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A SURJECTION THEOREM FOR MAPS WITH SINGULAR

PERTURBATION AND LOSS OF DERIVATIVES

IVAR EKELAND AND ÉRIC SÉRÉ

Abstract. In this paper we introduce a new algorithm for solving perturbed
nonlinear functional equations which admit a right-invertible linearization, but
with an inverse that loses derivatives and may blow up when the perturbation
parameter ε goes to zero. These equations are of the form Fε(u) = v with
Fε(0) = 0, v small and given, u small and unknown. The main difference
with the by now classical Nash-Moser algorithm is that, instead of using a
regularized Newton scheme, we solve a sequence of Galerkin problems thanks
to a topological argument. As a consequence, in our estimates there are no

quadratic terms. For problems without perturbation parameter, our results
require weaker regularity assumptions on F and v than earlier ones, such as
those of Hörmander [17]. For singularly perturbed functionals Fε, we allow v to
be larger than in previous works. To illustrate this, we apply our method to a
nonlinear Schrödinger Cauchy problem with concentrated initial data studied
by Texier-Zumbrun [26], and we show that our result improves significantly on
theirs.

1. Introduction

The basic idea of the inverse function theorem (henceforth IFT) is that, if a
map F is differentiable at a point u0 and the derivative DF (u0) is invertible,
then the map itself is invertible in some neighbourhood of u0. It has a long and
distinguished history (see [20] for instance), going back to the inversion of power
series in the seventeenth century, and has been extended since to maps between
infinite-dimensional spaces. If the underlying space is Banach, and if one is only
interested in the local surjectivity of F , that is, the existence, near u0, of a solution
u to the equation F (u) = v for v close to F (u0), one just needs to assume that F
is of class C1 and that DF (u0) has a right-inverse L(u0). The standard proof is
based on the Picard scheme:

un = un−1 − L(u0)(F (un−1)− v)

which converges geometrically to a solution of F (u) = v provided ‖F (u0) − v‖ is
small enough. In the C2 case, the Newton algorithm:

un = un−1 − L(un−1)(F (un−1)− v)

uses the right-invertibility of DF (u) for u close to u0, and provides local quadratic
convergence.

In functional analysis, u will typically be a function. In many situations the
IFT on Banach spaces will be enough, but in the study of Hamiltonian systems and
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2 I. EKELAND AND É. SÉRÉ

PDEs, one encounters cases when the right-inverse L(u) of DF (u) loses derivatives,
i.e. when L(u)F (w) has less derivatives than u and w. In such a case, the Picard and
Newton schemes lose derivatives at each step. The first solutions to this problem are
due, on the one hand, to Kolmogorov [19] and Arnol’d [2], [3], [4] who investigated
perturbations of completely integrable Hamiltonian systems in the analytic class,
and showed that invariant tori persist under small perturbations, and, on the other
hand, to Nash [23], who showed that any smooth compact Riemannian manifold can
be imbedded isometrically into an Euclidian space of sufficiently high dimension1.

In both cases, the fast convergence of Newton’s scheme was used to overcome
the loss of regularity. Since Nash was considering functions with finitely many
derivatives, he had to introduce a sequence of smoothing operators Sn, in order to
regularize L(un−1)(F (un−1)− v), and the new scheme was

un = un−1 − SnL(un−1)(F (un−1)− v) .

An early presentation of Nash’s method can be found in Schwartz’ notes [24].
It was further improved by Moser [22], who used it to extend the Kolmogorov-
Arnol’d results to Ck Hamiltonians. The Nash-Moser method has been the source
of a considerable amount of work in many different situations, giving rise in each
case to a so-called "hard" IFT. We will not attempt to review this line of work in
the present paper. A survey up to 1982 will be found in [15]. In [17], Hörmander
introduced a refined version of the Nash-Moser scheme which provides the best
estimates to date on the regularity loss. We refer to [1] for a pedagogical account
of this work, and to [5] for recent improvements. We also gained much insight into
the Nash-Moser scheme from the papers [7], [8], [9], [10], [26].

The question we want to address here is the following. The IFT implies that the
range of F contains a neighborhood V of v0 = F (u0). What is the size of V?

In general, when one tries to apply directly the abstract Nash-Moser theorem,
the estimates which can be derived from its proof are unreasonably small, many
orders of magnitude away from what can be observed in numerical simulations
or physical experiments. Moreover, precise estimates for the Nash-Moser method
are difficult to compute, and most theoretical papers simply do not address the
question.

So we shall address instead a ”hard” singular perturbation problem with loss
of derivatives. The same issue appears in such problems, as we shall explain in a
moment, but it takes a simpler form: one tries to find a good estimate on the size
of V as a power of the perturbation parameter ε. Such an asymptotic analysis has
been carefully done in the paper of Texier and Zumbrun [26] which has been an
important source of inspiration to us, and we will be able to compare our results
with theirs. As noted by these authors, the use of Newton’s scheme implies an
intrinsic limit to the size of V .

Let us explain this in the “soft” case, without loss of derivatives. Suppose that
for every 0 < ε ≤ 1 we have a C2 map Fε between two Banach spaces X and Y ,
such that Fε(0) = 0, and, for all ‖u‖ ≤ R,

|||DuFε(u)
−1||| ≤ ε−1M

|||D2
uuFε(u) ||| ≤ K

1Nash’s theorem on isometric embeddings was later re-proved by Gunther [14], who found a
different formulation of the problem and was able to use the classical IFT in Banach spaces.
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Then the Newton-Kantorovich Theorem (see [11], section 7.7 for a comprehensive

discussion) tells us that the solution uε of Fε(u) = v exists for ‖v‖ < ε2

2KM2 , and
this is essentially the best result one can hope for using Newton’s algorithm, as
mentioned by Texier and Zumbrun in [26], Remark 2.22. Note that the use of a
Picard iteration would give a similar condition.

However, in this simple situation where no derivatives are lost, it is possible, using
topological arguments instead of Newton’s method, to find a solution u provided
‖v‖ ≤ εR/M : one order of magnitude in ε has been gained. The first result of this
kind, when F is C1 and dimX = dimY < ∞ , is due to Wazewski [27] who used
a continuation method. See also [18] and [25] and the references in these papers,
for more general results in this direction. In [12] (Theorem 2), using Ekeland’s
variational principle, Wazewski’s result is proved in Banach spaces, assuming only
that F is continuous and Gâteaux differentiable, the differential having a uniformly
bounded right-inverse (in §2 below, we recall this result, as Theorem 5).

Our goal is to extend such a topological approach to “hard” problems with loss
of derivatives, which up to now have been tackled by the Nash-Moser algorithm. A
first attempt in this direction was made in [12] (Theorem 1), in the case when the
estimates on the right-inverse do not depend on the base point, but it is very hard
to find examples of such situations. The present paper fulfills the program in the
general case, where estimates on the inverse depend on the base point.

In [10], Berti, Bolle and Procesi prove a new version of the Nash-Moser theorem
by solving a sequence of Galerkin problems Π′

nF (un) = Π′
nv, un ∈ En, where Πn

and Π′
n are projectors and En is the range of Πn. They find the solution of each

projected equation thanks to a Picard iteration:

un = lim
k→∞

wk with w0 = un−1 and wk+1 = wk − Ln(un−1)(F (w
k)− v) ,

where Ln(un−1) is a right inverse of D(Π′
nF |En

)(un−1). So, in [10] the regular-
ized Newton step is not really absent: it is essentially the first step in each Picard
iteration. As a consequence, the proof in [10] involves quadratic estimates simi-
lar to the ones of more standard Nash-Moser schemes. Moreover, Berti, Bolle and
Procesi assume the right-invertibility of D(Π′

nF |En
)(un−1). This assumption is per-

fectly suitable for the applications they consider (periodic solutions of a nonlinear
wave equation), but in general it is not a consequence of the right-invertibility of
DF (un−1), and this restricts the generality of their method as compared with the
standard Nash-Moser scheme.

As in [10], we work with projectors and solve a sequence of Galerkin problems.
But in contrast with [10], the Newton steps are completely absent in our new algo-
rithm, they are replaced by the topological argument from [12] (Theorem 2), ensur-
ing the solvability of each projected equation. Incidentally, this allows us to work
with functionals F that are only continuous and Gâteaux-differentiable, while the
standard Nash-Moser scheme requires twice-differentiable functionals. Our regular-
ity assumption on v also seems to be optimal, and even weaker than in [17]. More-
over, our method works assuming either the right-invertibility of D(Π′

nF |En
)(u) as

in [10], or the right-invertibility of DF (u) (in the second case, our proof is more
complicated). But in our opinion, the main advantage of our approach is the fol-
lowing: there are no more quadratic terms in our estimates, as a consequence we
can deal with larger v’s, and this advantage is particularly obvious in the case of
singular perturbations.
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To illustrate this, we will give an abstract existence theorem with a precise
estimate of the range of F for a singular perturbation problem: this is Theorem
3 below. Comparing our result with the abstract theorem of [26], one can see
that we have weaker assumptions and a stronger conclusion. Then we will apply
Theorem 3 to an example given in [26], namely a Cauchy problem for a quasilinear
Schrödinger system first studied by Métivier and Rauch [21]. Texier and Zumbrun
use their abstract Nash-Moser theorem to prove the existence of solutions of this
system on a fixed time interval, for concentrated initial data. Our abstract theorem
allows us to increase the order of magnitude of the oscillation in the initial data.
After reading our paper, Baldi and Haus [6] have been able to increase even more
this order of magnitude, using their own version [5] of the Newton scheme for Nash-
Moser, combined with a clever modification of the norms considered in [26] and an
improved estimate on the second derivative of the functional. In contrast, our
proof follows directly from our abstract theorem, taking exactly the same norms
and estimates as in [26], and without even considering the second derivative of the
functional.

