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Abstract – Monitoring the numbers of shad (Alosa fallax rhodanensis, Rhodanian twaite shad) at their reproduc-
tion sites in the Rhone basin is an important step for measuring inter-annual changes in their population size. Manual 
counting involves listening to detect the sounds of splashes produced by shad during spawning. This is a costly oper-
ation, requiring high resource levels under difficult working conditions. In order to automatically estimate the number 
of migrating shad in rivers, an acoustic signal analysis method is proposed. It is based on short-term spectral analysis, 
combined with a Gaussian mixture model. Implemented on a smartphone, the application provides a number of advan-
tages, such as mobility, audio recording, spawning detection and counting, and means of communication. The results 
obtained are very promising, and the deployment of such a device is expected to be of great help for counting shads and 
locating their spawning sites.
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1 Introduction

The twaite shad (Alosa fallax rhodanensis, Rhodanian
twaite shad) is a migratory fish species living primarily in
the sea which swims upstream in rivers in spring to spawn.
In Europe, this species has declined considerably since the
mid-20th century due to overfishing, pollution and obstacles to
migration, and for this reason is now given considerable legal
protection (Kirchhofer et al. 2012). In France, the Committee
for the Management of Migratory Fish (COGEPOMI) in the
Rhone-Mediterranean basin has undertaken a series of actions
aimed at restoring the presence of migratory species in rivers
(Lebel et al. 2007). In particular, monitoring the numbers of
shad at their spawning sites in the Rhone basin is an impor-
tant step for measuring inter-annual changes in their popula-
tion size. The monitoring provides information on the vulner-
ability of the species, threatened by dams, pollution and the
deterioration of spawning grounds, and also assesses the effec-
tiveness of structures such as sluices and fish passes, created
to facilitate their annual upstream migration.

Shad spawn at night close to the water surface, turning
quickly and noisily at the time of spawning and emitting a
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characteristic sound lasting a few seconds known as a “spawn-
ing splash”. The current method is manual counting from the
river bank by an observer who listens and counts the splashes
(Lebel et al. 2001; Chanseau et al. 2004).

This manual counting method is highly restrictive (incon-
venient times, tedious work) and costly in terms of human re-
sources. Recently, thanks to technological advances in the field
of multimedia, particularly audio media, counting devices us-
ing microphones and portable recorders have been developed.
However, they still require considerable intervention on the
part of the operator, including installation, monitoring of the
equipment, shut down, listening to the recordings, splash iden-
tification and counting.

To make further progress, the COGEPOMI has set up a
study to investigate the possibility of automating shad moni-
toring by means of audio recordings. The objective of the first
4-year study (2004 to 2008) was to design a field device for
recording and automatically counting the audio signals of shad
splashes. In a second phase (2010–2014), a prototype based
on a smartphone application providing shad counts online was
developed and deployed, and its performances evaluated. The
first advantage of this approach is improved count accuracy,
as automatic recordings can cover the whole spawning period.
Secondly, it reduces the tediousness of nocturnal monitoring
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Fig. 1. Smartphone user interface developed to automatically count shad spawning splashes.

tasks and considerably decreases costs in terms of human re-
sources. Thirdly, it enables the monitoring to be systematised
and performed on a regular basis. Finally, the equipment can
be used to search for new shad spawning sites. The work pre-
sented in this article describes the technological choices and
the methods involved in the design of a portable monitoring
device, from audio capture to shad splash counting.

Mobile technology has been a major component of the de-
sign process. Smartphones can now combine a large number of
functions in a few square centimetres, including audio record-
ing, high storage capacity, power autonomy, wireless commu-
nication and GPS. The idea was to benefit from the smart-
phone’s range of features and high level of integration, rather
than to develop a new device from scratch.

Using a smartphone to replace experimental instrumenta-
tion also introduces a number of limitations: limited character-
istics of the audio sensor, insufficient power autonomy, and
poor computing capability. In addition, as a new consumer
electronics device, smartphones are subject to rapid obsoles-
cence, which makes software development and maintenance
rather difficult.

2 Materials and methods

2.1 Motivation

Few studies have used acoustic records to monitor shad or
related species (allis shad, twaite shad, etc.), and even fewer
have carried out automatic recognition of acoustic signals.
Trouilhet et al. (1993) and Coustaux et al. (1994) trialled spec-
tral analysis and classification by neural networks. However,
the results showed a lack of robustness and excessive sensitiv-
ity to environmental noise.

The work presented here follows a different stepwise ap-
proach, guided by the following pragmatic considerations: (i)
Design of a mobile device, suitable for different field condi-
tions, as most spawning zones are difficult to access; (ii) cap-
ture and storage of good-quality audio recordings as a basic
function; and (iii) detection and counting of shad spawning
acts (SSAs) first to be used simply as an aid for manual count-
ing, then to be tested and improved before being implemented
on the portable device.

