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Flow Patterns and Heat Transfer in a Cylindrical Annulus under 1g
and low-g Conditions: Theory and Simulation

Abstract

A dielectric fluid is confined in a stationary vertical cylindrical annulus. A temperature difference is applied between the two

cylinders, as well as an alternating electric potential. This configuration creates an active force called dielectrophoretic force,

which acts as a thermal buoyancy force. Different axial gravity intensities are considered, so that two thermal buoyancies

will affect the flow: the thermoelectric buoyancy intervenes in the radial direction and the Archimedean buoyancy acts in

the axial direction. Linear stability analysis and direct numerical simulation are performed following experimental research

that has been performed during parabolic flight campaigns.

Keywords Thermal convection · Dielectrophoretic force · Microgravity · Cylindrical annulus · Heat transfer ·
Stability analysis

Introduction

The application of an alternating electric field to a

non-isothermal dielectric fluid provides thermoelectric

buoyancy due to an electric gravity. In spherical and

cylindrical configurations, this gravity can provide a central

force field which is of most interest for geophysical and

astrophysical study, where radial forces play a predominant

role (Yavorskaya et al. 1984; Hart et al. 1986; Futterer et al.

2013). In the present work, we investigated the cylindrical

geometry which has also such an application if we consider

the flow at the equatorial region of planetary systems.

Another application for this geometry is the control of the
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heat transfer by dielectrophoretic force. In particular, the

heat transfer and its control under reduced gravity condition

are in the focus of attention of researchers (Evgeridis et al.

2011; Lotto et al. 2017). Experiments have been performed

under Earth’s gravity conditions (Chandra and Smylie

1972), and many theoretical and numerical works have been

done considering microgravity conditions in order to focus

on the effects of the thermoelectric buoyancy (Takashima

1980; Malik et al. 2012; Yoshikawa et al. 2013; Travnikov

et al. 2015, 2016).

During the last years, many experiments have been

conducted during parabolic flight campaigns, which is a

convenient way to get reasonable duration of weightlessness

environments (Futterer et al. 2016; Meyer et al. 2017).

These experiments have been performed for several annular

geometries, for various fluids, and for different intensities

of the axial gravity. In this framework, the study of the

effects of the combined action of the Archimedean and

thermoelectric buoyancies was performed through a linear

stability analysis in order to predict the critical threshold,

as well as the temporal and spatial structure of the flow.

Numerical simulations have also been performed while

taking into account the temporal variation of axial gravity

within a parabolic flight. In these simulations, the effect

of the thermoelectric buoyancy was only considered during

microgravity, but in practice, this buoyancy force can also

be active all along a parabola.
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This theoretical and numerical work come together with

the newest results of parabolic flight experiments which are

presented in the corresponding article of this issue.

The article is organized as follows. Section “Problem

Formulation” gives the problem formulation both for

the linear stability theory and for the direct numerical

simulation. Section “Linear Stability Results” is dedicated

to the results obtained from the linear stability analysis

and Section “Numerical Results” gives the results from

the numerical simulations. The last section addresses a

conclusion of this work.

Problem Formulation

We consider an incompressible dielectric fluid of density ρ,

kinematic viscosity ν, thermal diffusivity κ and permittivity

ε, confined between two vertical coaxial cylinders. The

inner and outer cylinders are of radii R1 and R2 =
R1 + d and are maintained at the temperatures T1 and

T2 < T1 respectively. An electric potential of the form√
2V0 sin(2πf t) is applied between the two cylinders,

producing a radial electric field E (Fig. 1). The temperature

difference �T = T1 − T2 induces a radial stratification of

the density and of its permittivity, which can be modelized

by ρ = ρ2(1 − αθ) and ε = ε2(1 − eθ) respectively, where

α is the thermal expansion coefficient, e is the coefficient of

thermal variation of the permittivity, and θ = T − T2 is the

Fig. 1 Sketch of the annular geometry

temperature deviation from the reference temperature T2. ρ2

and ε2 are the density and the permittivity at the reference

temperature, respectively. Earth’s gravity will act on the

density stratification to give the Archimedean buoyancy.