The paper is constructed as follows. In Section 2, we present the general frame-
work: we are trying to solve the equation Fε(u) = v near Fε(0) = 0, when Fε maps
a scale of Banach spaces of functions into another and admits a right-invertible
Gâteaux differential with “tame estimates" involving losses of derivatives and nega-
tive powers of ε. After giving our precise assumptions, we state our main theorem.
Section 3 is devoted to its proof. In Section 4, we apply it to the example taken
from Texier and Zumbrun [26], and we compare our results with theirs.

Acknowledgement. We are grateful to Massimiliano Berti, Philippe Bolle,
Jacques Fejoz and Louis Nirenberg for their interest in our work and their en-
couragements. It is a pleasure to thank Pietro Baldi for stimulating discussions in
Naples and Paris, for a careful reading of the present paper and for a number of
suggestions. We also thank the referees, whose remarks have helped us to improve
this manuscript.

2. Main assumptions and results.

2.1. Two tame scales of Banach spaces. Let (Vs, ‖ · ‖s)0≤s≤S be a scale of
Banach spaces, namely:

0 ≤ s1 ≤ s2 ≤ S =⇒ [Vs2 ⊂ Vs1 and ‖ · ‖s1 ≤ ‖ · ‖s2 ] .

We shall assume that to each Λ ∈ [1,∞) is associated a continuous linear projec-
tion Π(Λ) on V0, with range E(Λ) ⊂ VS . We shall also assume that the spaces E(Λ)
form a nondecreasing family of sets indexed by [1,∞), while the spaces KerΠ(Λ)
form a nonincreasing family. In other words:

1 ≤ Λ ≤ Λ′ =⇒ Π(Λ)Π(Λ′) = Π(Λ′)Π(Λ) = Π(Λ) .

Finally, we assume that the projections Π(Λ) are “smoothing operators" satisfying
the following estimates:
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Polynomial growth and approximation: There are constants A1, A2 ≥ 1
such that, for all numbers 0 ≤ s ≤ S, all Λ ∈ [1,∞) and all u ∈ Vs , we have:

∀t ∈ [0, S] , ‖Π(Λ)u‖t ≤ A1 Λ
(t−s)+‖u‖s(2.1)

∀t ∈ [0, s] , ‖(1−Π(Λ))u‖t ≤ A2 Λ
−(s−t)‖u‖s(2.2)

When the above properties are met, we shall say that (Vs , ‖ · ‖s)0≤s≤S endowed
with the family of projectors {Π(Λ) , Λ ∈ [1,∞) } , is a tame Banach scale.

It is well-known (see e.g. [10]) that (2.1,2.2) imply:

Interpolation inequality: For 0 ≤ t1 ≤ s ≤ t2 ≤ S ,

(2.3) ‖u‖s ≤ A3‖u‖
t2−s

t2−t1
t1 ‖u‖

s−t1
t2−t1
t2 .

Let (Ws , ‖ · ‖
′
s)0≤s≤S be another tame scale of Banach spaces. We shall denote

by Π′(Λ) the corresponding projections defined on W0 with ranges E′(Λ) ⊂ WS ,
and by A′

i (i = 1, 2, 3) the corresponding constants in (2.1), (2.2) and (2.3).

Remark. In many practical situations, the projectors form a discrete family
as, for instance, {Π(N) , N ∈ N

∗}, or {Π(2j) , j ∈ N}. The first case occurs
when Π(N) acts on periodic functions by truncating their Fourier series, keeping
only frequencies of size less or equal to N , as in [10]. The second case occurs when
truncating orthogonal wavelet expansions as in an earlier version of the present work
[13]. Our choice of notation and assumptions covers these cases, taking Π(Λ) =
Π(⌊Λ⌋) or Π(Λ) = Π(2⌊log2(Λ)⌋), where ⌊·⌋ denotes the integer part.

2.2. Main theorem. We state our result in the framework of singular perturba-
tions, in the spirit of Texier and Zumbrun [26]. The norms ‖ · ‖s , ‖ · ‖

′
s on the tame

scales (Vs), (Ws) may depend on the perturbation parameter ε ∈ (0, 1], as well as
the projectors Π(Λ) , Π′(Λ) and their ranges E(Λ), E′(Λ) . But we impose that S
and the constants Ai, A

′
i appearing in estimates (2.1, 2.2, 2.3) be independent of ε.

In order to avoid burdensome notations, the dependence of the norms, projectors
and subspaces on ε will not be explicit in the sequel.

Denote by Bs the unit ball in Vs:

Bs = {u | ‖u‖s ≤ 1}

In the sequel we fix nonnegative constants s0,m, ℓ, ℓ
′ and g, independent of ε.

We will assume that S is large enough.

We first recall the definition of Gâteaux-differentiability, in a form adapted to
our framework:

Definition 1. We shall say that a function F : Bs0+m → Ws0 is Gâteaux-
differentiable (henceforth G-differentiable) if for every u ∈ Bs0+m, there exists
a linear map DF (u) : Vs0+m → Ws0 such that for every s ∈ [s0, S − m], if
u ∈ Bs0+m ∩ Vs+m, then DF (u) maps continuously Vs+m into Ws, and

∀h ∈ Vs+m , lim
t→0

∥

∥

∥

∥

1

t
[F (u+ th)− F (u)]−DF (u)h

∥

∥

∥

∥

′

s

= 0 .
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Note that, even in finite dimension, a G-differentiable map need not be C1, or
even continuous. However, if DF : Vs+m → L(Vs+m,Ws) is locally bounded, then
F : Vs+m → Ws is locally Lipschitz, hence continuous. In the present paper, we
will always be in such a situation.

We now consider a family of maps (Fε)0<ε≤1 with Fε : Bs0+m → Ws0 . We are
ready to state our assumptions on this family:

Definition 2.

• We shall say that the maps Fε : Bs0+m → Ws0 (0 < ε ≤ 1) form an
S-tame differentiable family if they are G-differentiable with respect to u,
and, for some positive constant a , for all ε ∈ (0, 1] and all s ∈ [s0, S −m] ,
if u ∈ Bs0+m ∩ Vs+m and h ∈ Vs+m , then DFε (u)h ∈ Ws with the tame
direct estimate

(2.4) ‖DFε (u)h‖
′
s ≤ a

(

‖h‖s+m + ‖u‖s+m ‖h‖s0+m

)

.

• Then we shall say that (DFε)0<ε≤1 is tame right-invertible if there are b > 0
and g, ℓ, ℓ′ ≥ 0 such that for all 0 < ε ≤ 1 and u ∈ Bs0+max{m,ℓ} , there is
a linear map Lε (u) :Ws0+ℓ′ → Vs0 satisfying

(2.5) ∀k ∈Ws0+ℓ′ , DFε (u)Lε (u) k = k

and for all s0 ≤ s ≤ S − max {ℓ, ℓ′}, if u ∈ Bs0+max{m,ℓ} ∩ Vs+ℓ and
k ∈ Ws+ℓ′ , then Lε (u) k ∈ Vs , with the tame inverse estimate

(2.6) ‖Lε (u) k‖s ≤ bε−g
(

‖k‖
′
s+ℓ′ + ‖k‖

′
s0+ℓ′ ‖u‖s+ℓ

)

.

• Alternatively, we shall say that (DFε)0<ε≤1 is tame Galerkin right-invertible
if there are Λ ≥ 1 , b > 0 and g, ℓ, ℓ′ ≥ 0 such that for all Λ ≥ Λ , 0 < ε ≤ 1
and any u ∈ Bs0+max{m,ℓ}∩E(Λ), there is a linear map LΛ,ε (u) : E

′(Λ) →
E(Λ) satisfying

(2.7) ∀k ∈ E′(Λ) , Π′(Λ)DFε (u)LΛ,ε (u)k = k

and for all s0 ≤ s ≤ S −max {ℓ, ℓ′}, we have the tame inverse estimate:

(2.8) ∀k ∈ E′(Λ) , ‖LΛ,ε (u) k‖s ≤ bε−g
(

‖k‖
′
s+ℓ′ + ‖k‖

′
s0+ℓ′ ‖u‖s+ℓ

)

.

In this definition, the integers m, ℓ, ℓ′ denote the loss of derivatives for DFε and
its right-inverse, and g > 0 denotes the strength of the singularity at ε = 0. The
unperturbed case of a fixed map can be recovered by setting ε = 1.

We want to solve the equation Fε(u) = v. There are three things to look for.
How regular is v ? How regular is u, or, equivalently, how small is the loss of
derivatives between v and u ? How does the existence domain depend on ε ? The
following result answers them in a near-optimal way.