An overview of this work is presented in Diep et al. (2013),
with the principle of the method for detecting SSAs being

described in Diep et al. (2013). Details of the implementation
and further results are presented here.

2.2 Data acquisition

Various sensors were tested for this study, ranging from
simple recorder microphones to long-range microphones de-
signed for wildlife sound recording, including hydrophones
commonly used to listen to marine mammals. The Sony ECM
PP1C outdoor microphone was found to be a good com-
promise between acceptable performance in terms of range
and coverage of a spawning zone, and moderate size, being
equipped with a 17 cm diameter parabolic dish. Unfortunately,
Sony stopped manufacturing this microphone and a substitute
was created combining an Olympus ME52W microphone with
a 3D printed tailor-made parabolic dish.

A standard commercial smartphone was employed as a
recording device for the application. The Samsung GT-B7350
offers basic smartphone functions such as 3G cellphone ser-
vice, WiFi and Bluetooth communication, a micro SD mem-
ory card, and operates under Windows Mobile 6.5. To maintain
high audio quality, a sampling rate of 44 100 Hz was chosen.
To adapt the input and impedance level, an external preamp
was inserted between the microphone and the smartphone.

2.3 Smartphone application

A dedicated software application was developed to meet
the requirements of the device. Figure 1 shows various screen
shots of the software application. The smartphone application
has the following components and functionalities:

– Autonomy: an external battery was wired to attain at least
seven days of power autonomy, extendable with the addi-
tion of photovoltaic cells. Storage autonomy is about the
same with a 32 Gb SD card, and can easily be extended by
signal compression, e.g. MP3 (not tested for detection) or
by deletion of blank signals.

– Task scheduler: this component enables applications to
be started and stopped at pre-defined times. It allows the
smartphone to record for four hours each night for exam-
ple and remain on standby for the rest of the day.



Fig. 2. Signal amplitude and frequency spectrogram of a shad spawning act (SSA). Signal amplitude is expressed in Volts (V) and the spectro-
gram of PSD (Power Spectral Density) in decibels/Hertz (dB/Hz) at the sampling frequency of 44 100 Hz. PSD = 10 log10(P/P0), with power
P in V2/Hz and P0 = 1.

– Remote control via SMS: a functionality designed to mon-
itor the smartphone remotely, for example from the river
bank when the smartphone is mounted at the end of a pole
or a branch, or from any other location.

– Detection of SSAs: this functionality is implemented on
the smartphone and can be activated either online or offline
depending on processor load.

2.4 Detection of SSAs

Acoustic signals generated by shad spawning acts are
somewhat difficult to analyse and to properly discriminate
from other water sounds because of their non-stationary and
non-harmonic nature. Physically, they are produced by turbu-
lent flows which are very complicated to model. Water sounds
are mainly produced by air bubbles that are trapped in the wa-
ter and vibrate. Van Den Doel (2005), modelling isolated bub-
bles with a sound model, showed that numerical simulations
were able to reproduce different water sounds. Guyot et al.
(2013) used the same physical model to determine the time-
frequency localisation of water drops in a spectrogram and to
identify different water sounds in an indoor environment.

We used a Short-Term Fourier Transform (Rabiner and
Schafer 2010) to analyse spectrograms of SSAs (Fig. 2). Vi-
sual inspection of spectrograms of shad splashes indicates that
the spectra are located over a rather broad range of frequen-
cies, from 100 to 5000 Hz, and that no regular structures can
be identified. Instead, SSA sounds can be viewed as a set of
small clusters appearing irregularly in the time-frequency rep-
resentation (Fig. 3). Based on this observation, the proposed
SSA detection method consists of the following steps:

Feature extraction: the audio signal sampled at 44 100 Hz
is processed in frames of 93 ms each, which roughly cor-
responds to the width of a cluster. For each frame, the
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Fig. 3. Spectrogram (partial view, linear scale) of a shad spawning act
(SSA). Right hand scale for signal power (Volt2).

energy of the signal within the frame is computed using Fast
Fourier Transform (FFT) across 10 spectral bands covering
a frequency range from about 100 Hz to 5000 Hz on a log-
arithmic scale. The ten triangular filters are centred on 100,
274, 485, 742, 1055, 1435, 1899, 2426, 3149, and 3984 Hz,
corresponding to a linear progression on a mel scale (Fig. 4),
which is known as a perceptual scale adapted to human hearing
(Rabiner and Schafer 2010). The following standard formula
was employed to convert frequency ( f ) into mel scale (m):

m = 2595 log10

(
1 +

f
700

)
.
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Fig. 4. Bank of ten triangular spectral band filters corresponding to
a linear progression on a mel scale used for feature extraction of
the shad spawning act signal for each timeframe using Fast Fourier
Transform.