Due to the electric field, a dielectric fluid will undergo

the electrohydrodynamic (EHD) force which is given by

(Landau and Lifshitz 1984):

FEHD = ρeE − 1

2
E2∇ε + ∇

[

1

2
ρ

(

∂ε

∂ρ

)

θ

E2

]

, (1)

where ρe is the electric charge density. The first term of

Eq. 1 is the electrophoretic force and corresponds to the

Coulomb force acting on free charges. Most of the time, this

term is the dominant one, but for an alternating electric field

with frequency much larger than the inverse of relaxation

time of free charges τe = ε/σe, where σe is the electric con-

ductivity, there is no accumulation of charges. Thus the electro-

phoretic force is negligible. The third term of Eq. 1, called the

electrostrictive force, is a gradient that will not affect the dyna-

mic of the fluid, unless the fluid is compressible or has free sur-

faces. This term will be injected into the pressure gradient

of the momentum equation. The second term of Eq. 1 called

the dielectrophoretic (DEP) force is proportional to the per-

mittivity gradient. Using the Boussinesq approximation for

the permittivity, the DEP force can be recast as:

FDEP = ∇
(

ε2eE2θ

2

)

− ραθge. (2)

Since it is a gradient, the first term of Eq. 2 will not affect

the dynamics of the fluid and will also be included into the

pressure gradient of the momentum equation. The second

term of Eq. 2 is analogue to a thermal buoyancy induced by

an effective electric gravity ge given by:

ge = ∇
(

eε2E2

2αρ2

)

(3)

and can be interpreted as the energy stored between the two

cylindrical electrodes. As in the Rayleigh-Bénard problem,

the DEP force induces instabilities if the electric Rayleigh

number L = α�Tged
3/νκ is larger than a critical value

(Yoshikawa et al. 2013).

Flow Equations

The governing equations for the velocity field u =
(u, v, w), temperature θ and electric potential φ are the

continuity equation, the momentum equations, the energy

equation and Gauss’ law for electricity

∇ · u = 0 (4a)

∂u

∂t
+ u · ∇u = −∇π + ν�u − αθ (g + ge) (4b)

∂θ

∂t
+ u · ∇θ = κ�θ (4c)

∇ · (εE) = 0 with E = −∇φ, (4d)
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where π , the generalized pressure, is given by:

π = p

ρ2
+ gz − eθε2E2

2ρ2
− 1

2

(

∂ε

∂ρ

)

θ

E2. (5)

Since the frequency of the electric potential is also assumed

to be high compared to the inverse of the viscous diffusion

time τν = d2/ν and of the thermal diffusion time τκ =
d2/κ , only the temporal average of the thermoelectric buoy-

ancy affects the fluid motion. Thus we reduce the problem

with an a.c. electric field to the one with an effective static

tension V0. In this assumption, the boundary conditions at

the two cylindrical walls read:
{

u = 0, θ = �T, φ = V0 at r = R1

u = 0, θ = 0, φ = 0 at r = R2.
(6)

Nondimensionalizing with scales d of length, τν of time,

�T of temperature and V0 of electric tension, Eqs. 4a–d

reads:

∇ · u = 0 (7a)

∂u

∂t
+ u · ∇u = −∇π + �u + Grθez − γeV

2
E

Pr
θge (7b)

∂θ

∂t
+ u · ∇θ = 1

Pr
�θ (7c)

∇ · [(1 − γeθ)∇φ] = 0, (7d)

where Pr = ν/κ is the Prandtl number, Gr =
α�Tgd3/ν2 is the Grashof number, VE = V0/

√
ρ2νκ/ε2 is

the dimensionless electric potential, and γe = e�T is the

thermoelectric parameter. The boundary conditions (6) then

become:
{

u = 0, θ = 1, φ = 1 at r = η/(1 − η)

u = 0, θ = 0, φ = 0 at r = 1/(1 − η),
(8)

where η = R1/R2 is the radius ratio between the

two cylinders. The Galileo number Ga =
√

gd3/ν is a

characteristics of the flow configuration and it allows to

make the axial gravity intensity constant. Therefore, Gr only

varies with the temperature. The Rayleigh number Ra =
PrGr will also be used to characterize the Archimedean

buoyancy. Additionally we introduce δ = α/e, which is

a dimensionless fluid property and thermally links the two

thermal buoyancies.

