
HAL Id: hal-01924180
https://hal.science/hal-01924180v4

Submitted on 19 Feb 2019 (v4), last revised 27 Sep 2019 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective heuristics for matchings in hypergraphs
Ioannis Panagiotas, Bora Uçar, Fanny Dufossé, Kamer Kaya

To cite this version:
Ioannis Panagiotas, Bora Uçar, Fanny Dufossé, Kamer Kaya. Effective heuristics for matchings in hy-
pergraphs. [Research Report] RR-9224, Inria Grenoble Rhône-Alpes. 2018, pp.1-20. �hal-01924180v4�

https://hal.science/hal-01924180v4
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

24
--

FR
+E

N
G

RESEARCH
REPORT
N° 9224
November 2018

Project-Teams ROMA, DataMove

Effective heuristics for
matchings in
hypergraphs
Fanny Dufossé, Kamer Kaya,
Ioannis Panagiotas, Bora Uçar

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Effective heuristics for matchings in
hypergraphs

Fanny Dufossé∗, Kamer Kaya†,

Ioannis Panagiotas‡, Bora Uçar§

Project-Teams ROMA, DataMove

Research Report n° 9224 — November 2018 — 19 pages

Abstract: The problem of finding a maximum cardinality matching in a d-partite, d-
uniform hypergraph is an important problem in combinatorial optimization and has been
theoretically analyzed. We first generalize some graph matching heuristics for this prob-
lem. We then propose a novel heuristic based on tensor scaling to extend the matching
via judicious hyperedge selections. Experiments on random, synthetic and real-life hyper-
graphs show that this new heuristic is highly practical and superior to the others on finding
a matching with large cardinality.

Key-words: d-dimensional matching, tensor scaling, matching in hypergraphs, Karp-
Sipser heuristic

∗ Inria Grenoble, Rhône Alpes, 38330, Montbonnot-Saint-Martin, France.
† Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Turkey.
‡ ENS Lyon, 46, allée d’Italie, ENS Lyon, Lyon F-69364, France.
§ CNRS and LIP (UMR5668 Université de Lyon - CNRS - ENS Lyon - Inria - UCBL 1),

46, allée d’Italie, ENS Lyon, Lyon F-69364, France.

Heuristiques efficaces pour le couplage dans des
hypergraphes

Résumé : Le problème consistant à trouver un couplage maximal dans un
hypergraphe uniforme ayant d parts est un problème important en optimisation
combinatoire. Dans ce travail, nous concevons d’abord des heuristiques pour
ce problème en généralisant les heuristiques de couplage dans des graphes.
Ensuite, nous proposons une nouvelle heuristique basée sur des méthodes de
mise à l’échelle de tenseur pour étendre le couplage via des sélections judicieuses
d’hyperarêtes. Des expériences sur des hypergraphes aléatoires, synthétiques et
réels montrent que cette nouvelle heuristique est simple à mettre en pratique
et supérieure aux autres pour trouver des couplages de grande cardinalité.

Mots-clés : couplage, hypergraphes, heuristique Karp–Sipser

Matchings in hypergraphs 3

1 Introduction

A hypergraph H = (V,E) consists of a finite set V and a collection E of subsets of V . The set
V is called vertices, and the collection E is called hyperedges. A hypergraph is called d-partite
and d-uniform, if V =

⋃d
i=1 Vi with disjoint Vis and every hyperedge contains a single vertex from

each Vi. A matching in a hypergraph is a set of disjoint hyperedges. In this paper, we investigate
effective heuristics for finding large matchings in d-partite, d-uniform hypergraphs.

Finding a maximum cardinality matching in a d-partite, d-uniform hypergraph for d ≥ 3 is
NP-Complete; the 3-partite case is called the Max-3-DM problem [26]. This problem has been
studied mostly in the context of local search algorithms [24], and the best known algorithm is due
to Cygan [9] who provides ((d+ 1 + ε)/3)-approximation, building on previous work [10, 21]. It is
also shown that it is NP-Hard to approximate Max-3-DM within 98/97 [3]. Similar bounds exist
for higher dimensions: the hardness of approximation for d = 4, 5 and 6 are shown to be 54/53− ε,
30/29− ε, and 23/22− ε, respectively [22].

Finding a maximum cardinality matching in a d-partite, d-uniform hypergraph is a special
case of the d-Set-Packing problem [23]. It has been shown that d-Set-Packing is hard to
approximate within a factor of O(d/ log d) [23]. The maximum/perfect set packing problem has
many applications, including combinatorial auctions [20] and personnel scheduling [18]. Such a
matching can also be used in the coarsening phase of multilevel hypergraph partitioning tools [6],
when the input is d-uniform and d-partite. Such hypergraphs are used in modeling and partitioning
tensors [28].

Our contributions in this paper are as follows. We propose five heuristics: The first two heuris-
tics are adaptations of the well-known greedy [15] and Karp-Sipser [27] heuristics proposed for
bipartite graph maximum cardinality matching. We use Greedyg and Karp-Sipserg to refer to
these heuristics, and Greedy and Karp-Sipser for the proposed generalizations. Greedy traverses
the hyperedge list in random order and adds an edge to the matching whenever possible. Karp-
Sipser introduces certain rules to Greedy to improve the cardinality. The third heuristic is inspired
by a recent scaling-based approach proposed for the maximum cardinality matching problem on
graphs [12–14]. The fourth heuristic is a modification on the third one that allows for faster execu-
tion time. The last one finds a matching for a reduced, (d − 1)-dimensional problem and exploits
it for d-dimensions. This heuristic uses an exact algorithm for the bipartite matching problem. We
perform experiments to evaluate the performance of these heuristics on special classes of random
hypergraphs as well as real-life data.

One plausible way to tackle the problem is to create the line graph G for a given hypergraph H.
The line graph is created by identifying each hyperedge of H with a vertex in G, and by connecting
two vertices of G with an edge, iff the corresponding hyperedges share a common vertex in H.
Then, successful heuristics for computing large independent sets in graphs, e.g., KaMIS [29], can
be used to compute large matchings in hypergraphs. This approach, although promising quality-
wise, could be impractical. This is so, since building G from H requires quadratic run time (in
terms of the number of hyperedges) and more importantly quadratic storage (again in terms of the
number of hyperedges) in the worst case. While this can be acceptable in some instances, in some
others it is not. We have such instances in the experiments. Notice that while a heuristic for the
independent set problem can be of linear time complexity in graphs, due to our graphs being a line
graph, the actual complexity could be high.

The rest of the paper is organized as follows. Section 2 introduces the notation and summarizes

RR n° 9224

Matchings in hypergraphs 4

the background material. The proposed heuristics are summarized in Section 3. Section 4 presents
the experimental results and Section 5 concludes the paper.