Classification: classification of signals in the acoustic do-
main was carried out using statistical methods such as hid-
den Markov models (HMM), artificial neural networks (NN)
or support vector machines (SVM), which are all super-
vised learning methods (Rabiner and Schafer 2010). In Diep
et al. (2013) an unsupervised classification method based on
a Gaussian Mixture Model (GMM) was preferred over super-
vised classification methods, to take into account the irregular-
ity and compound nature of the SSA sound signal. In a GMM,
data are generated by a mixture of Gaussian probability distri-
butions, where each distribution can be associated with a dif-
ferent cluster.

Filtering: an SSA is detected each time a frame of 93 ms
has been classified as such. A low pass filter is then necessary
to smooth the detection signal. The presence of an SSA is con-
firmed if the detection exceeds a given threshold θT for at least
two seconds, which is the generally accepted duration for an
actual spawning act.

Simplified SSA detection: in order to implement the detec-
tion method on a smartphone with limited computational ca-
pabilities, a simplified classification algorithm was chosen. We
considered the ten spectral components Ti (k), i = 1. . .10, ob-
tained for frame number k and forming vector T (k). We also
consider a set of spectral components S i, i = 1. . .10, extracted
from a data set only composed of shad splash signals. The S i
components can be calculated using a clustering method like
GMM, or more directly by a simple average. Then we form the
Euclidian distance D(k) between vectors T (k) and S

D(k) =

√∑
i

(Ti (k) − S i)2

and define the SSA detector as the result of the test: D(k) <
θS, where θS is the threshold corresponding to the radius of a
circle around the point defined by the vector S in the domain of

spectral components. Vector S is viewed as a spectral signature
of SSA, which can be pre-calculated by a learning method for
a data set with known SSA presence.

This simplified detector was implemented real-time in the
smartphone, the more critical part of the program code being
the computation of the FFT.

Thresholding

Briefly, parameterising the counting method mainly con-
sists in adjusting three types of thresholds. These are:

– θp, threshold for the minimum signal power, which limits
the analysis to signals having sufficient power to be distin-
guished from ambient noise;

– θs, threshold for the maximum spectral distance, which se-
lects signals in a frequency neighbourhood of an SSA;

– θt, threshold for the minimum duration of a filtered signal,
with signals exceeding this threshold time duration being
identified as SSAs.

The first threshold is linked to the instantaneous signal power,
or signal energy over a timeframe. Spectral components T (k)
must first be normalised (i.e. divided) by the instantaneous sig-
nal power, so as to be independent from the amplitude of the
received signal. This normalisation enables adaptation and cor-
rect identification of SSA signals over a wide range, as the sig-
nal power roughly varies in inverse proportion to the distance
between the sound source and the receiver. However, signals
of low amplitude may be confused with background noise, and
thus have to be eliminated using this threshold θp, expressed in
decibels (dB).

The second threshold θs was mentioned above. It defines a
basin of attraction around the spectral signature S characteris-
ing an SSA and acts as a test of similarity. The current piece
of signal is identified as SSA if its spectral composition T (k)
is close enough to S . As T (k) and S are normalised vectors, θs
is a dimensionless quantity between 0 and 1.

Finally, the threshold θt acts upon the rate of the similarity
test, i.e. the signal obtained after detection, and smoothed over
time by low-pass filtering. It enables the elimination of short
splashes, which frequently occur in turbulent river flows. θt is
a dimensionless number between 0 and 1.

2.5 Evaluation

To evaluate the efficiency of the SSA detection algorithm,
we compared counts obtained by manual and automatic de-
tection. Signal segments associated with SSAs were annotated
manually and automatically, and the agreement was reported
in a confusion matrix.

As SSAs were only rare events in the case study records,
true negative cases were not considered, and three global per-
formance indicators were calculated:

precision: Pr = T P
T P+FP ; recall: Re = T P

T P+FN ; F-score:
F = 2 Pr ∗Re

Pr+Re , with TP true positive, FP false positive and FN
false negative automatic detections of SSAs. The F-score is
the harmonic mean of precision and recall and represents a
trade-off between false detections and non-detections.
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Fig. 5. F-score classification performance results of shad spawning acts recorded in the Vidourle river on 28/5/2015 for different threshold
values (θp minimum signal power; θs maximum spectral distance; θt minimum duration of filtered signal). The scale for F-score values ranges
from high (red) to low (blue) with maximum indicated by *.

Table 1. Case study information for the Vidourle river, number of shad spawning acts from manual counting and automatic detection, and
performance measures for automatic detection compared to manual counting. Threshold values used: θp = 4 dB; θs = 0.23; θt = 0.05 (see text
for explanation).