Theorem 3. Assume that the maps Fε (0 < ε ≤ 1) form an S-tame differentiable
family between the tame scales (Vs)0≤s≤S and (Ws)0≤s≤S, with Fε(0) = 0 for all
0 < ε ≤ 1. Assume, in addition, that (DFε)0<ε≤1 is either tame right-invertible or
tame Galerkin right-invertible. Let s0, m, g, ℓ, ℓ

′ be the associated parameters.
Let s1 ≥ s0 +max{m, ℓ}, δ > s1 + ℓ′ and g′ > g.
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Then, for S large enough, there is r > 0 such that, whenever 0 < ε ≤ 1 and
‖v‖

′
δ ≤ rεg

′

, there exists some uε ∈ Bs1 satisfying:

Fε(uε) = v

‖uε‖s1 ≤ r−1 ε−g′

‖v‖
′
δ

As we will see, the proof of Theorem 3 is much shorter under the assumptions
that DFε is Galerkin right-invertible. But in many applications, it is easier to
check that DFε is tame right-invertible than tame Galerkin right-invertible. See
[10], however, where an assumption similar to (2.7, 2.8) is used.

All other “hard" surjection theorems that we know of require some additional
conditions on the second derivative of Fε. Here we do not need such assumptions,
in fact we only assume Fε to be G-differentiable, not C2.

As for the three questions we raised, let us explain in which sense the answers
are almost optimal in Theorem 3. For the tame estimates (2.4),(2.6) to hold, one
needs u ∈ Bs1 with s1 ≥ s0 + max{m, ℓ}. When solving the linearized equation
DFε (u)h = k in Vs1 by h = Lε (u)k, one needs k ∈ Ws1+ℓ′ , so it seems necessary
to assume δ ≥ s1+ ℓ

′ , and we find that the strict inequality is sufficient. Replacing
s1 with its minimal value, our condition on δ becomes

δ > s0 +max{m, ℓ}+ ℓ′ .

We have not found this condition in the literature: in [17] for instance, a stronger
assumption is made, namely δ > s0 +max{2m+ ℓ′, ℓ}+ ℓ′.

For the dependence of ‖v‖′δ on ε, the constraint g′ > g also seems to be nearly
optimal. Indeed, the solution uε has to be in Bs1 , but the right-inverse Lε of DFε

has a norm of order ε−g, so the condition ‖v‖′δ . εg seems necessary. We find that

the condition ‖v‖′δ . εg
′

is sufficient.
Our condition on S is of the form S ≥ S0 where S0 depends only on the parame-

ters s0, m, g, ℓ, ℓ
′ and g′, s1 , δ. Then r depends only on these parameters and the

constants Ai, A
′
i associated with the tame scales. In principle, all these constants

could be made explicit, but we will not do it here. Let us just mention that one can

take S0 = O
(

1
g′−g

)

as g′ → g, all other parameters remaining fixed. This follows

from the inequality σ < ζg/η in Lemma 1.

In the case of a tame right-invertible differential, we can restate our theorem in a
form that allows direct comparison with [26]: Theorem 2.19 and Remarks 2.9, 2.14.
For this purpose, we consider two tame Banach scales (Vs, ‖ · ‖s) and (Ws, ‖ · ‖′s)
with associated projectors ΠΛ , Π

′
Λ, we take γ > 0 and we introduce the norms

| · |s := εγ‖ · ‖s and | · |′s := εγ‖ · ‖′s . We then denote Bs(ρ) = {u | |u|s ≤ ρ} and
we consider functions Fε of the form Fε(u) = Φε(aε + u) − Φε(aε) , where Φε is
defined on Bs0+m(2εγ) and aε ∈ BS(ε

γ) is chosen such that vε := −Φε(aε) is very
small. A point u in Bs0+m satisfies Fε(u) = vε if and only if it solves the equation
Φε(aε + u) = 0 in Bs0+m(εγ) . We make the following assumptions on Φε:
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For some γ > 0 and any 0 < ε ≤ 1, the map Φε : Bs0+m(2εγ) → Ws0 is
G-differentiable with respect to u, and there are constants a, b and g > 0 such that:

• for all 0 < ε ≤ 1 and s0 ≤ s ≤ S − m, if u ∈ Bs0+m(2εγ) ∩ Vs+m and
h ∈ Vs+m , then DΦε (u)h ∈Ws , with the tame direct estimate

(2.9) |DΦε (u)h|
′
s ≤ a

(

|h|s+m + ε−γ |u|s+m |h|s0+m

)

• for all 0 < ε ≤ 1 and u ∈ Bs0+max{m,ℓ}(2ε
γ) , there is Lε (u) : Ws0+ℓ′ →

Vs0 linear, satisfying:

(2.10) ∀k ∈ Ws0+ℓ′ , DΦε (u)Lε (u)k = k

and for all s0 ≤ s ≤ S −max {ℓ, ℓ′} , if u ∈ Bs0+max{m,ℓ}(2ε
γ) ∩ Vs+ℓ and

k ∈ Ws+ℓ′ , then Lε (u) k ∈ Vs , with the tame inverse estimate

(2.11) |Lε (u) k|s ≤ bε−g
(

|k|′s+ℓ′ + ε−γ |k|′s0+ℓ′ |u|s+ℓ

)

Under these assumptions, the maps Fε : Bs0+m → Ws0 form an S-tame differ-
entiable family for the “old" norms ‖ · ‖s , ‖ · ‖′s . So the following result holds, as a
direct consequence of our main theorem:

Corollary 4. Consider two tame Banach scales (Vs, |·|s)0≤s≤S and (Ws, |·|
′
s)0≤s≤S ,

nonnegative constants s0, m, ℓ, ℓ
′, g, γ, and two positive constants a, b. Take any

g′ > g, s1 ≥ s0 +max{m, ℓ} and δ > s1 + ℓ′. For S large enough and r > 0 small,
if a family of G-differentiable maps Φε : Bs0+m(2εγ) → Ws0 (0 < ε ≤ 1) satisfies

(2.9,2.10,2.11), and, in addition, for some aε ∈ BS(ε
γ) , |Φε(aε)|

′
δ ≤ rεγ+g′

, then
there exists some uε ∈ Bs1,ε(ε

γ) such that:

Φε(aε + uε) = 0

|uε|s1 ≤ r−1 ε−g′

|Φε(aε)|
′
δ

In [26] (Theorem 2.19 and Remarks 2.9, 2.14), the assumptions are stronger,
since they involve the second derivative of Φε. More importantly, we only need
the norm of Φε(aε) to be controlled by εγ+g′

with g′ > g, provided S ≥ S0 with

S0 = O
(

1
g′−g

)

, while in [26] (Assumption 2.15 and Remark 2.23), due to quadratic

estimates, one needs g′ > 2g with the faster growth S0 = O
(

1
(g′−2g)2

)

.

3. Proof of Theorem 3

The proof consists in constructing a sequence (un)n≥1 which converges to a
solution u of F (u) = v. At each step, in order to find un, we solve a nonlinear
equation in a Banach space, using Theorem 2 in [12], which we restate below for
the reader’s convenience (the notation |||L ||| stands for the operator norm of any
linear continuous map L between two Banach spaces):
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Theorem 5. Let X and Y be Banach spaces. Let f : BX(0, R) → Y be continuous
and Gâteaux-differentiable, with f (0) = 0. Assume that the derivative Df (u) has
a right-inverse L (u), uniformly bounded on the ball BX(0, R):

∀(u, k) ∈ BX(0, R)× Y , Df (u)L (u) k = k

sup { |||L (u) ||| : ‖u‖X < R} < M .

Then, for every v ∈ Y with ‖v‖Y < RM−1 there is some u ∈ X satisfying:

f (u) = v and ‖u‖X ≤M ‖v‖Y < R .

Note first that this is a local surjection theorem, not an inverse function theorem:
with respect to the IFT, we lose uniqueness. On the other hand, the regularity
requirement on f and the smallness condition on v are much weaker. As mentioned
in the Introduction, for a C1 functional in finite dimensions, this theorem has
been proved a long time ago by Wazewski [27] by a continuation argument (we
thank Sotomayor for drawing our attention to this result). For a comparison of the
existence and uniqueness domains in the C2 case with dimX = dimY , see [16],
chapter II, exercise 2.3.

It turns out that the proof of Theorem 3 is much easier if one assumes that
the family (DFε) is tame Galerkin right-invertible. But most applications require
that (DFε) be tame right-invertible. Let us explain why the proof is longer in
this case. In our algorithm, we will use two sequences of projectors Πn := Π(Λn)
and Π′

n := Π′(Mn) with associated ranges En = E(Λn) and E′
n = E′(Mn), where

Λ0 ≈ ε−η for some small η > 0, Λn = Λαn

0 for some α > 1 close to 1, and
Mn = Λϑ

n for some ϑ ≤ 1 such that ϑα > 1. The algorithm consists in finding,
by induction on n and using Theorem 5 at each step, a solution un ∈ En of the
problem Π′

nFε(un) = Π′
n−1v. For this, we need Π′

nDFε(u)|En
to be invertible for u

in a certain ball Bn, with estimates on the right inverse for a certain norm ‖ · ‖Nn
.