2 Background and notation

Tensors are multidimensional arrays, generalizing matrices to higher orders. LetT be a d-dimensional
tensor whose size is n1×· · ·×nd. The elements of T are shown with Ti1,...,id , where ij ∈ {1, . . . , nj}.
A marginal is a (d − 1)-dimensional section of a d-dimensional tensor, obtained by fixing one of
its indices. A d-dimensional tensor where the entries in each of its marginals sum to one is called
d-stochastic. In a d-stochastic tensor, all dimensions necessarily have the same size n. A d-
stochastic tensor where each marginal contains exactly one nonzero entry (equal to one) is called
a permutation tensor. Franklin and Lorenz [16] show that if a nonnegative tensor T has the same
zero-pattern as a d-stochastic tensor B, then one can find a set of d vectors x(1), x(2), . . . , x(d) such
that Ti1,...,id · x

(1)
i1
· · · · · x(d)id = Bi1,...,id for all i1, . . . , id ∈ {1, . . . , n}. In fact, a multidimensional

version of the algorithm for doubly-stochastic scaling (of matrices) by Sinkhorn and Knopp [32]
can be used to obtain these d vectors.

A d-partite, d-uniform hypergraph H = (V1 ∪ · · · ∪ Vd, E) can be naturally represented by a
d-dimensional tensor. This is done by associating each tensor dimension to a vertex class. Let
|Vi| = ni. Let the tensor T ∈ {0, 1}n1×···×nd have a nonzero element Tv1,...,vd iff (v1, . . . , vd) is an
edge of H. Then, T is called the adjacency tensor of H. We will use this correspondence for our
third heuristic which enhances Karp-Sipser with tensor-scaling to improve the matching cardinality.
In H, if a vertex is a member of only a single hyperedge we call it a degree-1 vertex. Similarly, if
it is a member of only two we call it a degree-2 vertex.

In the k-out random hypergraph model, given V , each vertex u ∈ V selects k hyperedges from the
set Eu = {e : e ⊆ V, u ∈ e} in a uniformly random fashion and the union of these edges forms E. We
are interested in the d-partite, d-uniform case, and hence Eu = {e : |e∩Vi| = 1 for 1 ≤ i ≤ d, u ∈ e}.
This model generalizes the random k-out bipartite graphs [34]. Devlin and Kahn [11] investigate
fractional matchings in these hypergraphs, and mention in passing that k should be exponential in
d to ensure that a perfect matching exists.

3 Heuristics for maximum d-dimensional matching

A matching which cannot be extended with more edges is called maximal. In this work, we pro-
pose heuristics for finding maximal matchings on d-partite, d-uniform hypergraphs. For such hy-
pergraphs, any maximal matching is a d-approximate matching. The bound is tight and can
be verified for d = 3. Let H be a 3-partite 3 × 3 × 3 hypergraph with the following edges
e1 = (1, 1, 1), e2 = (2, 2, 2), e3 = (3, 3, 3) and e4 = (1, 2, 3). The maximum matching is {e1, e2, e3}
but the edge {e4} alone forms a maximal matching.

3.1 A Greedy heuristic for Max-d-DM

There exist two variants of Greedyg proposed for graph matching in the literature. The first one [15]
randomly visits the edges whereas the second one randomly visits the vertices [30]. We adapt the
first variant to our problem and call it Greedy. It traverses the hyperedges in random order and
adds the current hyperedge to the matching whenever possible. Since any maximal matching is

RR n° 9224

Matchings in hypergraphs 5

possible as its output, Greedy is a d-approximation heuristic. It provides matchings of varying
quality, depending upon the order in which the hyperedges are processed.

3.2 Karp-Sipser for Max-d-DM

A widely-used heuristic to obtain a (maximal) matching in graphs is Karp-Sipserg [27]. On a graph,
the heuristic iteratively adds a random edge to the matching and reduces the graph by removing
its endpoints, as well as their edges. Whenever possible, Karp-Sipserg does not apply a random
selection but reduces the problem size, i.e., number of vertices in the graph by one via two rules:

• At any time during the heuristic, if a degree-1 vertex appears it is matched with its only
neighbor.

• Otherwise, if a degree-2 vertex u appears with neighbors {v, w}, u (and its edges) is removed
from the current graph, and v and w are merged to create a new vertex vw whose set of
neighbors is the union of those of v and w (except u). A maximum cardinality matching for
the reduced graph can be extended to obtain one for the current graph by matching u with
either v or w depending on vw’s match.

Both rules are optimal in the sense that they do not reduce the cardinality of a maximum matching
in the current graph they are applied on. We now propose an adaptation of Karp-Sipserg for d-
partite, d-uniform hypergraphs. Similar to the original one, the modified heuristic iteratively adds
a random hyperedge to the matching, remove its d endpoints, as well as their hyperedges. However,
the random selection is not applied whenever hyperedges defined by the following lemmas appear.

Lemma 1. During the heuristic, if a hyperedge e with at least d − 1 degree-1 endpoints appears,
there exists a maximum cardinality matching in the current hypergraph containing e.

Proof. Let H ′ be the current hypergraph at hand and e = (u1, . . . , ud) be a hyperedge in H ′ whose
first d − 1 endpoints are degree-1 vertices. Let M ′ be a maximum cardinality matching in H ′. If
e ∈M ′, we are done. Otherwise, assume that ud is the endpoint matched by a hyperedge e′ ∈M ′
(note that if ud is not matched M ′ can be extended with e). Since ui, 1 ≤ i < d, are not matched
in M ′, M ′ \ {e′} ∪ {e} defines a valid maximum cardinality matching for H ′.

We note that it is not possible to relax the condition by using a hyperedge e with less than
d− 1 endpoints of degree-1; in M ′, two of e’s higher degree endpoints could be matched with two
different hyperedges, in which case the substitution as done in the proof of the lemma is not valid.

Lemma 2. During the heuristic, let e = (u1, . . . , ud) and e′ = (u′1, . . . , u
′
d) be two hyperedges

sharing at least one endpoint where for an index set I ⊂ {1, . . . , d} of cardinality d− 1, the vertices
ui, u

′
i for all i ∈ I only touch e and/or e′. That is for each i ∈ I, either ui = u′i is a degree-2 vertex

or ui 6= u′i and they are both degree-1 vertices. For j /∈ I, uj and u′j are arbitrary vertices. Then, in
the current hypergraph, there exists a maximum cardinality matching having either e or e′.

Proof. Let H ′ be the current hypergraph at hand and j /∈ I be the remaining part id. Let M ′ be
a maximum cardinality matching in H ′. If either e ∈ M ′ or e′ ∈ M ′, we are done. Otherwise, ui
and u′i for all i ∈ I are unmatched by M ′. Furthermore, since M ′ is maximal, uj must be matched
by M ′ (otherwise, M ′ can be extended by e). Let e′′ ∈ M ′ be the hyperedge matching uj . Then
M ′ \ {e′′} ∪ {e} defines a valid maximum cardinality matching for H ′.