Date Duration Manual counting Automatic counting True positive False positive False negative Precision Recall F-score

2015/05/28 3h55′ 22 21 14 7 8 0.667 0.636 0.651

2015/05/30 3h30′ 3 2 1 1 2 0.500 0.333 0.400

2015/06/01 3h30′ 6 8 5 3 1 0.625 0.833 0.714

2015/06/03 3h47′ 5 6 5 1 0 0.838 1.000 0.909

All 36 37 25 12 11 0.676 0.694 0.685

2.6 Case study

The spawning ground for which the test data set was col-
lected is situated in Saint-Laurent-d’Aigouze, on the Vidourle
river, a small Mediterranean river. The spawning period usu-
ally lasts about eight weeks, from the beginning of April to the
beginning of June. Manual counting of shad splashes started
in 2008. An average of 10 to 50 spawning acts were recorded
per night, with differences between years.

The first tests of the prototype methods began in 2012, but
it was only in 2015 that all problems were corrected. The cur-
rent enhanced smartphone fulfils all basic functionalities such
as recording audio signals at predefined times, detecting SSAs
and communicating via SMS.

Initially, real-time detection of SSAs with the smartphone
was tested using predefined thresholds, which were derived
from previous experiments. Unfortunately, the results varied
from day to day, depending on conditions. Thus, optimal
threshold values seem to depend on the layout of the instal-
lation, e.g. position and orientation of the sensor, and site con-
ditions, such as spawning site configuration, hydrological or
weather conditions, and external sources of noise.

To improve robustness of the method and define guidelines
for choosing the threshold values, we carried out an evaluation
of different threshold values using previously recorded data.
Figure 5 shows an example of the F-score evaluation results
obtained for different threshold values {θp, θs, θt}. This exer-
cise enabled us to determine a best set of threshold values and
to gain insights into the sensitivity of the method to threshold
values.

3 Results and discussion

The results for the comparison of manual and automatic
SSA detections for the Vidourle river case study are shown
in Table 1. Manual counting was carried out through precise
marking of SSA signals using Audacity software (available at
www.audacityteam.org). The start and end times of each SSA
could thus be accurately compared and matched with the auto-
matic detections. The training data used for defining the spec-
tral signature S were recorded on the same spawning ground
in 2014 using the same device.

The automatic SSA detection had an F-score of 68%. This
score can be viewed as relatively good, considering the noise
level and the other sounds present on the records. However, it
was regrettable that there were so few SSAs, which prevented
us from having statistically significant results.

To obtain more data, we complemented this case study
with records coming from other spawning sites, located on
the western French rivers Loire and Charente. The results are
shown in Table 2, with new tuning of the three thresholds ac-
cording to the same procedure. Surprisingly, the performance
of the automatic detection method was better than for the
Vidourle river case study, with an F-score of 88%, although
the data were produced using different recording devices, and
even the sub-species under study were different (allis shad in-
stead of twaite shad).

Bearing in mind the objective of developing a small, hand-
held device such as a smartphone, the detection method was
oriented towards a simple algorithm based on a filter bank.
A brief comparison with an SVM classifier based on a kernel
of radial basis functions (Temko et al. 2006) showed that the
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Table 2. Additional validation data from the Loire and Charente rivers, number of shad spawning acts from manual counting and automatic
detection, and performance measures for automatic detection compared to manual counting. See text for explanation of thresholds.

Site Date Duration Manual Automatic True FFalse FFalse Precision Recall F-score
Threshold

counting counting positive postivie negative θp θs θt
Loire 2012/05/29 38′ 19 19 17 2 2 0.895 0.895 0.895 7 0.27 0.04
Charente Crouin 2009/05/08 30′ 56 50 47 3 9 0.940 0.839 0.887 5 0.18 0.05
Charente La Baine 2013/05/16 1h30′ 172 184 155 29 14 0.842 0.919 0.879 5 0.20 0.08

results are very similar (F-score of 63%). Furthermore, using
cross-validation with different partitions between training data
and test data, we found that our method seems to be more ro-
bust, giving relatively good results with totally new data, con-
trary to SVM.

Detecting and counting the spawning acts of shads is a
challenging issue, which to our knowledge has not yet received
satisfactory solutions. The proposed method is based on sim-
ple spectral decomposition and filtering. It yielded relatively
good results when evaluated offline with recorded data and
controlled with a suitable set of parameters. Further evalua-
tions of the equipment with new data will most likely help
provide guidelines for tuning these parameters and implement
a robust online application for the smartphone.

In conclusion, the rapid evolution of mass electronics and
mobile technology is opening up new avenues for monitor-
ing animal species. Combined with signal processing and pat-
tern recognition techniques, the use of such equipment for the
quantitative monitoring of shad populations is already feasible.
This type of instrument will considerably increase the effec-
tiveness of counting for estimating shad population size, and
enable its deployment in new spawning grounds.
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