When the family (DFε) is tame Galerkin right-invertible, we can take ϑ = 1
so that Mn = Λn, instead of assuming ϑ < 1. Then the right-invertibility of
Π′

nDFε(u)|En
follows immediately from the definition.

But when (DFε) is only tame right-invertible, it is crucial to take ϑ < 1. The
intuitive idea is the following. One can think ofDFε(u) as very large right-invertible
matrix. The topological argument we use requires Π′

nDFε(u)|En
to have a right-

inverse for u in a suitable ball. If we take Mn = Λn, this is like asking that a square
submatrix of a right-invertible matrix be invertible. In general this is not true. But
a rectangular submatrix, with more columns than lines, will be right-invertible if
the full matrix is and if there are enough columns in the submatrix. This is why
we impose Mn < Λn when we do not assume the tame Galerkin right-invertibility.

In the sequel, we assume that the family (DFε) is tame right-invertible, so we
take ϑ < 1, and we point out the specific places where the arguments would be
easier assuming, instead, that (DFε) is tame Galerkin right-invertible.

The sequence un depends on a number of parameters η, α, β, ϑ and σ satisfying
various conditions: in the first subsection we prove that these conditions are com-
patible. In the next one, we construct an initial point u1 depending on η, α and
ϑ. In the third one we construct, by induction, the remaining points un which also
depend on β and σ. Finally we prove that the sequence (un) converges to a solution
u of the problem, satisfying the desired estimates.



10 I. EKELAND AND É. SÉRÉ

3.1. Choosing the values of the parameters. We are given s1 ≥ s0+max {m, ℓ} ,
δ > s1 + ℓ′ and g′ > g. These are fixed throughout the proof.

We introduce positive parameters η, α, β, ϑ and σ satisfying the following condi-
tions:

η <
g′ − g

max {ϑℓ′, ℓ}
(3.1)

1

α
< ϑ < 1(3.2)

(1− ϑ) (σ − δ) > ϑm+max {ℓ, ϑℓ′}+
g

η
(3.3)

σ > αβ + s1(3.4)

(1 + α− ϑα) (σ − s0) > αβ + α (m+ ℓ) + ℓ′ +
g

η
(3.5)

(1− ϑ) (σ − s0) > m+ ϑℓ′ +
g

αη
(3.6)

δ > s0 +
α

ϑ
(σ − s0 − αβ + ℓ”)(3.7)

(α− 1)β > (1− ϑ) (σ − s0) + ϑm+ ℓ” +
g

η
(3.8)

ℓ” = max {(α− 1) ℓ+ ℓ′, αϑℓ′}(3.9)

Note that condition (3.3) implies that δ < σ . Note also that condition (3.7)
may be rewritten as

β >
1

α
(σ − δ) +

(

1−
ϑ

α

)

δ − s0
α

+
ℓ”

α

which implies the simpler inequality

(3.10) β >
1

α
(σ − δ)

Inequality (3.10) will also be used in the proof.

If we assume tame Galerkin right-invertibility instead of tame right-invertibility,
we can replace condition (3.3) by the weaker condition δ < σ, we do not need
conditions (3.5), (3.6) any more, and we can take ϑ = 1 instead of ϑ < 1.

Lemma 1. The set of parameters (η, α, β, ϑ, σ) satisfying the above conditions is
non-empty. More precisely, there are some α > 1 and ζ > 0 depending only on
(s0, m, ℓ, ℓ

′, s1, δ), such that, for ϑ = α−1/2 and for every 0 < η < 1, there exist
(β, σ) with σ < ζg/η such that the constraints (3.3) to (3.9) are satisfied.

Proof. Since δ > s1 + ℓ′, and ℓ” → ℓ′ when both α and ϑ tend to 1, it is possible
to choose ϑ and α = ϑ−2 close enough to 1 so that δ > s0 +

α
ϑ (s1 − s0 + ℓ”). Take

some τ with 0 < τ < ϑ
α (δ − s0)− s1 + s0 − ℓ”, and set:

(3.11) β =
σ

α
−
s1 + τ

α

Then conditions (3.2), (3.4) and (3.7) are satisfied.
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The remaining inequalities are constraints on β and σ. They can be rewritten
as follows:

σ > δ +
1

1− ϑ

[

ϑm+max {ℓ, ϑℓ′}+
g

η

]

(3.12)

β <

(

1

α
+ 1− ϑ

)

σ −m− ℓ−
ℓ′

α
−

(

1

α
+ 1− ϑ

)

s0 −
g

αη
(3.13)

σ > s0 +
1

1− ϑ

(

m+ ϑℓ′ +
g

αη

)

(3.14)

β >
1− ϑ

α− 1
σ +

1

α− 1

(

ϑm+ ℓ” +
g

η
− (1− ϑ) s0

)

(3.15)

These inequalities define half-planes in the (σ, β)-plane. Since αϑ > 1, the slopes
in (3.11), (3.13) and (3.15) are ordered as follows:

0 <
1− ϑ

α− 1
<

1

α
<

1

α
+ 1− ϑ < 1

As a consequence, for the chosen values of α, ϑ and τ , the domain defined by
these three conditions in the (σ, β)-plane is an infinite half-line stretching to the
North-East. The remaining two, (3.12) and (3.14), just tell us that σ should be
large enough. So the set of solutions is of the form σ > σ̄, β = σ

α − s1+τ
α and σ̄ is

clearly a piecewise affine function of g/η. We may thus choose σ < ζg/η for some
constant ζ . �

Remark. As already mentioned, if we assume that (DFε) is tame Galerkin
right-invertible, (3.3) can be replaced by the condition δ < σ, and (3.5) and (3.6)
are not needed. The remaining conditions can be satisfied by taking ϑ = 1 and for
a larger set of the other parameters. The corresponding variant of Lemma 1 has a
simpler proof. We can choose α > 1 such that δ > s0 + α (s1 − s0 + ℓ”) and τ such
that 0 < τ < 1

α (δ − s0)− s1 + s0 − ℓ”, and we may impose condition (3.11). Then
conditions (3.12), (3.13) and (3.14) are no longer required, and the last conditions
δ < σ and (3.15) are easily satisfied by taking σ large enough.

The values (η, α, β, ϑ, σ) are now fixed. For the remainder of the proof we intro-
duce an important notation. By

x . y

we mean that there is some constant C such that x ≤ Cy. This constant depends on
Ai, A

′
i, a, b, s0, m, ℓ, ℓ

′, g, g′, s1, δ and our additional parameters (η, α, β, ϑ, σ),
but NOT on ε, nor on the regularity index s ∈ [0, S] or the rank n in any of the
sequences which will be introduced in the sequel. For instance, the tame inequalities
become:

‖DFε (u)h‖s .
(

‖u‖s+m ‖h‖s0+m + ‖h‖s+m

)

‖Lε (u) k‖s . ε−g
(

‖u‖s+l ‖k‖s0+l′ + ‖k‖s+l′

)

In the iteration process, we will need the following result:

Lemma 2. If the maps Fε form an S-tame differentiable family and Fε (0) = 0,
then, for u ∈ Bs0+m ∩ Vs+m and s0 ≤ s ≤ S −m, we have:

‖Fε (u)‖s . ‖u‖s+m
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Proof. Consider the function ϕ (t) = ‖Fε (tu)‖s. Since Fε is G-differentiable, we
have:

ϕ′ (t) =

〈

DFε (tu)u,
Fε (tu)

‖Fε (tu)‖s

〉

s

≤ a
(

t ‖u‖s0+m ‖u‖s+m + ‖u‖s+m

)

and since ϕ (0) = 0, we get the result. �

3.2. Initialization.

3.2.1. Defining appropriate norms. This subsection uses condition (3.2) and the
inequalities s1 + ℓ′ < δ < σ , which, as already noted, follows from (3.3).

We are given (η, α, ϑ, δ, σ). We fix a large constant K > 1, to be chosen later
independently of 0 < ε ≤ 1.

We set Λ0 = (Kε−η)1/α, Λ1 := (Λ0)
α = Kε−η, M0 := (Λ0)

ϑ = (Kε−η)ϑ/α and
M1 := (Λ1)

ϑ = (Kε−η)ϑ. We then have the inequalities M0 < Λ0 < M1 < Λ1 .

Let E1 := E(Λ1) ,Π1 := Π(Λ1) , E
′
1 = E(M1) and Π′

i := Π′(Mi) for i = 0, 1 .

We choose the following norms on E1 , E′
1:

‖h‖N1
: = ‖h‖δ + Λ

− ϑ
α
(σ−δ)

1 ‖h‖σ

‖k‖
′
N1

:= ‖k‖
′
δ + Λ

− ϑ
α
(σ−δ)

1 ‖k‖
′
σ

Endowed with these norms, E1 and E′
1 are Banach spaces. We shall use the

notation |||L |||N1
for the operator norm of any linear continuous map L from the

Banach space E′
1 to a Banach space that can be either E1 or E′

1.