RR n° 9224

Matchings in hypergraphs 6

Whenever such hyperedges appear, the rules below are applied in the same order:

• Rule-1: At any time during the heuristic, if a hyperedge e with at least d − 1 degree-1
endpoints appears, instead of a random edge, e is added to the matching and removed from
the hypergraph.

• Rule-2: Otherwise, if two hyperedges e and e′ as defined in Lemma 2 appear, they are
removed from the current hypergraph with the endpoints ui, u′i for all i ∈ I. Then, we
consider uj and u′j . If uj and u′j are distinct, they are merged to create a new vertex uju′j ,
whose hyperedge list is defined as the union of uj ’s and u′j ’s hyperedge lists. If uj and u′j
are identical, we rename uj as uju′j . After obtaining a maximal matching on the reduced
hypergraph, depending on the hyperedge matching uju′j , either e or e

′ can be used to obtain
a larger matching in the current hypergraph.

When Rule-2 is applied, the two hyperedges identified in Lemma 2 are removed from the hyper-
graph, and only the hyperedges containing uj and/or u′j have an update in their vertex list. Since
the original hypergraph is d-partite and d-uniform, that update is just a renaming of a vertex in
the concerned hyperedges (hence the resulting hypergraph is d-partite and d-uniform).

Although the extended rules usually lead to improved results in comparison to Greedy, Karp-
Sipser still adheres to the d-approximation bound of maximal matchings. To see this, we can use the
toy example given as a worst-case for Greedy. For the example given at the beginning of Section 3,
Karp-Sipser generates a maximum cardinality matching by applying the first rule. However, when
e5 = (2, 1, 3) and e6 = (3, 1, 3) are added to the example, neither of the two rules can be applied.
As before, in case e4 is randomly selected, it alone forms a maximal matching.

3.3 Karp-Sipser-scaling for Max-d-DM

Karp-Sipser can be modified for better decisions in case neither of the two rules hold. In our variant,
instead of a random selection, we first scale the adjacency tensor of H and obtain an approximate
d-stochastic tensor T. We then augment the matching by adding the edge which corresponds to
the largest value in T. The modified heuristic is summarized in Algorithm 1.

Our inspiration comes from the d = 2 case and more specifically from the relation between
scaling and matching. It is known due to Birkhoff [4] that the polytope of n× n doubly stochastic
matrices is the convex hull of the n× n permutation matrices. A nonnegative matrix A where all
entries participate in some perfect matching can be scaled with two positive diagonal matrices R
and C such that RAC is doubly stochastic. Otherwise, provided that A has a perfect matching,
it can still be scaled to a doubly stochastic form, but not with these positive diagonal matrices. In
this case, the entries not participating in any perfect matching tend to be zero in the scaled matrix.
This fact is exploited to design randomized approximation algorithms for graph matching [12, 13].
By using the scaling as a preprocessing step and choosing edges with a probability corresponding
to the scaled entry, the edges which are not included in a perfect matching become less likely to
be chosen. The current algorithm differs from these approaches by selecting a single hyperedge at
each step and applying scaling again before the next selection.

Unfortunately for d ≥ 3, there is no equivalent of Birkhoff’s theorem as demonstrated by the
following lemma.

Lemma 3. For d ≥ 3, there exist extreme points in the set of d-stochastic tensors which are not
permutations tensors.

RR n° 9224

Matchings in hypergraphs 7

Algorithm 1 Karp-Sipser-scaling
Input: A d-partite d-uniform n1 × · · · × nd hypergraph H = (V,E)
Output: A maximal matching M of H
1: M ← ∅ I Initially M is empty
2: S ← ∅ I Stack for the merges for Rule-2
3: while H is not empty do
4: Remove the isolated vertices from H
5: if ∃e = (u1, . . . , ud) as in Rule-1 then
6: M ←M ∪ {e} I Add e to the matching
7: Apply the reduction for Rule-1 on H
8: else if ∃e = (u1, . . . , ud), e′ = (u′1, . . . , u

′
d) and I as in Rule-2 then

9: Let j be the part index where j /∈ I

10: Apply the reduction for Rule-2 on H by introducing the vertex uju′j
11: E′ = {(v1, . . . , uju′j , . . . , vd) : for all (v1, . . . , uj , . . . , vd) ∈ E}

I memorize the hyperedges of uj
12: S.push(e, e′, uju′j , E′) I Store the current merge
13: else
14: T← Scale(adj(H)) I Scale the adjacency tensor of H
15: e← arg max(u1,...,ud) (Tu1,...,ud

) I Find the maximum entry in T
16: M ←M ∪ {e} I Add e to the matching
17: Remove all hyperedges of u1, . . . , ud from E
18: V ← V \ {u1, . . . , ud}
19: while S 6= ∅ do
20: (e, e′, uju

′
j , E

′)← S.pop() I Get the most recent merge
21: if uju′j is not matched by M then
22: M ←M ∪ {e}
23: else
24: Let e′′ ∈M be the hyperedge matching uju′j
25: if e′′ ∈ E′ then
26: Replace uju′j in e′′ with u′j
27: M ←M ∪ {e′}
28: else
29: Replace uju′j in e′′ with uj
30: M ←M ∪ {e}

Proof. We provide a 2× 2× 2 tensor T3 with an inspiration from [8]. For convenience, we depict
T3 by two 2× 2 matrices as follows which are the marginals of the 3rd dimension:

T3
:,:,1 =

[
1
2 0
0 1

2

]
and T3

:,:,2 =

[
0 1

2
1
2 0

]
The maximum matching cardinality in this tensor is 1 and it cannot be written as a linear com-
bination of permutation tensors. This particular extreme point can be extended for higher d by
setting Td

u1,u2,u3,...,u3 = T3
u1,u2,u3 for each nonzero element T3

u1,u2,u3 and for higher n by setting
Td

3,...,3 = · · · = Td
n,...,n = 1.

These extreme points can be used to generate other d-stochastic tensors as linear combinations.
Due to the lemma above, we do not have the theoretical foundation to imply that hyperedges
corresponding to the large entries in the scaled tensor must necessarily participate in a perfect

RR n° 9224

Matchings in hypergraphs 8

matching. Nonetheless, the entries not in any perfect matching tend to become zero (not guaranteed
for all though). For the worst case example of Karp-Sipser described above, the scaling indeed helps
the entries corresponding to e4, e5 and e6 to become zero.