Base State

Considering a stationary axisymmetric and axially invariant

state (cylinders of infinite length), integration of the energy

(7c) and that of the Gauss’ law (7d) give the base

temperature and the base electric potential respectively:

�(r) = ln [(1 − η)r]

ln(η)
, �(r) = ln(1 − γe�(r))

ln(1 − γe)
. (9)

Considering the condition of zero axial volume flux, the

axial component of the momentum (7b) yields the following

expression for the base axial velocity (Choi and Korpela

1980):

W(r) = Gr A (1 − η)2 r2 − 1 + (1 − η)2 �

− r2 (1 − η)2 − η2

4 (1 − η)2
�

)

, (10)

where the coefficient A is:

A = (1 − η2)(1 − 3η2) − 4η4 ln(η)

16(1 − η)2 (1 − η2)2 + (1 − η4) ln(η)
.

The base electric gravity is radially oriented and is defined

as positive when it is centripetal. Therefore the base electric

gravity is given by (Yoshikawa et al. 2013):

Ge(r) = 1

(ln η)2r3
F(r, γe, η) with

F = γ 2
e [1 − γe (� + 1/ ln(η))]

[ln (1 − γe)]
2 (1 − γe�)3

. (11)

The base electric gravity behaves like the inverse of r3

and is inhomogeneous because of curvature. The factor

F corresponds to the thermoelectric coupling. It describes

different behaviours depending on the direction of the

temperature gradient and on η. In outward heating (γe > 0),

the base electric gravity is always centripetal. Nevertheless

for inward heating (γe < 0) the basic electric gravity can

change its sign within the gap when η is sufficiently large,

i.e. for low curvature. In this study we consider the case of

outward heating.

Linear Stability Analysis

We linearised the equations about the base state. The

perturbations are developed into normal modes of complex

growth rate s, azimuthal mode number n and axial

wavenumber k: (û, v̂, ŵ, π̂ , θ̂ , φ̂)est+inϕ+ikz, where the

complex amplitudes of perturbations, indicated with a hat,

depend only on the radial position. Equations 7a–d are thus

written as follows:

0 =
(

D + 1

r

)

û + in

r
v̂ + ikŵ (12a)

sû =
(

� − 1

r2
− ikW

)

û − 2in

r2
v̂ − Dπ̂

−γeV
2
E

Pr
−θ̂Ge + ĝe,r�

)

(12b)

sv̂ = 2in

r2
û +

(

� − 1

r2
− ikW

)

v̂ − in

r
π̂

−
γeV

2
E

Pr
ĝe,ϕ� (12c)
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sŵ = (DW) û + (� − ikW) ŵ − ikπ̂ + Grθ̂

−
γeV

2
E

Pr
ĝe,z� (12d)

sθ̂ = − (D�) û +
(

1

Pr
� − ikW

)

θ̂ (12e)

0 = −γe

[

D�D + 1

r
D� + D2�

)

]

θ̂

+ [(1 − γe�)� − γeD�D] φ̂, (12f)

where D = d/dr is the radial derivative operator, and

� = d2/dr2 + d/rdr − (n2/r2 + k2) is the Laplacian

operator. The perturbation electric gravity (ĝe,r , ĝe,ϕ, ĝe,z)

has been introduced:

ĝe,r = D�D2 + D2�D
)

φ̂ , ĝe,ϕ = in

r
D�Dφ̂ ,

ĝe,z = ikD�Dφ̂. (13)

The boundary conditions for the perturbations are homoge-

neous and read:

û = v̂ = ŵ = Dû = θ̂ = φ̂ = 0 at r = η

1 − η
and

1

1 − η
.

(14)

Equations 12a–f together with boundary conditions (14) are

invariant by the operation (n, v̂) → (−n, −v̂). It means that

once the eigenvalue s and its corresponding eigenfunctions

(û, v̂, ŵ, π̂ , θ̂ , φ̂) are known for a given mode (n, k),

the mode (−n, k) will give the same eigenvalue s with

eigenfunctions (û, −v̂, ŵ, π̂ , θ̂ , φ̂). The stability condition

of both modes are identical.

The eigenvalue problem is discretized by a Chebyshev

spectral collocation method and is solved by a QZ decom-

position. To ensure the convergence of the computation, the

order of Chebyshev polynomials is set to 30.