The map Fε induces a map f1 : Bs0+m ∩ E1 → E′
1 defined by

f1 (u) := Π′
1Fε (u)

for u ∈ Bs0+m ∩E1. Note that f1 (0) = 0. We will use the local surjection theorem
to show that the range of f1 covers a neighbourhood of 0 in E′

1. We begin by
showing that Df1 has a right inverse.

Note that, if we assume that DF is tame Galerkin right-invertible, we can take
M1 = Λ1 ≥ Λ, and Df1 is automatically right-invertible, with the tame estimate
(2.8). So the next subsection is only necessary if we assume that DF is tame
right-invertible.

3.2.2. Df1(u) has a right inverse for ‖u‖N1 ≤ 1 . This subsection uses condition
(3.3). We recall it here for the reader’s convenience:

(1− ϑ) (σ − δ) > ϑm+max {ℓ, ϑℓ′}+
g

η

Lemma 3. For K large enough and for all u ∈ E1 with ‖u‖N1
≤ 1:

|||Π′
1DFε (u) (1−Π1)Lε (u) |||N1

≤
1

2

Proof. From ‖u‖N1
≤ 1, it follows that ‖u‖δ ≤ 1, and since δ > s0+max {ℓ,m}+ℓ′,

the tame estimates hold at u.
Take any k ∈ E′

1 and set h = (1−Π1)Lε (u)k.



A SURJECTION THEOREM 13

We have ‖h‖δ . Λδ−σ
1 ‖Lε (u)k‖σ, and:

‖Π′
1DFε (u)h‖

′
δ−m . ‖h‖s0+m ‖u‖δ + ‖h‖δ . ‖h‖δ

‖Π′
1DFε (u)h‖

′
δ .Mm

1 ‖Π′
1DFε (u)h‖δ−m .Mm

1 ‖h‖δ .

Hence:

‖Π′
1DFε (u)h‖

′
δ .Mm

1 Λδ−σ
1 ‖Lε (u)k‖σ .

Writing ‖Π′
1DFε (u)h‖

′
σ .Mσ−δ

1 ‖Π′
1DFε (u)h‖δ we finally get:

(3.16) ‖Π′
1DFε (u)h‖

′
N1

.Mm
1 Λδ−σ

1

(

1 + Λ
−ϑ

α
(σ−δ)

1 Mσ−δ
1

)

‖Lε (u) k‖σ .

We now have to estimate ‖Lε (u) k‖σ. By the tame estimates, we have:

‖Lε (u) k‖σ . ε−g
(

‖k‖′σ+ℓ′ + ‖u‖σ+ℓ ‖k‖
′
s0+ℓ′

)

. ε−g
(

M ℓ′

1 ‖k‖
′
σ + Λℓ

1 ‖u‖σ ‖k‖
′
δ

)

Since ‖u‖N1
≤ 1, we have ‖u‖σ ≤ Λ

ϑ
α
(σ−δ)

1 . Substituting, we get:

‖Lε (u) k‖σ . ε−g
(

M ℓ′

1 ‖k‖
′
σ + Λ

ϑ
α
(σ−δ)+ℓ

1 ‖k‖
′
δ

)

. ε−gΛ
ϑ
α
(σ−δ)

1

(

M ℓ′

1 + Λℓ
1

)

‖k‖
′
N1

(3.17)

Putting (3.16) and (3.17) together, we get:

‖Π′
1DFε (u)h‖

′
N1

. ε−gMm
1 Λδ−σ

1

(

Λ
ϑ
α
(σ−δ)

1 +Mσ−δ
1

)(

M ℓ′

1 + Λℓ
1

)

‖k‖
′
N1

Since α > 1, we have Λ
ϑ
α
(σ−δ)

1 ≤ Λ
ϑ(σ−δ)
1 =Mσ−δ

1 , so that:

‖Π′
1DFε (u)h‖

′
N1

. ε−gMm
1 Λδ−σ

1 Mσ−δ
1

(

M ℓ′

1 + Λℓ
1

)

‖k‖
′
N1

. ε−gΛ
ϑm−(1−ϑ)(σ−δ)+max{ℓ,ϑℓ′}
1 ‖k‖′N1

Since Λ1 = Kε−η, the inequality becomes:

‖Π′
1DFε (u)h‖

′
N1

. K−C0ε−g+ηC0 ‖k‖′N1

with C0 := (1− ϑ) (σ − δ)− ϑm−max{ℓ, ϑℓ′}.
By condition (3.3), the exponent C0 is larger than g/η, and the proof follows by

choosing K large enough independently of 0 < ε ≤ 1. �

Introduce the map L1 (u) = Π1Lε (u)|E′
1

. Since DFε (u)Lε (u) = 1, it follows

from Lemma 3 that, for k ∈ E′
1, u ∈ E1 and ‖u‖N1

≤ 1 , we have:

‖k −Df1 (u)L1 (u) k‖
′
N1

≤
1

2
‖k‖

′
N1

This implies that the Neumann series
∑

i≥0

(

IE′
1
−Df1 (u)L1 (u)

)i
converges in

operator norm. Its sum is S1(u) = (Df1(u)L1(u))
−1 and it has operator norm at

most 2.
Then T1 (u) := L1(u)S1(u) is a right inverse of Df1 (u) and |||T1 (u) |||N1

≤

2 ||| L1 (u) |||N1
. By the tame estimates, if u ∈ E1 , ‖u‖N1

≤ 1 and k ∈ E′
1, we have:
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‖L1 (u)k‖δ . ‖Lε (u)k‖δ . ε−g
(

‖k‖
′
δ+ℓ′ + ‖u‖δ+ℓ ‖k‖

′
s0+ℓ′

)

. ε−g
(

M ℓ′

1 + Λℓ
1

)

‖k‖′δ

Combining with (3.17), we find:

sup
‖u‖

N1
≤1

|||T1 (u) |||N1
. ε−g

(

M ℓ′

1 + Λℓ
1

)

= m1

3.2.3. Local inversion of f1.
Applying Theorem 5, we find that if ‖Π′

0v‖
′
N1

< 1/m1, then equation f1 (u) = Π′
0v

has a solution u1 ∈ E1 with ‖u1‖N1
≤ 1 and ‖u1‖N1

≤ m1 ‖Π
′
0v‖

′
N1

.

Note that ‖Π′
0v‖

′
σ .Mσ−δ

0 ‖Π′
0v‖

′
δ . Λ

ϑ
α
(σ−δ)

1 ‖Π′
0v‖

′
δ. It follows that

‖Π′
0v‖

′
N1

= ‖Π′
0v‖

′
δ + Λ

− ϑ
α
(σ−δ)

1 ‖Π′
0v‖

′
σ . ‖Π′

0v‖δ

Assume from now on:

(3.18) ‖v‖′δ . εg
(

M ℓ′

1 + Λℓ
1

)−1

Then ‖Π′
0v‖

′
N1

. m−1
1 , and Theorem 5 applies. The estimate on u1 implies:

(3.19) ‖u1‖δ . ε−g
(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ ≤ 1

It also implies an estimate in higher norm:

(3.20) ‖u1‖σ . ε−gΛ
ϑ
α
(σ−δ)

1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ . Λ

ϑ
α
(σ−δ)

1 .

3.3. Induction.

3.3.1. Finding uniform bounds. In addition to (α, ϑ, δ, ε, η) we are given β satisfying
relations (3.4) and (3.10) . We recall them here for the reader’s convenience. With
s1 ≥ s0 +max {m, ℓ} and δ > s1 + ℓ′ ,

σ > αβ + s1

β >
1

α
(σ − δ)

We also inherit Λ1 = Kε−η and u1 from the preceding section. Combining (3.10)
and (3.20), we immediately obtain the estimate

(3.21) ‖u1‖σ . ε−gΛβ
1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ . Λβ

1 .

Consider the sequences of integers Mn and Λn, n ≥ 1, defined by Λn := Λαn−1

1

and Mn := Λϑ
n. Let Πn := Π(Λn) , Π

′
n := Π′(Mn) , En := E(Λn) , E

′
n := E′(Mn) .

We will construct a sequence un ∈ En, n ≥ 1, starting from the initial point u1
we found in the preceding section. For all n ≥ 2 the remaining points should satisfy
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the following conditions:

Π′
nFε (un) = Π′

n−1v(3.22)

‖un − un−1‖s0 ≤ ε−gΛαβ−σ+s0
n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖′δ(3.23)

‖un − un−1‖σ ≤ ε−gΛαβ
n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ(3.24)

We proceed by induction. Suppose we have found u2, ..., un−1 satisfying these
conditions. We want to construct un.

Lemma 4. Let us impose K ≥ 2. For all t with s0 ≤ t < σ − αβ, and all i with
2 ≤ i ≤ n− 1, we have:

n−1
∑

i=2

‖ui − ui−1‖t ≤ ε−g
(

M ℓ′

1 + Λℓ
1

)

Σ (t) ‖v‖′δ

where Σ (t) is finite and independent of n , ε.