Let S3 be the tensor obtained by swapping the 2nd and 3rd dimensions of T3. We can see that

the tensor
1

2
T3 +

1

2
S3 has a perfect matching, however, obtained by a linear combination of two

extreme points that are not permutation tensors. This shows that even if the heuristic selects an
entry in the non-zero pattern of an extreme point without a perfect matching, we do not necessarily
reduce our chances of obtaining a good matching because of the existence of entries outside the
non-zero pattern of this extreme point.

On a d-partite, d-uniform hypergraph H = (V,E), the Sinkhorn-Knopp algorithm used for
scaling operates in iterations, each of which requires O(|E| × d) time. In practice, we perform only
a few iterations (e.g., 10–20). Since, we can match at most |V |/d hyperedges, the overall run time
cost associated with scaling is O(|V | × |E|). A straightforward implementation of the second rule
can take quadratic time in the worst case of a large number of repetitive merges with a given vertex.
In practice, more of a linear time behavior should be observed for the second rule.

3.4 Hypergraph matching via pseudo scaling

In Algorithm 1, applying scaling at every step can be very costly. Here we propose an alternative
idea inspired by the specifics of the Sinkhorn-Knopp algorithm to reduce the overall cost.

The Sinkhorn-Knopp algorithm scales a d-dimensional tensor T in a series of iterations by
updating the set of vectors x(1), . . . , x(d) where initially all values in all vectors are equal to 1.
During an iteration, the coefficient vector x(j) for a given dimension j is updated by using

x
(j)
ij

=
x
(j)
ij∑

i1,...,ij−1,ij+1,...,id

(
Ti1,...,ij ,...,id

∏d
k=1 x

(k)
ik

) , for all ij ∈ {1, . . . , nj} . (1)

These updates are done in a sequential order and for simplicity we assume that they happen in
the dimension order: 1, . . . , d. Each vector entry x(j)ij corresponds to a vertex in the hypergraph.

Let λij denote the degree of the vertex ij from jth part. For the first iteration of (1), each x(1)i1 is
set to 1

λi1
since all values in the vectors are one. The pseudo scaling approach applies d parallel

executions of updates (1) and sets each x(j)ij = 1
λij

for all j ∈ {1, . . . , d} and ij ∈ {1, . . . , nj}. That
is, each vertex gets a value inversely proportional to its degree. This avoids 10–20 iterations of
Sinkhorn-Knopp and the O(|E|) cost for each. However, as the name of the approach implies, this
scaling is not exact.

With this approach each hyperedge {i1, . . . , id} is associated with a value
1∏d

j=1 λij
. The selec-

tion procedure is the same as that of Algorithm 1, i.e., the edge with the maximum value is added
to the matching set. We refer to this algorithm as Karp-Sipser-mindegree, as it selects a hyperedge
based on a function of the degrees of the vertices. With a straightforward implementation, finding
this hyperedge takes O(|E|) time. For a better efficiency, the edges can be stored in a heap and
when the degree of a node v decreases, the increaseKey heap operation can be called for all its
edges.

RR n° 9224

Matchings in hypergraphs 9

3.5 Reduction to bipartite graph matching

A perfect matching in a d-partite, d-uniform hypergraphH remains perfect when projected on a (d−
1)-partite, (d− 1)-uniform hypergraph obtained by removing one of H’s dimensions. Matchability
in (d − 1)-dimensional sub-hypergraphs has been investigated in [1] to provide an equivalent of
Hall’s Theorem for d-partite hypergraphs. These observations lead us to propose a heuristic called
Bipartite-reduction. This heuristic tackles the d-partite, d-uniform case by recursively asking for
matchings in (d− 1)-partite, (d− 1)-uniform hypergraphs and so on, until d=2.

Let us start with the case where d = 3. Let G = (VG, EG) be the bipartite graph with the vertex
set VG = V1 ∪ V2 obtained by deleting V3 from a 3-partite, 3-regular hypergraph H = (V,E). The
edge (u, v) ∈ EG iff there exists a hyperedge (u, v, z) ∈ E. One can also assign a weight function
w(·) to the edges during this step such as

w(u, v) = |{z : (u, v, z) ∈ E}| . (2)

A maximum weighted (product, sum, etc.) matching algorithm can be used to obtain a matching
MG on G. A second bipartite graph G′ = (VG′ , EG′) is then created with VG′ = (V1 × V2) ∪ V3
and EG′ = {(uv, z) : (u, v) ∈ MG, (u, v, z) ∈ H}. Under this construction, any matching in G′

corresponds a valid matching in H. Furthermore, if the weight function (2) defined above is used
the following holds.

Proposition 4. Let w(MG) =
∑

(u,v)∈MG
w(u, v) be the size of the matchingMG found in G. Then

G′ has w(MG) edges.

Proof. Consider a node u ∈ V1 and let it be matched with v ∈ V2 in MG. The number of edges
involving uv in G′ is |{z : (u, v, z) ∈ E}|. We see that this number is equivalent to w(u, v), and the
result follows by considering each matched pair in MG.

Thus, by selecting a maximum weighted matching MG and maximizing w(MG), the largest
number of edges will be kept in G′.

For d-dimensional matching, a similar process is followed. First, an ordering i1, i2, . . . , id of
the dimensions is defined. At the jth bipartite reduction step, the matching is found between the
dimension cluster i1i2 · · · ij and dimension ij+1 by similarly solving a bipartite matching instance
where the edge (u1 · · ·uj , v) exists iff vertices u1, . . . , uj were matched in previous steps and there
exists an edge (u1, . . . , uj , v, zj+2, . . . , zd) in H.

Unlike the previous heuristics, Bipartite-reduction does not have any approximation guarantee.
We depict this with the following lemma.

Lemma 5. If algorithms for the maximum cardinality or the maximum weighted matching (with
the suggested edge weights (2)) problems are used, then Bipartite-reduction has a worst-case approx-
imation ratio of Ω(n).

Proof. We discuss initially the case for d = 3 and assume n ≥ 5. Consider an n × n × n hy-
pergraph H with edges ei = (ui, vi, zi), e

′
i = (ui, v1+i mod n, z2) and e′′i = (ui, v1+i mod n, z3) for

i ∈ {1, . . . , n}. There is a perfect matching containing all edges e1, . . . , en.
Suppose we create G by projecting the 3rd dimension. Then, the edges in G are either of the

form hi = (ui, vi) with w(hi) = 1 or h′i = (ui, v1+i mod n) with w(h′i) = 2. Both {h1, . . . , hn}
and {h′1, . . . , h′n} form perfect matchings in G. If the weight function (2) is used, the algorithm

RR n° 9224

Matchings in hypergraphs 10

will necessarily find the perfect matching {h′1, . . . , h′n}. Otherwise, any matching algorithm can
arbitrarily return {h′1, . . . , h′n}.

