is ’Hglgﬁ Let us describe the second one.

Definition 27. Let F' € Frp. We shall say that {T1,..., Ty} < F if:
1. {Th,..., Tk} is a partition of V(F'). Consequently, for any i € |k|, T; € Fp 1, by restriction.
2. For anyie€ k], T; € TprT.

If {Th,...,Tp} < F and dec : [k] — D, we denote by (F/{T1,...,Ty},dec) the forest obtained
by contracting T; to a single vertex, and decorating this vertex by dec(i), for all i € [k]. This is
an element of Fp 1.

Proposition 28. If D is finite, HID,T is the free commutative algebra generated by pairs (T, d),
where T'€ T+ p and d € D. The coproduct is given, for any F' € Fp 7, d € D, by:

S(Fody= > > (FAT,...,Ti},dec), d) ® (Ti, dec(1)) ... (Tk, dec(k)).

{Th,....,Tx}<F dec:[k] —D
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Then (Hp ,m,0) is a bialgebra, and Hglgf is a coalgebra in the category of H'p 7-comodules

via the coaction given, for any T € Tp 1, by:

5Ty = > Y (T/ATy,. .. T}, dec) ® (Ty, dec(1)) . .. (Th, dec(k)).

{T1,....,Tx}<T dec:[k]—D

Corollary 29. Let us assume that D is given a semigroup law denoted by +. If F' € Frp, and
{TIh,..., Ty} < F, then naturally T; € Trp for any i and the T-typed forest F/{Th,..., T} is
given a D-decoration, decorating the vertex obtained in the contradiction of T; by the sum of the
decorations of the vertices of T;. Then Hp 1 is given a second coproduct & such that for any
Fe FDJ'.'

S(F)y= >, FAT,...Ti®Ti...Tx.
{Ty,... T} <F

Then (Hp,7,m,9) is a bialgebra and ”Hglf(ﬁ is a coalgebra in the category of Hp 7-comodules via
the coaction 6.

Proof. We denote by I the ideal of H, - generated by pairs (T, d) such that T'€ Tp 7 and d € D,
with:

d # Z dec(v
veV (T

The quotient HID,T/I is identified with Hp 7, trough the surjective algebra morphism:
Hpr — Hor
Fifd= 2 dec(v)

(F, d) € FD,T xD —s veV (F)
0 otherwise.

Let us prove that I is a coideal. Let T'e Ty p, d € D, {I1,..., T} < F, dec : [k] — D such
that (T/{T1,...,Tk},dec),d) ¢ I and for any i, (T;,dec(i)) ¢ I Then:

k
Vi e [k], 2 dec(v) = dec(), 2 dec(i) =
veV (T;) i=1

Hence:

Z dec(v Z Z dec(v Zdec

veV (T =1 veV (T;)

so (T,d) ¢ I. Consequently, if T € I, then ((T/{Ti,...,Tx},dec),d) € I or at least one of the
(T3, dec(i)) belongs to I. Hence:

So I is a coideal. The coproduct induced on Hp 7 by the morphism w is precisely the one given
in the setting of this Corollary. O

In particular, if D is reduced to a single element, denoted by =, if we give it its unique
semigroup structure (x + % = x), We obtain again the result of [4].
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