Proof. By the interpolation formula,

‖ui − ui−1‖t ≤ ε−g Λαβ−σ+t
i−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ

for all 2 ≤ i ≤ n . Since Λ1 = Kε−η ≥ 2, we have:

n−1
∑

i=2

‖ui − ui−1‖t ≤ ε−g
(

M ℓ′

1 + Λℓ
1

)

∞
∑

i=2

Λαβ−σ+t
i−1 ‖v‖

′
δ

≤ ε−g
(

M ℓ′

1 + Λℓ
1

)

∞
∑

j=0

2α
j(αβ−σ+t)

‖v‖
′
δ

�

By (3.4) we can take t = s1, and we find a uniform bound for un−1 in the
s1-norm, namely:

‖un−1‖s1 ≤ ‖u1‖δ +

n−1
∑

i=2

‖ui − ui−1‖s1

. ε−g
(

M ℓ′

1 + Λℓ
1

)

(1 + Σ(s1)) ‖v‖
′
δ

. ε−g
(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ

In particular, we will have ‖un−1‖s1 ≤ 1 if ‖v‖
′
δ . εg

(

M ℓ′

1 + Λℓ
1

)−1

, so the tame

estimates hold at un−1.

Similarly, if ‖v‖
′
δ . εg

(

M ℓ′

1 + Λℓ
1

)−1

we find a uniform bound in the σ-norm.

We have:

‖un−1‖σ ≤ ‖u1‖σ +

n−1
∑

i=2

‖ui − ui−1‖σ

and
n−1
∑

i=2

‖ui − ui−1‖σ . ε−g
(

M ℓ′

1 + Λℓ
1

)

n−1
∑

i=1

Λβ
i ‖v‖

′
δ . ε−g

(

M ℓ′

1 + Λℓ
1

)

Λβ
n−1 ‖v‖

′
δ
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so, combining this with (3.21), we get:

(3.25) ‖un−1‖σ . ε−gΛβ
n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ . Λβ

n−1 .

3.3.2. Setting up the induction step.

Suppose, as above, that ‖v‖′δ . εg
(

M ℓ′

1 + Λℓ
1

)−1

and that u2, ..., un−1 have been

found. We have seen that ‖un−1‖s1 ≤ 1, so that the tame estimates hold at un−1,

and we also have ‖un−1‖σ . Λβ
n−1 . We want to find un satisfying (3.22), (3.23)

and (3.24). Since Π′
n−1Fε (un) = Π′

n−2v , we rewrite the latter equation as follows:

(3.26) Π′
n (Fε (un)− Fε (un−1)) +

(

Π′
n −Π′

n−1

)

Fε (un−1) =
(

Π′
n−1 −Π′

n−2

)

v

Define a map fn : En → E′
n with fn (0) = 0 by:

fn (z) = Π′
n (Fε (un−1 + z)− Fε (un−1))

Equation (3.26) can be rewritten as follows:

fn (z) = ∆nv + en(3.27)

∆nv = Π′
n−1

(

1−Π′
n−2

)

v(3.28)

en = −Π′
n

(

1−Π′
n−1

)

Fε (un−1)(3.29)

We choose the following norms on En and E′
n:

‖x‖Nn
= ‖x‖s0 + Λ−σ+s0

n−1 ‖x‖σ

‖y‖
′
Nn

= ‖y‖
′
s0

+ Λ−σ+s0
n−1 ‖y‖

′
σ

Endowed with these norms, En and E′
n are Banach spaces. We shall use the

notation |||L |||
Nn

for the operator norm of any linear continuous map L from the
Banach space E′

n to a Banach space that can be either En or E′
n.

Lemma 5. If 0 ≤ t ≤ σ − s0, then:

‖x‖s0+t . Λt
n−1 ‖x‖Nn

‖y‖
′
s0+t . Λt

n−1 ‖y‖
′
Nn

Proof. Use the interpolation inequality. �

We will solve the system (3.27), (3.28), (3.29) by applying the local surjection
theorem to fn on the ball BNn

(0, rn) ⊂ En where:

(3.30) rn = ε−gΛαβ−σ+s0
n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ

Note that if the solution z belongs to BNn
(0, rn), then

‖z‖s0 ≤ ε−gΛαβ−σ+s0
n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ and ‖z‖σ ≤ ε−gΛαβ

n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ .

In other words, un = un−1+z satisfies (3.23) and (3.24), so that the induction step
is proved.

We begin by showing that Dfn (z) has a right inverse.
Note that, if we assume that DFε is tame Galerkin right-invertible, we can take

Mn = Λn, and the result of the next subsection is obvious. This subsection is
only useful if we assume that DF is tame right-invertible but not tame Galerkin
right-invertible.
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3.3.3. Dfn(z) has a right inverse for ‖z‖Nn
≤ rn . In this subsection, we use con-

ditions (3.5) and (3.6). We recall them for the reader’s convenience:

(1 + α− ϑα) (σ − s0) > αβ + α (m+ ℓ) + ℓ′ +
g

η

(1− ϑ) (σ − s0) > m+ ϑℓ′ +
g

αη

Take now any z ∈ BNn
(0, rn). Arguing as above, we find that if , then:

‖un−1 + z‖s1 ≤ 1(3.31)

‖un−1 + z‖σ . Λβ
n(3.32)

By (3.31) the tame estimates hold on z ∈ BNn
(0, rn).

Lemma 6. Take Λ1 = Kε−η with K > 1 chosen large enough, independently of n
and ε ∈ (0, 1]. Then, for all z ∈ BNn

(0, rn):

|||Π′
nDFε (un−1 + z) (1− Πn)Lε (un−1 + z) |||

Nn
≤

1

2

Proof. We proceed as in the proof of Lemma 3. For k ∈ E′
n, we set

h = (1−Πn)Lε (un−1 + z) k .

We have:
‖h‖s0+m . Λ−σ+s0+m

n ‖Lε (un−1 + z) k‖σ
By (3.32) and the tame estimates for Lε, we get:

‖Lε (un−1 + z) k‖σ . ε−g
(

‖un−1 + z‖σ+ℓ ‖k‖
′
s0+ℓ′ + ‖k‖′σ+ℓ′

)

. ε−g
(

Λβ+ℓ
n Λℓ′

n−1 +M l′

nΛ
σ−s0
n−1

)

‖k‖
′
Nn

(3.33)

where we have used Lemma 5. Substituting in the preceding formula, we get:

‖h‖s0+m . ε−g
(

Λβ+ℓ−σ+s0+m
n Λl′

n−1 +M ℓ′

n Λ
−(α−1)(σ−s0)+αm
n−1

)

‖k‖
′
Nn

By the tame estimate (2.4), we have:

‖Π′
nDFε (un−1 + z)h‖

′
s0

. ‖h‖s0+m

From this it follows that:

‖Π′
nDFε (un−1 + z)h‖

′
σ .Mσ−s0

n ‖h‖s0+m

Hence:

‖Π′
nDFε (un−1 + z)h‖

′
Nn

.
(

1 + Λ−σ+s0
n−1 Mσ−s0

n

)

‖h‖s0+m

We have Λ−σ+s0
n−1 Mσ−s0

n . Λ
(αϑ−1)(σ−s0)
n−1 . Since αϑ > 1, the dominant term in

the parenthesis is the second one, and:

‖Π′
nDFε (un−1 + z)h‖Nn

. Λ−σ+s0
n−1 Mσ−s0

n ‖h‖s0+m

. ε−gMσ−s0
n

(

Λ
α(β+ℓ−σ+s0+m)+ℓ′−σ+s0
n−1 +M ℓ′

n Λ
−α(σ−s0)+αm
n−1

)

‖k‖
′
Nn

From (3.5) and (3.6), it follows that the right-hand side is a decreasing function
of n. To check that it is less than 1/2 for all n ≥ 2, it is enough to check it for
n = 2. Since Λ1 = Kε−η, substituting in the right-hand side, we get:
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‖Π′
nDFε (un−1 + z)h‖Nn

.
(

K−min{C1,C2}
)αn−2

(

εmin{C1,C2}−α2−ng/η
)ηαn−2

‖k‖
′
Nn

with

C1 = −α(β + ℓ+m)− ℓ′ + (1 + α− αϑ) (σ − s0)

C2 = α ((1− ϑ)(σ − s0)− ϑℓ′ −m)

By (3.5) and (3.6), both exponents C1 and C2 are larger than g/η. As a conse-
quence, ‖Π′

nDFε (un−1 + z)h‖Nn
≤ 1

2 ‖k‖
′
Nn

for K chosen large enough, indepen-
dently of n and 0 < ε ≤ 1. �

Define Ln (z) = ΠnLε (un−1 + z)|E′
n

. Arguing as in subsection 3.2.2, we find

that the Neumann series
∑

i≥0

(

IE′
n
−Dfn (u)Ln (u)

)i
converges in operator norm.

Its sum is Sn(u) = (Dfn(u)Ln(u))
−1 and it has operator norm at most 2. Then

Tn (u) := Ln(u)Sn(u) is a right inverse ofDfn (u) , with the estimate |||Tn (u) |||Nn
≤

2 ||| Ln (u) |||Nn
.