Assuming that {h′1, . . . , h′n} is returned, the graph G′ will have 2n edges. The edges will be
either in the form hei = (uiv1+i mod n, z2) or he′i = (uiv1+i mod n, z3) for i ∈ {1, . . . , n}. As seen,
z2 and z3 are the only two vertices of the 3rd dimension which can be matched.

The algorithm will return a perfect matching, if we project a dimension other than the 3rd
one. To extend H such that the approximation ratio is Ω(n) whichever dimension is projected,
we need to introduce the following four additional set of edges: e(3)i = (u2, vi, z1+i mod n), e

(4)
i =

(u3, vi, z1+i mod n), e
(5)
i = (u1+i mod n, v2, zi) and e(6)i = (u1+i mod n, v3, zi) for i ∈ {1, . . . , n} that

mirror {e′1, . . . e′n} and {e′′1, . . . , e′′n}. In this case, the maximum matching in G′ will always be 5, as
again the edges in {e1, . . . , en} will be ignored.

The result holds for higher d by noting that H alongside its extension are valid 3-partite
hypergraphs that can occur after a matching for vertices in dimensions i1, . . . , id−2 has been found.

3.6 Performing local search

A local search heuristic is proposed by Hurkens and Schrijver [24]. It starts from a feasible maximal
matching M and performs a series of swaps until it is no longer possible. In a swap, k edges of M
are replaced with at least k + 1 new edges from E \M so that the cardinality of M increases by
at least one. These k edges from M can be replaced with at most d × k new edges. Hence, these
edges can be found by a polynomial algorithm enumerating all the possibilities. The approximation
guarantee improves with higher k values. Local search algorithms are limited in practice due to
their high time complexity. The algorithm might have to examine all

(|M |
k

)
subsets of M to find a

feasible swap at each step. The algorithm by Cygan [9] which achieves
(
d+1+ε

3

)
-approximation is

based on a different swap scheme but is also not suited for large hypergraphs.

4 Experiments

To understand the relative performance of the proposed heuristics, we conducted a wide variety of
experiments with both synthetic and real-life data. The experiments were performed on a computer
equipped with intel Core i7-7600 CPU and 16GB RAM. We compare the adapted Greedy and Karp-
Sipser heuristics with the proposed Karp-Sipser-scaling and Karp-Sipser-mindegree heuristics. For
d = 3, we also consider a local search heuristic [24] called Local-Search, which replaces one hyperedge
from a maximal matchingM with at least two hyperedges from E \M to increase the cardinality of
M . We did not consider local search schemes for higher dimensions or with better approximation
ratios as they are computationally too expensive. For each hypergraph, we perform ten runs of
Greedy and Karp-Sipser with different random decisions and take the maximum cardinality obtained.
Since Karp-Sipser-scaling or Karp-Sipser-mindegree do not pick hyperedges randomly, we run them
only once. We perform 20 steps of the scaling procedure in Karp-Sipser-scaling. We refer to quality
of a matching M in a hypergraph H as the ratio of M ’s cardinality to the size of the smallest
vertex partition of H.

RR n° 9224

Matchings in hypergraphs 11

k k
d dd−3 dd−2 dd−1 d dd−3 dd−2 dd−1

2 - 0.87 1.00 2 - 0.84 1.00
3 0.80 1.00 1.00 3 0.88 1.00 1.00

n = 10 4 1.00 1.00 1.00 n = 30 4 0.99 1.00 1.00
5 1.00 1.00 1.00 5 * 1.00 1.00
2 - 0.88 1.00 2 - 0.87 1.00
3 0.85 1.00 1.00 3 0.84 1.00 1.00

n = 20 4 1.00 1.00 1.00 n = 50 4 ∗ 1.00 1.00
5 1.00 1.00 1.00 5 * * *

Table 1 – The average maximum matching cardinalities of five random instances over n on random
k-out, d-partite, d-uniform hypergraphs for different k, d, and n. No runs for k = dd−3 for d = 2,
and the problems marked with ∗ were not solved within 24 hours.

4.1 Experiments on random hypergraphs

We perform experiments on two classes of d-partite, d-uniform random hypergraphs where each
part has n vertices. The first class contains random k-out hypergraphs, and the second one contains
sparse random hypergraphs.

Random k-out, d-partite, d-uniform hypergraphs
Here, we consider random k-out, d-partite, d-uniform hypergraphs described in Section 2. Hence
(ignoring the duplicate ones), these hypergraphs have around d× k × n hyperedges. These k-out,
d-partite, d-uniform hypergraphs have been recently analyzed in the matching context by Devlin
and Kahn [11]. They state in passing that k should be exponential in d for a perfect matching to
exist with high probability. The bipartite graph variant of the same problem, i.e., with d = 2, has
been extensively studied in the literature [17, 25, 34]; a perfect matching almost always exists in a
random 2-out bipartite graph [34].

We first investigate the existence of perfect matchings in random k-out, d-partite, d-uniform
hypergraphs. For this purpose, we implemented the linear program of d-dimensional match-
ing in CPLEX and found the maximum cardinality of a matching in k-out hypergraphs with
k ∈ {dd−3, dd−2, dd−1} for d ∈ {2, . . . , 5} and n ∈ {10, 20, 30, 50}. For each (k, d, n) triple, we
created five hypergraphs and computed their maximum cardinality matchings. For k = dd−3, we
encountered several hypergraphs with no perfect matching, especially for d = 3. The hypergraphs
with k = dd−2 were also lacking a perfect matching for d = 2. However, all the hypergraphs we
created with k = dd−1 had at least one. Based on these results, we experimentally confirm Devlin
and Kahn’s statement. We also conjecture that dd−1-out random hypergraphs have perfect match-
ings almost surely. The average maximum matching cardinalities we obtained in this experiment
are given in Table 1. In this table, we do not have results for k = dd−3 for d = 2, and the cases
marked with ∗ were not solved within 24 hours.

We now compare the performance of the proposed heuristics on random k-out, d-partite, d-
uniform hypergraphs d ∈ {3, 6, 9} and n ∈ {1000, 10000}. We tested with k values equal to powers
of 2 for k ≤ d log d. The results are summarized in Figure 1. For each (k, d, n) triplet, we create
ten random instances and present the average performance of the heuristics on them. The x-axis

RR n° 9224

Matchings in hypergraphs 12

in each figure denotes k, and the y-axis reports the matching cardinality over n. As seen, Karp-
Sipser-scaling and Karp-Sipser-mindegree have the best performance, comfortably beating the other
alternatives. For d = 3 Karp-Sipser-scaling dominates Karp-Sipser-mindegree, but when d > 3 we
see that Karp-Sipser-mindegree has the best performance. Karp-Sipser performs better than Greedy.
However, their performances get closer as d increases. This is due to the fact that the conditions
for Rule-1 and Rule-2 hold less often for larger d as we have more restrictions to encounter such
cases. Bipartite-reduction has worse performance than the others, and the gap in the performance
grows as d increases. This happens, since at each step, we impose more and more conditions on
the edges involved and there is no chance to recover from bad decisions.