Numerical Simulation

Unsteady 3D direct numerical simulations (DNS) are

performed using the finite elements code COMSOL

Multiphysics v3.5. The code has been used to simulate the

temporal evolution of the axial gravity during parabolic

flights (Pletser et al. 2016). During one parabola, the

experiment successively undergoes a 1g phase of about one

minute, a 1.8g phase of 20s, followed by a microgravity

phase of 22s, and another 1.8g phase of 20s. The duration

of the microgravity phase is short for such experiments,

therefore it is of most interest to have an insight of

the effects of the previous phases of gravity on the

flow behaviour during the microgravity phase. For these

simulations, the cylindrical annulus has an inner radius of

R1 = 5mm, an outer radius of R2 = 10mm, and a height

of l = 30mm. It yields to a radius ratio of η = 0.5 and

an aspect ratio of Ŵ = l/d = 6, which corresponds to

the experimental geometry. The top and bottom surfaces

of the cylindrical annulus are supposed to be adiabatic

with perfect electric insulation. The working fluid has the

physical properties of silicone oil AK5, which is the fluid

used during the parabolic flight campaigns (Meyer et al.

2017). It has a Prandtl number of Pr = 65 and a ratio

between the thermal coefficients of δ = 1.01. Under 1g

condition, the Galileo number is Ga = 228.

Figure 2 shows the evolution of the three normalized

components of the acceleration, measured by Novespace

inside the airplane, during the first half of a parabola (the

first hypergravity phase and some seconds of microgravity).

Only the axial component of the acceleration gz has

been taken into account for the simulations. An analytical

function is used to modelize the axial gravity, which is given

by:

gz(t) = arctan [1.4 (t − 1.9)]

π
· t + 1.3875 for t ≤ 10s

gz(t) = arctan [1.4 (22.5 − t)]

π/2
· t + 0.8978 for t > 10s.

The model gives empirically the variation of the axial

gravity from the 1g phase to the μg phase, passing through

the hypergravity phase. Then gz is zero during the μg phase,

and the second hypergravity phase is symmetric to the first

one.

Linear Stability Results

The eigenvalue s = σ + iω is computed for a given set

of parameters (η, Pr, Ga, δ, Gr, VE, n, k). The state where

the maximum value of the growth rate’s real part σ is equal

Fig. 2 Temporal behaviour of the gravity components inside the

airplane during the first part of a parabola. For simulations, the axial

gravity has been modelized with an analytical function. The gravity is

below 0.01g after t = 356.5s, and this lasts up to t = 378s

4



to zero is called the marginal state. Marginal curves can

be plotted in a diagram spanned by (k, VE) or (k, Gr) for

various azimuthal mode number n. The global minimum

of these curves corresponds to the critical state denoted by

(Grc, VEc, nc, kc, ωc) where ωc is the critical frequency of

vortices propagation. The angle � of modes with respect

to the azimuthal direction and the total wave number q are

defined as:

qc =
√

k2
ϕ + k2, � = 180

π
arctan

kϕ

k
where

kϕ = 2nc(1 − η)

1 + η
. (15)

The total wavenumber of the critical mode qc gives the

wavenumber measured along the transverse direction to the

rolls at the median surface between the two electrodes.

Stability Parameters

In the absence of electric tension, critical modes develop

either as hydrodynamic mode (HM) or thermal mode (TM)

depending on the Prandtl number and on the curvature of the

cylindrical annulus (Bahloul et al. 2000). These modes are

both axisymmetric (nc = 0) and oscillatory (ωc �= 0) and

are distinguishable by their wavelengths. Figure 3 shows

variations of the critical parameters as functions of VE for

Pr = 10. For this value of the Prandtl number, TM are

critical in the absence of electric potential. Applying a small

electric tension, thermal modes remain critical, and the

corresponding critical parameters are nearly independent

from VE until a certain value of VE denoted by V ∗
E . At V ∗

E ,

two modes of different nature have the same growth rate and

are thus critical at the same time. The points (V ∗
E, Ra∗) are

called codimension-2 points. Beyond this particular value of

the dimensionless electric potential, the threshold strongly

decreases with the electric potential (Fig. 3a). The axial

wavenumber becomes equal to zero (Fig. 3b), which means

that the vortices take the form of axially aligned columns.