We have already derived estimate (3.33) which immediately implies:

‖Ln (z)k‖σ . ε−gΛσ−s0
n−1

(

Λβ+ℓ
n Λ−σ+s0+ℓ′

n−1 +M ℓ′

n

)

‖k‖
′
Nn

From the tame estimates and Lemma 5, we also have:

‖Ln (z)k‖s0 . ε−g ‖k‖
′
s0+ℓ′ . ε−gΛℓ′

n−1 ‖k‖
′
Nn

Since αϑ > 1, we have Λℓ′

n−1 . M ℓ′

n . So the two preceding estimates can be
combined, and we get the final estimate for the right inverse in operator norm:

(3.34) |||Tn (z) |||Nn
. ε−g

(

Λβ+ℓ
n Λ−σ+s0+ℓ′

n−1 +M ℓ′

n

)

3.3.4. Finding un. In this subsection, we use relations (3.4),(3.7), (3.8) and (3.9).
We recall them for the reader’s convenience:

σ > αβ + s1

δ > s0 +
α

ϑ
(σ − s0 − αβ + ℓ”)

(α− 1)β > (1− ϑ) (σ − s0) + ϑm+ ℓ” +
g

η

ℓ” = max {(α− 1) ℓ+ ℓ′, αϑℓ′}

Let us go back to (3.27). By Theorem 5 to solve Π′
nfn (z) = ∆nv + en with

z ∈ BNn
(0, rn) it is enough that:

(3.35) |||Tn (z) |||Nn

(

‖∆nv‖Nn
+ ‖en‖Nn

)

≤ rn

Here rn is given by (3.30). We can estimate |||Tn (z) |||Nn
using (3.34). We need

to estimate ‖∆nv‖Nn
and ‖en‖Nn

.

From (3.28) we have:

‖∆v‖
′
s0

.M s0−δ
n−2 ‖v‖

′
δ

‖∆v‖
′
σ .Mσ−δ

n−1 ‖v‖
′
δ

‖∆v‖
′
Nn

. max
{

M s0−δ
n−2 ,Λ

−σ+s0
n−1 Mσ−δ

n−1

}

‖v‖
′
δ
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An easy calculation yields:

σ − s0 − ϑ(σ − δ) +
ϑ

α
(s0 − δ) = (1− ϑ)(σ − δ) + (1−

ϑ

α
)(δ − s0)

Since s0 < δ < σ and ϑ < 1 < α, the two terms on the right-hand side are
positive, so Λ−σ+s0

n−1 Mσ−δ
n−1 .M s0−δ

n−2 . It follows that:

(3.36) ‖∆v‖′Nn
.M s0−δ

n−2 ‖v‖′δ

From (3.29), we derive:

‖en‖
′
s0

.M−σ+m+s0
n−1 ‖en‖

′
σ−m

By Lemma 2, ‖Fε (un−1)‖σ−m . ‖un−1‖σ . So, remembering (3.29) and (3.25),
we get:

‖en‖
′
s0

.M−σ+m+s0
n−1 ‖un−1‖σ

. ε−gM−σ+m+s0
n−1 Λβ

n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ

Similarly,

‖en‖
′
σ . ‖un−1‖σ+m . Λm

n−1 ‖un−1‖σ

. ε−gΛβ+m
n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖
′
δ

Finally, since Mn−1 < Λn−1 and σ > m+ s0 , we get:

(3.37) ‖en‖
′
Nn

. ε−gΛβ
n−1M

−σ+m+s0
n−1

(

M ℓ′

1 + Λℓ
1

)

‖v‖′δ

Substituting (3.34), (3.30), (3.36), (3.37) in (3.35), we get the following sufficient
condition:

(3.38)
(

Λβ+ℓ
n Λ−σ+s0+ℓ′

n−1 +M ℓ′

n

)(

M s0−δ
n−2 + ε−gΛβ

n−1M
−σ+m+s0
n−1

)

. Λαβ−σ+s0
n−1

We estimate both sides separately. Remembering that Mn−i = (Λn−1)
α1−iϑ

and

Λn−1 = (Kε−η)
αn−2

, we find
(

Λβ+ℓ
n Λ−σ+s0+ℓ′

n−1 +M ℓ′

n

)(

M s0−δ
n−2 + ε−gΛβ

n−1M
−σ+m+s0
n−1

)

.
(

ε−ηαn−2
)max{C3,C4}+max{C5,C6}

and

Λαβ−σ+s0
n−1 &

(

ε−ηαn−2
)C7

with

C3 :=α(β + ℓ)− σ + s0 + ℓ′

C4 :=αϑℓ′

C5 :=ϑα−1(s0 − δ)

C6 :=g/η + β + ϑ(−σ +m+ s0)

C7 :=αβ − σ + s0

By (3.4), we have σ − αβ > s1 > s0 +max {m, ℓ}. It follows that:

C3 < (α− 1) ℓ+ ℓ′ .
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So, defining ℓ” = max {(α− 1) ℓ+ ℓ′, αϑℓ′} as in (3.9), we see that

max{C3, C4}+max{C5, C6} ≤ max{ℓ” + C5, ℓ” + C6}

So condition (3.38) is implied by the inequalities ℓ”+C5 < C7 and ℓ”+C6 < C7,
which are the same as conditions (3.7) and (3.8). So inequality (3.35) holds, and
the induction holds by Theorem 5

3.4. End of proof. First of all, for the above construction to work, the only con-
straint on S is S > σ, and Lemma 1 gives us the estimate σ < ζg/η. The con-
stant η is only constrained by condition (3.1), and we can choose, for instance,

η = g′−g
2max{ϑℓ′,ℓ} . So we only need a condition on S of the form S ≥ S0 with

S0 = O( 1
g′−g ) as g′ → g , all the other parameters being fixed.

Let us now check that the estimate ‖v‖
′
δ . εg

′

is sufficient for the above con-

struction. In (3.18) we made the assumption ‖v‖′δ . εg
(

Λℓ
1 +M ℓ′

1

)−1

on v , and we

have M1 . ε−ϑη , Λ1 . ε−η, hence
(

Λℓ
1 +M ℓ′

1

)

. ε−ηmax{ϑℓ′,ℓ} . So the condition

‖v‖′δ . εg+ηmax{ϑℓ′,ℓ} guarantees the existence of the sequence (un). But (3.1)
may be rewritten in the form

g + ηmax {ϑℓ′, ℓ} < g′ ,

so the preceding condition is implied by the estimate ‖v‖
′
δ . εg

′

, which is thus
sufficient, as desired.

Now we can translate the symbol . into more explicit estimates. Choosing

r > 0 small enough, our construction gives, for every v ∈ Wδ with ‖v‖
′
δ ≤ r εg

′

a

sequence un, n ≥ 1, such that un ∈ En , ‖un‖s1 ≤ r−1ε−g′

‖v‖′δ ≤ 1 , and

Π′
nFε (un) = Π′

n−1v .

It follows from Lemma 4 that for any t < σ−αβ , (un) is a Cauchy sequence for
the ‖ · ‖t . We recall that, by condition (3.4), s1 < σ − αβ. So we can choose t1 ∈

(s1, σ−αβ) . Then (un) converges to some uε in Vt1 with ‖uε‖s1 ≤ r−1ε−g′

‖v‖′δ ≤ 1 .

Since t1 ≥ s0 +m, the map Fε is continuous from the t1-norm to the (t1 −m)-
norm, so Fε (un) converges to Fε (uε) inWt1−m . Then Fε (un) is a bounded sequence
in Wt1−m, and t1 −m > s0. So, using the approximation estimate (2.2), we find
that ‖(1−Π′

n)Fε (un) ‖s0 → 0 , and finally ‖Π′
nFε (un)−Fε(uε)‖s0 → 0 as n→ ∞ .

On the right-hand side, using (2.2) again, we find that Π′
n−1v converges to v in

Ws0 , since δ > s0 .

We conclude that Fε (uε) = v, as desired, and this ends the proof of Theorem 3.

4. An application of the singular perturbation theorem

4.1. The result. In this section, we consider a Cauchy problem for nonlinear
Schrödinger systems arising in nonlinear optics, a question recently studied by
Métivier-Rauch [21] and Texier-Zumbrun [26]. Métivier-Rauch proved the exis-
tence of local in time solutions, with an existence time T converging to 0 when the
Hs norm of the initial datum goes to infinity. Texier-Zumbrun, thanks to their ver-
sion of the Nash-Moser theorem adapted to singular perturbation problems, were
able to find a uniform lower bound on T for certain highly concentrated initial data.
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TheHs norm of these initial data could go to infinity. By applying our "semiglobal"
version of the Nash-Moser theorem, we are able to extend Texier-Zumbrun’s result
to even larger initial data. In the sequel we follow closely their exposition, but some
parameters are named differently to avoid confusions with our other notations.

The problem takes the following form:

(4.1)

{

∂tu+ iA(∂x)u = B(u, ∂x)u,
u(0, x) = εκ (aε(x), āε(x))

with u(t, x) = (ψ(t, x), ψ̄(t, x)) ∈ C
2n, (t, x) ∈ [0, T ]×R

d,

A(∂x) = diag(λ1, · · · , λn,−λ1, · · · ,−λn)∆x

and

B =

(

B C
C̄ B̄

)

The coefficients bjj′ , cjj′ of the n× n matrices B, C are first-order operators with

smooth coefficients: bjj′ =
∑d

k=1 bkjj′ (u)∂xk
, cjj′ =

∑d
k=1 ckjj′ (u)∂xk

, with bkjj′

and ckjj′ smooth complex-valued functions of u satisfying, for some integer p ≥ 2,
some C > 0, all 0 ≤ |α| ≤ p and all u = (ψ, ψ̄) ∈ C

2n:

|∂αbkjj′ (u)|+ |∂αckjj′ (u)| ≤ C|u|p−|α| .