Sparse random d-partite, d-uniform hypergraphs
Here, we consider a random d-partite, d-uniform hypergraph Hi is created with i× n hyperedges.
The parameters used for this experiment are i ∈ {1, 3, 5, 7}, n ∈ {4000, 8000}, and d ∈ {3, 6, 9}.
Each Hi is created by choosing the vertices of a hyperedge uniformly at random for each dimension.
We do not allow duplicate hyperedges. Another random hypergraph Hi+M is then obtained by
planting a perfect matching to Hi. We again generate ten random instances for each parameter
setting. We do not present results for Bipartite-reduction as it was always worse than the others,
as before. The average quality of different heuristics on these instances is shown in Figure 2. The
experiments confirm that Karp-Sipser performs consistently better than Greedy. Furthermore, Karp-
Sipser-scaling performs significantly better than Karp-Sipser. Karp-Sipser-scaling works even better
than the local search heuristic, and it is the only heuristic that is capable of finding planted perfect
matchings for a significant number of the runs. In particular when d > 3, it finds a perfect matching
on Hi+M ’s in all cases except for when d = 6 and i = 7. For d = 3, it finds a perfect matching only
when i = 1 and attains a near perfect matching when i = 3. Interestingly Karp-Sipser-mindegree
outperforms Karp-Sipser-scaling on His but is dominated on Hi+M s, where it is the second best
performing heuristic.

4.2 Evaluating algorithmic choices

Here, we evaluate the use of scaling and the importance of Rule-1 and Rule-2.

Scaling vs no-scaling
To evaluate and emphasize the contribution of scaling better, we compare the performance of the
heuristics on a particular family of d-partite, d-uniform hypergraphs where their bipartite counter-
parts have been used before as challenging instances for the original Karp-Sipserg heuristic [12].

Let AKS be an n×n matrix. Let R1 and C1 be AKS ’s first n/2 rows and columns, respectively,
and R2 and C2 be the remaining n/2 rows and columns, respectively. Let the block R1 × C1 be
full and the block R2 × C2 be empty. A perfect bipartite graph matching is hidden inside the
blocks R1 ×C2 and R2 ×C1 by introducing a non-zero diagonal to each. In addition, a parameter
t connects the last t rows of R1 with all the columns in C2. Similarly, the last t columns in C1 are
connected to all the rows in R2. An instance from this family of matrices is depicted in Figure 3.
Karp-Sipserg is impacted negatively when t ≥ 2 whereas Greedyg struggles even with t = 0 because
random edge selections will almost always be from the dense R1×C1 block. To adapt this scheme
to hypergraphs/tensors, we generate a 3-dimensional tensor TKS such that the nonzero pattern of
each marginal of the 3rd dimension is identical to that of AKS . Table 2 shows the performance of
the heuristics (i.e., matching cardinality normalized with n) for 3-dimensional tensors with n = 300
and t ∈ {2, 4, 8, 16, 32}.

RR n° 9224

Matchings in hypergraphs 13

2 4 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
n=1000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Local-search
Bipartite-reduction

2 4 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
n=10000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Local-search
Bipartite-reduction

(a) d = 3, n = 1000 (left) and n = 10000 (right)

2 4 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9
n=1000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Bipartite-reduction

2 4 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9
n=10000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Bipartite-reduction

(b) d = 6, n = 1000 (left) and n = 10000 (right)

2 4 8 16 32
0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=1000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Bipartite-reduction

2 4 8 16 32
0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=10000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Bipartite-reduction

(c) d = 9, n = 1000 (left) and n = 10000 (right)

Figure 1 – The performance of the heuristics on k-out, d-partite, d-uniform hypergraphs with n
vertices at each part. The y-axis is the ratio of matching cardinality to n whereas the x-axis is k.
No Local-Search for d = 6 and d = 9.

RR n° 9224

Matchings in hypergraphs 14

Hi: Random Hypergraph Hi+M : Random Hypergraph with Perfect Matching
Local Karp- Karp-Sipser- Karp-Sipser- Local Karp- Karp-Sipser- Karp-Sipser-

Greedy Search Sipser scaling minDegree Greedy Search Sipser scaling minDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.43 0.42 0.47 0.47 0.49 0.48 0.49 0.48 0.49 0.48 0.75 0.75 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00
3 0.63 0.63 0.71 0.71 0.73 0.72 0.76 0.76 0.78 0.77 0.72 0.71 0.82 0.81 0.81 0.81 0.99 0.99 0.92 0.92
5 0.70 0.70 0.80 0.80 0.78 0.78 0.86 0.86 0.88 0.88 0.75 0.74 0.84 0.84 0.82 0.82 0.94 0.94 0.92 0.92
7 0.75 0.75 0.84 0.84 0.81 0.81 0.94 0.94 0.93 0.93 0.77 0.77 0.87 0.87 0.83 0.83 0.96 0.96 0.94 0.94

(a) d = 3, without (left) and with (right) the planted matching

Hi: Random Hypergraph Hi+M : Random Hypergraph with Perfect Matching
Karp- Karp-Sipser- Karp-Sipser- Karp- Karp-Sipser- Karp-Sipser-

Greedy Sipser scaling minDegree Greedy Sipser scaling minDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.31 0.31 0.35 0.35 0.35 0.35 0.36 0.37 0.62 0.61 0.90 0.89 1.00 1.00 1.00 1.00
3 0.43 0.43 0.47 0.47 0.48 0.48 0.54 0.54 0.51 0.50 0.56 0.55 1.00 1.00 0.99 0.99
5 0.48 0.48 0.52 0.52 0.54 0.54 0.61 0.61 0.52 0.52 0.56 0.55 1.00 1.00 0.97 0.97
7 0.52 0.52 0.55 0.55 0.59 0.59 0.66 0.66 0.54 0.54 0.57 0.57 0.84 0.80 0.71 0.70

(b) d = 6, without (left) and with (right) the planted matching

Hi: Random Hypergraph Hi+M : Random Hypergraph with Perfect Matching
Karp- Karp-Sipser- Karp-Sipser- Karp- Karp-Sipser- Karp-Sipser-

Greedy Sipser scaling minDegree Greedy Sipser scaling minDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.25 0.24 0.27 0.27 0.27 0.27 0.30 0.30 0.56 0.55 0.80 0.79 1.00 1.00 1.00 1.00
3 0.34 0.33 0.36 0.36 0.36 0.36 0.43 0.43 0.40 0.40 0.44 0.44 1.00 1.00 0.99 1.00
5 0.38 0.37 0.40 0.40 0.41 0.41 0.48 0.48 0.41 0.40 0.43 0.43 1.00 1.00 0.99 0.99
7 0.40 0.40 0.42 0.42 0.44 0.44 0.51 0.51 0.42 0.42 0.44 0.44 1.00 1.00 0.97 0.96

(c) d = 9, without (left) and with (right) the planted matching

Figure 2 – Performance comparisons on d-partite, d-uniform hypergraphs with n = {4000, 8000}.
Hi contains i× n random hyperedges, and Hi+M contains an additional perfect matching.