The number of columns (Fig. 3c) depends on the radius

ratio and corresponds to the maximum number m of vortices

of the gap size, given by m = [π(1 + η)/2(1 − η)].
The angle of CM with respect to the azimuthal direction

is � = 90◦ (Fig. 3d). These columnar modes (CM)

are stationary (Fig. 3e). For large values of VE , another

codimension-2 point (V ∗∗
E , Ra∗∗) indicates the transition

from columnar modes to electric modes (EM) which are

stationary and helical. Indeed the axial wavenumber of EM

is different from zero and increases with increasing VE .

Depending on the radius ratio, the azimuthal mode number

can gradually decrease from its value for CM to its value for

the microgravity case (Yoshikawa et al. 2013). Indeed, for

large values of VE , the Archimedean buoyancy is negligible

compared to the dielectrophoretic effect, and the problem is

Fig. 3 Variations of (a) the

critical Rayleigh number, b the

critical axial wavenumber, c the

critical azimuthal mode number,

d the angle of modes with

respect to the azimuthal

direction and e the critical

frequency with the

dimensionless electric potential

for different values of η and for

Pr = 10, Ga = 1370 and δ = 1

5



equivalent to the case of microgravity condition. The angle

of EM with respect to the azimuthal direction decreases

with increasing VE and tends to � = 60◦. The critical

Rayleigh number of both CM and EM is proportional to

V −2
E . The fact that the threshold behaviour does not change

at the codimension-2 point (V ∗∗
E , Ra∗∗) indicates that both

modes are of the same nature, i.e. they originate from the

thermoelectric convection. For all the regimes, the curvature

of the annulus has a destabilizing effect.

Figure 4a shows the variation of the critical Rayleigh

number with the dimensionless electric potential for η = 0.5

and for various values of Pr. For low values of VE , HM are

found in case Pr = 0.72 while TM are found for Pr = 10

and Pr = 100. The critical parameters of TM and HM are

affected by the Prandtl number, as it is described in Bahloul

et al. (2000). For all values of VE , the Prandtl number has a

stabilizing effect. The wavenumber of CM and EM are not

modified by Pr, in the sense that the Prandtl number only

changes the position of the codimension-2 points between

HM or TM and CM and between CM and EM. Indeed

the larger the Prandtl number, the larger the dimensionless

electric potential at the codimension-2 points.

Figure 4b shows the variation of the critical Grashov

number with the dimensionless electric potential for the

same set of parameters. In this case, the threshold of

HM or TM decreases with increasing the Prandtl number.

However, the critical Grashof number of CM and EM is

not affected by Pr. The independence of the threshold of

CM and EM with Pr confirms their electric nature since this

independence characterises the thermoelectric buoyancy

(Yoshikawa et al. 2013).

Experimental Configuration

Experiments have been performed in laboratory, as well as

during parabolic flight campaigns. For these experiments,

the cylindrical annulus has a radius ratio of η = 0.5,

and an aspect ratio of Ŵ = 6 or Ŵ = 20. The working

fluid is silicone oil AK5, whose properties have been given

in Section “Numerical Simulation”. Figure 5 shows the

stability diagram spanned by Ra and L considering an

infinite aspect ratio. For low values of L, the critical modes

are thermal modes and the variation of their threshold with

L is weak, indicating that the modes are not affected by the

dielectrophoretic buoyancy. On the other hand, the critical

electric Rayleigh number L for CM and EM is nearly

independent from Ra, indicating that those modes are not

affected by the Archimedean buoyancy.