Moreover, we assume that the following “transparency” conditions hold: the func-
tions bkjj are real-valued, the coefficients λj are real and pairwise distinct, and for
any j, j′ such that λj + λj′ = 0, cjj′ = cj′j .

We consider initial data of the form εκ (aε(x), āε(x)) with aε(x) = a1(x/ε) where
0 < ε ≤ 1, a1 ∈ HS(Rd) for some S large enough and ‖a1‖

HS
small enough.

Our goal is to prove that the Cauchy problem has a solution on [0, T ]×R
d for

all 0 < ε ≤ 1 , with T > 0 independent of ε. Texier-Zumbrun obtain existence
and uniqueness of the solution, under some conditions on κ, which should be large
enough. This corresponds to a smallness condition on the initial datum when ε
approaches zero. Our local surjection theorem only provides existence, but our
condition on κ is less restrictive, so our initial datum is allowed to be larger. Note
that, once existence is proved, uniqueness is easily obtained for this Cauchy prob-
lem, indeed local-in-time uniqueness implies global-in-time uniqueness. Our result
is the following:

Theorem 6. Under the above assumptions and notations, let us impose the addi-
tional condition

(4.2) κ >
d

2(p− 1)
.

Let s1 >
d
2 + 4 . If 0 < ε ≤ 1, a1 ∈ HS(Rd) for S large enough, and ‖a1‖HS is

small enough, then the Cauchy problem (4.1) has a unique solution in the functional
space C1

(

[0, T ], Hs1−2(Rd)
)

∩ C0
(

[0, T ], Hs1(Rd)
)

.

Metivier-Rauch already provide existence for a fixed positive T when κ ≥ 1 . So
we obtain something new in comparison with them when d

2
1

p−1 < 1 , that is, when

p > 1 +
d

2
.
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Let us now compare our results with those of Texier-Zumbrun [26]. In order to do
so, we consider the same particular values as in their Remark 4.7 and Examples
4.8, 4.9 pages 517-518. Let us illustrate this in 2 and 3 space dimensions.

In two space dimensions, d = 2 (Example 4.8 in [26]):
Our condition becomes 1

p−1 < κ. In their paper, Texier and Zumbrun need the

stronger condition 9
2(p+1) < κ.

In three space dimensions, d = 3 (Example 4.9 in [26]):
Our condition becomes 3

2(p−1) < κ. In their paper, Texier-Zumbrun need the

stronger condition 4
p+1 < κ.

In both cases, we improve over Métivier-Rauch when p ≥ 3, while Texier-
Zumbrun need p ≥ 4.

Remark. After reading our paper, Baldi and Haus [6] have been able to relax
even further the condition on κ, based on their version [5] of the classical Newton
scheme in the spirit of Hörmander. A key point in their proof is a clever modifica-
tion of the norms considered by Texier-Zumbrun, allowing better C2 estimates on
the functional. They also explain that their approach can be extended to other C2

functionals consisting of a linear term perturbed by a nonlinear term of homogeneity
at least p+ 1. Our abstract theorem, however, seems more general since we do not
need such a structure.

4.2. Proof of Theorem 6. We have to show that our Corollary 4 applies. Our
functional setting is the same as in [26], with slightly different notations.

We introduce the norm ‖f‖Hs
ε (R

d) = ‖(−ε2∆+ 1)s/2f‖L2(Rd), and we take

Vs = C1([0, T ], Hs−2(Rd)) ∩ C0([0, T ], Hs(Rd)) ,

|u|s = sup
0≤t≤T

{

‖ε2∂tu(t, ·)‖Hs−2
ε (Rd) + ‖u(t, ·)‖Hs

ε (R
d)

}

and

Ws = C0([0, T ], Hs(Rd))×Hs+2(Rd) ,

|(v1, v2)|
′
s = sup

0≤t≤T

{

‖v1(t, ·)‖Hs
ε (R

d)

}

+ ‖v2‖Hs+2
ε (Rd)

Our projectors are

ΠΛu = F−1
x (1|εξ|≤ΛFxu(t, ξ)) ,

Π′
Λ(v1, v2) =

(

F−1
x (1|εξ|≤ΛFxv1(t, ξ)),F

−1(1|εξ|≤ΛFv2(ξ))
)

We take

Φε(u) =
(

ε2∂tu+ iA(ε∂x)u− εB(u, ε∂x)u , u(0, ·)− εκ(aε, āε)
)

and

aε(t, x) = εκ(exp(−itA(∂x))aε, exp(itA(∂x))āε) .

We have Φε(aε) = (−εB(aε, ε∂x)aε, 0). A solution of the functional equation
Φε(u) = 0 is a solution on [0, T ]×R

d of the Cauchy problem 4.1.

Our Corollary 4 requires a direct estimate (2.9) on DΦε and an estimate (2.11)
on the right-inverse Lε.
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Take s0 > d/2 + 2, m = 2, γ = dp
2(p−1) and S large. Since κ > d

2(p−1) , we have

an estimate of the form |aε|S . εγ‖a1‖HS , so, taking ‖a1‖HS small, we can ensure
that aε ∈ BS(ε

γ). Moreover the inequality κ > d
2(p−1) implies the condition

1−
dp

2
+ pγ ≥ 0 .

So we see that the assumptions of Lemma 4.4 in [26] are satisfied by the parameters
γ0 = γ1 = γ (note that our exponent p is denoted ℓ in [26]). The direct estimate
(2.9) thus follows from Lemma 4.4 in [26]. Note that Lemma 4.4 of [26] also gives
an estimate on the second derivative of Φε(·), but we do not need such an estimate.

Choosing, in addition, ℓ = 2, ℓ′ = 0, g = 2, our inverse estimate (2.11) follows
from from Lemma 4.5 in [26].

To summarize, the assumptions (2.9, 2.10, 2.11) of our Corollary 4 are satisfied
for s0 > d/2, m = 2, γ = p

p−1
d
2 , g = 2, ℓ = 2, ℓ′ = 0.

Moreover, in [26], Proof of Theorem 4.6, one finds an estimate which can be
written in the form

|Φε(aε)|
′
s1−1 ≤ r ε1+κ(p+1)+d/2

where r is small when ‖a1‖Hs1 is small.

So, using our Corollary 4, taking S large enough we can solve the equation
Φε(u) = 0 in Xs1 under the additional condition 1+ κ(p+1)+ d/2 > γ + g , which
can be rewritten as follows:

κ >
1

p+ 1
+

d

2(p+ 1)(p− 1)
.

Since d ≥ 2, this inequality is a consequence of our assumption κ ≥ d
2(p−1) .

So our Corollary 4 implies the existence of a solution to the Cauchy problem
(4.1). The uniqueness of this solution comes from the local-in-time uniqueness
of solutions to the Cauchy problem. This proves Theorem 6 as a consequence of
Corollary 4.

Remark. In the examples 4.8 and 4.9 of [26], Texier and Zumbrun also study
the case of oscillating initial data, i.e. aε = a(x)eix·ξ0/ε, and in the first submitted
version of this paper we considered it as well. However, a referee pointed out to
us that the corresponding statements were not fully justified in [26]. Indeed, in
the proof of their Theorem 4.6, Texier and Zumbrun have to invert the linearized
functional DΦε(u) for u in a neighborhood of the function aε, denoted af in their
paper. For this purpose, it seems that they need the norm of their function af to
be controlled by εγ. This condition appears in their Remark 2.14 and their Lemma
4.5, but not in the statement of their Theorem 4.6. This additional constraint does
not affect their results for concentrating initial data in Examples 4.8, 4.9. But in
the oscillating case, their statements seem overly optimistic. We did not want to
investigate further that issue, this is why we only deal with the concentrating case.
Note, however, that this difficulty with the oscillating case is overcome in the recent
work [6], thanks to improved norms and estimates.
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5. Conclusion

The purpose of this paper has been to introduce a new algorithm into the "hard"
inverse function theorem, where both DF (u) and its right inverse L (u) lose deriva-
tives, in order to improve its range of validity. To highlight this improvement, we
have considered singular perturbation problems with loss of derivatives. We have
shown that, on the specific example of a Schrödinger-type system of PDEs aris-
ing from nonlinear optics, our method leads to substantial improvements of known
results. We believe that our approach has the potential of improving the known
estimates in many other “hard" inversion problems.

In the statement and proof of our abstract theorem, our main focus has been the
existence of u solving F (u) = v in the case when S is large and the regularity of v
is as small as possible. We haven’t tried to give an explicit bound on S, but with
some additional work, it can be done. In an earlier version [13] of this paper, the
reader will find a study of the intermediate case of a tame Galerkin right-invertible
differential DF , with precise estimates on the parameter S depending on the loss
of regularity of the right-inverse, in the special case s0 = m = 0 and ℓ = ℓ′.
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