R1

R2

C1 C2

t

t

Figure 3 – AKS : A challenging instance for
Karp-Sipserg.

Local Karp- Karp-Sipser- Karp-Sipser-
t Greedy Search Sipser scaling minDegree
2 0.53 0.99 0.53 1.00 1.00
4 0.53 0.99 0.53 1.00 1.00
8 0.54 0.99 0.55 1.00 1.00
16 0.55 0.99 0.56 1.00 1.00
32 0.59 0.99 0.59 1.00 1.00

Table 2 – Performance of the proposed heuristics
on 3-partite, 3-uniform hypergraphs corresponding
to TKS with n = 300 vertices in each part.

RR n° 9224

Matchings in hypergraphs 15

d
2 3 6

n quality r
n quality r

n quality r
n

1000 0.83 0.45 0.85 0.47 0.80 0.31
2000 0.86 0.53 0.87 0.56 0.80 0.30
4000 0.82 0.42 0.75 0.17 0.84 0.45

Table 3 – Quality of matching and the number r of the applications of Rule-1 over n in Karp-SipserR1
,

for hypergraphs corresponding to TRF . Karp-Sipser obtains perfect matchings.

The use of scaling indeed reduces the influence of the misleading hyperedges in the dense block
R1 × C1, and the proposed Karp-Sipser-scaling heuristic always finds the perfect matching as does
Karp-Sipser-mindegree. However, Greedy and Karp-Sipser perform significantly worse. Furthermore,
Local Search returns 0.99-approximation in every case because it ends up in a local optima.

Rule-1 vs Rule-2
We finish the discussion on the synthetic data by focusing on Karp-Sipser. Recall from Section 3.2
that Karp-Sipser has two rules. In the bipartite case, a variant of Karp-Sipserg in which Rule-2 is not
applied received more attention than the original version, because it is simpler to implement and
easier to analyze. This simpler variant has been shown to obtain good results both theoretically [27]
and experimentally [12]. Recent work [2] shows that both rules are needed to obtain perfect
matchings in random cubic graphs.

We present a family of hypergraphs to demonstrate that using Rule-2 leads to better perfor-
mance than using Rule-1 only. We use Karp-SipserR1

to refer to Karp-Sipser without Rule-2. As
before, we describe first the bipartite case. Let ARF be a n × n matrix with (ARF)i,j = 1 for
1 ≤ i ≤ j ≤ n, and (ARF)2,1 = (ARF)n−1,n−1 = 1. That is ARF is composed of an upper tri-
angular matrix and two additional subdiagonal nonzeros. The first two columns and the last two
rows have two nonzeros. Assume without loss of generality that the first two rows are merged by
applying Rule-2 on the first column (which is discarded). Then in the reduced matrix, the first
column (corresponding to the second column in the original matrix) will have one nonzero. Rule-1
can now be applied whereupon the first column in the reduced matrix will have degree one. The
process continues similarly until the reduced matrix is a 2× 2 dense block, where applying Rule-2
followed by Rule-1 yields a perfect matching. If only Rule-1 reductions are allowed, initially no
reduction can be applied and randomly chosen edges will be matched, which negatively affects the
quality of the returned matching.

For higher dimensions we proceed as follows. Let TRF be a d-dimensional n × · · · × n tensor.
We set (TRF)i,j,...,j = 1 for 1 ≤ i ≤ j ≤ n and (TRF)1,2,...,2 = (TRF)n,n−1,...,n−1 = 1. By similar
reasoning, we see that Karp-Sipser with both reduction rules will obtain a perfect matching, whereas
Karp-SipserR1

will struggle. We give some results in Table 3 that show the difference between the
two. We test for n ∈ {1000, 2000, 4000} and d ∈ {2, 3, 6}, and show the quality of Karp-SipserR1

and the number of times that Rule-1 is applied over n. We present the best result over 10 runs.
As seen in Table 3, Karp-SipserR1

obtains matchings that are about 13–25% worse than Karp-
Sipser. Furthermore, the larger the number of Rule-1 applications is, the higher the quality is.

RR n° 9224

Matchings in hypergraphs 16

Local- Karp- Karp-Sipser- Karp-Sipser- Bipartite-
Tensor d Dimensions nnz Greedy Search Sipser minDegree scaling Reduction
Uber 3 183× 1140× 1717 1,117,629 183 183 183 183 183 183
nips [19] 3 2, 482 × 2, 862 ×

14, 036
3,101,609 1,847 1,991 1,839 2005 2,007 2,007

Nell-2 [5] 3 12, 092 × 9, 184 ×
28, 818

76,879,419 3,913 4,987 3,935 5,100 5,154 5,175

Enron [31] 4 6, 066 × 5, 699 ×
244, 268× 1, 176

54,202,099 875 - 875 988 1,001 898

Table 4 – Four real-life tensors and the performance of the proposed heuristics on the corresponding
hypergraphs.No result for Local-Search for Enron, as it is four dimensional.

4.3 Experiments with real-life tensor data

We also evaluate the performance of the proposed heuristics on some real-life tensors selected from
FROSTT library [33]. The descriptions of the tensors are given in Table 4. For nips and uber,
a dimension of size 17 and 24 is dropped respectively since they restrict the size of maximum
cardinality matching As described before, a d-partite, d-uniform hypergraph is obtained from a d-
dimensional tensor by keeping a vertex for each dimension index, and a hyperedge for each nonzero.
Unlike the previous hypergraphs in this section, the parts of the hypergraphs obtained from Unlike
the previous experiments, the parts of the hypergraphs obtained from real-life tensors in Table 4
do not have an equal number of vertices. In this case, although the scaling algorithm works along
the same lines, it’s output is slightly different. Let ni = |Vi| be the cardinality at ith dimension
and nmax = max1≤i≤d ni be the maximum one. By slightly modifying Sinkhorn-Knopp, for each
iteration of Karp-Sipser-scaling, we scale the tensor such that the marginals in dimension i sum up
to nmax/ni instead of one. The results in Table 4 resemble those from previous sections; Karp-
Sipser-scaling has the best performance and is slightly superior to Karp-Sipser-mindegree. Greedy
and Karp-Sipser are close to each other and when it is feasible, Local-Search is better than them.
In addition we see that in these instances Bipartite-reduction exhibits a good performance: its
performance is at least as good as Karp-Sipser-scaling for the first three instances, but about 10%
worse for the last one.