Additionally, we derived an equation for kinetic energy

from the linearised momentum equations (12b–12d) by

multiplying them with û∗, v̂∗ and ŵ∗ respectively, where

the asterisks mean complex conjugate, and by adding the

resulting equations. The remaining equation is integrated

over the volume and over a period of oscillation, then one

can find:

2sK = WHy + WT h + WBG + WPG − Dν, (16)

where K is the kinetic energy and reads:

K =
∫ |û|2 + |v̂|2 + |ŵ|2

2
dV . (17)

The terms WHy and WT h are related to the action of the

axial gravity, and corresponds to the power performed by the

Fig. 4 Variations of (a) the

critical Rayleigh number and b

the critical Grashof number with

the dimensionless electric

potential for different values of

Pr and for η = 0.5, Ga = 1370

and δ = 1
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Fig. 5 Variations of the critical Rayleigh number with the electric

Rayleigh number for η = 0.5, Ga = 228, δ = 1.01 and Pr = 65

shear stress and to the power performed by the Archimedean

buoyancy respectively. The two contributions are given by:

WHy = −
∫

ûŵ∗ ∂W

∂r
dV , WT h = Gr

∫

θ̂ ŵ∗dV . (18)

WBG and WPG are concerned with the thermoelectric

buoyancy. They represent the power performed by the base

electric gravity and the one performed by the perturbation

electric gravity, respectively. The two terms are given by:

WBG =
γeV

2
E

Pr

∫

θ̂Geû
∗dV ,

WPG = −
γeV

2
E

Pr

∫

�
(

û∗ĝe,r +v̂∗ĝe,ϕ+ŵ∗ĝe,z

)

dV . (19)

The last term Dν is the rate of viscous energy dissipation

and reads:

Dν =
∫

�νdV, (20)

where �ν is:

�ν =
∣

∣Dû
∣

∣

2+
∣

∣

∣

∣

inû

r
− v̂

r

∣

∣

∣

∣

2

+k2
∣

∣û
∣

∣

2+
∣

∣Dv̂
∣

∣

2+
∣

∣

∣

∣

inv̂

r
+ û

r

∣

∣

∣

∣

2

+k2
∣

∣v̂
∣

∣

2 +
∣

∣Dŵ
∣

∣

2 +
∣

∣

∣

∣

inŵ

r

∣

∣

∣

∣

2

+ k2
∣

∣ŵ
∣

∣

2
.

The rate of viscous dissipation completely balances the

other terms, since there is no temporal variation of kinetic

energy at the onset of instabilities.

Figure 6 shows the variation of the power terms of Eq. 16

with the dimensionless electric potential. For low values of

VE , critical modes are TM and the term WT h is the dominant

one. For large values of VE , the power WBG is the main

contribution to the energy transfer from the base state to

perturbations. In the intermediate case, for columnar modes,

both WT h and WBG are important. WHy also contributes

Fig. 6 Energy generation terms normalized by twice the kinetic energy

K as functions of the dimensionless electric potential VE . The curves

have been obtained for Ga = 228, δ = 1.01, Pr = 64.6 and η = 0.5

to the energy transfer. However, its magnitude is one order

of magnitude lower than the other terms. The power input

by the perturbation electric gravity is negligible for the

whole range of parameters. The value of Dν is equivalent to

the sum of the other power terms. Its lower value for CM

compared to TM or EM indicates that columnar modes need

less energy to be sustained.

Numerical Results

In all simulations, the electric field is only applied

during microgravity in order to focus on the effect of a

purely central force field. But during the parabolic flight

experiments, the DEP force has also been active all along

a parabola (Meyer et al. 2017). The hypergravity phase

starts after 330 seconds of normal gravity phase. Therefore

we ensure an established base flow, which has the form

of an axisymmetric monocellular convection cell, at the

beginning of the parabola.

Figure 7 shows the evolution in time of the Nusselt

numbers computed numerically at the inner and outer

cylinders as the ratio of heat flux at inner/outer cylinder

and heat flux of the conductive state. The evolution starts

from the 1g phase and stops at the end of the μg phase.

During the 1g phase, the Nusselt number is Nu(1g) = 2.67

for both cylinders, since the base flow already increases

the heat flux at the surfaces compared to the conductive

state. The hypergravity phase reinforces the base flow, and

increases the Nusselt numbers compared to the 1g phase.

During the change of gravity intensity, the Nusselt number

at the inner cylinder is slightly lower than that of the

outer cylinder, which indicates a unsteady transition from

1g to hypergravity concerning the heat transfer. Passing
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Fig. 7 Nusselt number at the inner and outer cylinder as a function of

time. The gravity is 10−2g at t = 360s and lasts 18s. The temperature

difference is �T = 10K and the dimensionless electric potential, only

applied during μg, is VE = 1832 (L = 22064)

from hypergravity to μg condition, the Nusselt numbers

start to decrease because of the dissipation of the base

flow by viscous effects. The dissipation process keeps

going during the first seconds of microgravity, until the

Nusselt numbers start to grow. The resulting minimum of

the Nusselt numbers is larger than one, which means that

the DEP force starts to affect the flow while the base flow

produced by the previous hypergravity phase has not been

completely dissipated. The growth of the Nusselt numbers

indicate the development of instability inside the gap due

to the DEP buoyancy. Vortices occur inside the gap and are

responsible for heat transfer enhancement.

Figure 8 shows the temperature profile in the (r, ϕ)

plane and its derivative with respect to the azimuthal

direction for the same parameters as for Fig. 7. The profiles

exhibit a non-axisymmetric pattern with 8 modes in the

azimuthal direction, which is quantitatively comparable to

Shadowgraph measurements (see the article dedicated to

experiments from this issue by Meier et al.). The instability

starts at the inner cylinder and develops in radial direction

outward. The maximum of the Nusselt numbers during

microgrvity phase (Fig. 7) corresponds to the point where

the instability touches the outer cylinder. Then the Nusselt

numbers decrease again, likely to converge to a stationary

state which is not observed due to the short duration of the

microgravity phase. All along the μg phase, the Nusselt

number at the inner cylinder is larger than that at the outer

cylinder which indicates that the heat transfer during this

phase is transient.

A series of simulations have been performed for Gr =
530 (�T = 10K) and Gr = 265 (�T = 5K)

with various values of the electric potential. The Nusselt

numbers is computed at the inner and outer cylinders,

and averaged over the last nine seconds of the μg phase.

Their development as functions of the electric Rayleigh

number L is shown in Fig. 9. If L < 700, the Nusselt

numbers are nearly constant and are slightly larger than

one, which corresponds to the quasi-conductive regime. Nu

larger than one might have its origin in inert reminiscences

of the previous hypergravity phase. If L > 700, the

Nusselt numbers increase with increasing L because of the

occurrence of instabilities which enhance the heat transfer.

The Nusselt number at the inner cylinder is always larger

than that of the outer cylinder, which could be partly

explained by the fact that the intensity of the electric gravity

is larger at the inner cylinder than at the outer one. At

some values of the electric Rayleigh number, there are

Fig. 8 Temperature profile and its azimuthal derivative in the (r, ϕ) plane at the end of the microgravity phase and at z = 14mm above the bottom

surface. The temperature difference is �T = 10K and the dimensionless electric tension, only applied during μg, is VE = 1832 (L = 22064)
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Fig. 9 Nusselt number at the inner and outer cylinders, time averaged

during the second half of the microgravity phase, as a function of the

electric Rayleigh number. Several values of VE have been simulated

both for �T = 5K and for �T = 10K

two slightly different values of the Nusselt number. This

corresponds to the two different �T which were used for

the simulations. Indeed, the base flow originated from the

previous gravity phase takes less time to dissipate if the

temperature difference between the two cylinders is lower,

which results in a lower value of the Nusselt number even

for the same value of L.

Conclusion

The flow of a dielectric fluid confined in a vertical

cylindrical annulus subjected to the axial Archimedean

buoyancy and to the radial dielectrophoretic force has

been investigated in the framework of parabolic flight

experiments. A linear stability analysis has been performed.

If the electric tension between the two cylinders is

sufficiently large, it is found that non-axisymmetric modes

can be critical. These modes are stationary and can either

be columnar or helical. Their threshold is proportional to

V −2
E , but in terms of electric Rayleigh number, the threshold

is nearly not affected by the Archimedean buoyancy. The

energy analysis showed that columnar modes need less

energy to be sustained than thermal modes, critical for weak

electric potentials, and than the electric modes, critical at

high electric potentials. In addition to the theoretical study,

numerical simulations have been performed with an axial

gravity varying in time, that corresponds to the parabolic

flight scenario. In simulations, the DEP force was active

only during microgravity conditions. It was found that the

base flow provided by the previous hypergravity phase is

not completely dissipated during the microgravity phase and

affects the evaluation of the heat transfer. One μg phase

lasts 22s. It is sufficient to observe the development of non-

axisymmetric instabilities, but it is still too short to become

stationary.
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