4.4 Experiments with an independent set solver

We compare Karp-Sipser-scaling and Karp-Sipser-mindegree with the idea of reducing Max-d-DM
to the problem of finding an independent set in the line graph of the given hypergraph. We show
that this transformation can lead good results, but is restricted because line graphs can require too
much space.

We use KaMIS [29] to find independent sets in graphs. KaMIS uses a plethora of reductions
and a genetic algorithm in order to return high cardinality independent sets. We use the default
settings of KaMIS (where execution time is limited to 600 seconds) and generate the line graphs with
efficient sparse matrix–matrix multiplication routines. We run KaMIS, Greedy, Karp-Sipser-scaling,
and Karp-Sipser-mindegree on a few hypergraphs from previous tests. The results are summarized
in Table 5. The run time of Greedy was less than one second in all instances. KaMIS operates in
rounds, and we give the quality and the run time of the first round and the final output. We note
that KaMIS considers the time-limit only after the first round has been completed. As can be seen,
while the quality of KaMIS is always good and in most cases superior to Karp-Sipser-scaling and

RR n° 9224

Matchings in hypergraphs 17

KaMIS Karp-Sipser- Karp-Sipser-
line graph Round 1 Output Greedy scaling mindegree

hypergraph gen. time quality time quality time quality quality time quality time
8-out, n =
1000, d = 3

10 0.98 80 0.99 600 0.86 0.98 1 0.98 1

8-out, n =
10000, d = 3

112 0.98 507 0.99 600 0.86 0.98 197 0.98 1

8-out, n =
1000, d = 9

298 0.67 798 0.69 802 0.55 0.62 2 0.67 1

n = 8000, d =
3, H3

1 0.77 16 0.81 602 0.63 0.76 5 0.77 1

n = 8000, d =
3, H3+M

2 0.89 25 1.00 430 0.70 1.00 11 0.91 1

Table 5 – Run time (in seconds) and performance comparisons between KaMIS, Greedy, and Karp-
Sipser-scaling. The time required to create the line graphs should be added to KaMIS’s overall
time.

Karp-Sipser-mindegree, it is also significantly slower (its principle is to deliver high quality results).
We also observe that the pseudo scaling of Karp-Sipser-mindegree indeed helps to reduce the run
time compared to Karp-Sipser-scaling.

The line graphs of the real-life instances from Table 4 are too large to be handled. We estimate
using known techniques [7] the number of edges in these graphs to range from 1.5×1010 to 4.7×1013.
The memory needed ranges from 126GB to 380TB if edges are stored twice (assuming 4 bytes per
edge).

5 Conclusion and future work

We have proposed heuristics for the Max-d-DM problem by generalizing existing heuristics for
the maximum cardinality matching in bipartite graphs. The experimental analysis on various
hypergraphs/tensors show the effectiveness and efficiency of the proposed heuristics. As future
work, we plan to investigate the stated conjecture that dd−1-out random hypergraphs have perfect
matchings almost always, and analyze the theoretical guarantees of the proposed algorithms.

References

[1] R. Aharoni and P. Haxell. Hall’s theorem for hypergraphs. Journal of Graph Theory, 35(2):
83–88, 2000.

[2] M. Anastos and A. Frieze. Finding perfect matchings in random cubic graphs in linear time.
arXiv preprint arXiv:1808.00825, 2018.

[3] P. Berman and M. Karpinski. Improved approximation lower bounds on small occurence
optimization. ECCC Report, 2003.

[4] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser. A, 5:147–154,
1946.

RR n° 9224

Matchings in hypergraphs 18

[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M. Mitchell. Toward
an architecture for never-ending language learning. In AAAI, volume 5, page 3, 2010.

[6] Ü. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph Partitioning Tool, Version
3.0. Bilkent University, Department of Computer Engineering, Ankara, 06533 Turkey. Available
at https://www.cc.gatech.edu/\~{}umit/software.html, 1999.

[7] E. Cohen. Structure prediction and computation of sparse matrix products. Journal of Com-
binatorial Optimization, 2(4):307–332, Dec 1998.

[8] L.-B. Cui, W. Li, and M. K. Ng. Birkhoff–von Neumann Theorem for multistochastic tensors.
SIAM Journal on Matrix Analysis and Applications, 35(3):956–973, 2014.

[9] M. Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth local
search. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on,
pages 509–518. IEEE, 2013.

[10] M. Cygan, F. Grandoni, and M. Mastrolilli. How to sell hyperedges: The hypermatching
assignment problem. In Proc. of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 342–351. SIAM, 2013.

[11] P. Devlin and J. Kahn. Perfect fractional matchings in k-out hypergraphs. arXiv preprint
arXiv:1703.03513, 2017.

[12] F. Dufossé, K. Kaya, and B. Uçar. Two approximation algorithms for bipartite matching on
multicore architectures. J. Parallel Distr. Com., 85:62–78, 2015.

[13] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Approximation algorithms for maximum
matchings in undirected graphs. In Proc. Seventh SIAM Workshop on Combinatorial Scientific
Computing, pages 56–65, Bergen, Norway, 2018. SIAM.

[14] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Scaling matrices and counting perfect
matchings in graphs. Technical Report RR-9161, Inria - Research Centre Grenoble – Rhône-
Alpes, 2018.

[15] M. Dyer and A. Frieze. Randomized greedy matching. Random Structures & Algorithms, 2
(1):29–45, 1991.

[16] J. Franklin and J. Lorenz. On the scaling of multidimensional matrices. Linear Algebra and
its applications, 114:717–735, 1989.

[17] A. M. Frieze. Maximum matchings in a class of random graphs. J. Comb. Theory B, 40(2):
196 – 212, 1986. ISSN 0095-8956.

[18] A. Froger, O. Guyon, and E. Pinson. A set packing approach for scheduling passenger train
drivers: the French experience. In RailTokyo2015, Tokyo, Japan, Mar. 2015. URL https:
//hal.archives-ouvertes.fr/hal-01138067.

[19] A. Globerson, G. Chechik, F. Pereira, and N. Tishby. Euclidean Embedding of Co-occurrence
Data. The Journal of Machine Learning Research, 8:2265–2295, 2007.

RR n° 9224

Matchings in hypergraphs 19

[20] G. Gottlob and G. Greco. Decomposing combinatorial auctions and set packing problems. J.
ACM, 60(4):24:1–24:39, Sept. 2013. ISSN 0004-5411.

[21] M. M. Halldórsson. Approximating discrete collections via local improvements. In SODA,
volume 95, pages 160–169, 1995.

[22] E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-dimensional
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 83–97. Springer, 2003.

[23] E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-set packing.
Computational Complexity, 15(1):20–39, 2006.

[24] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an sdr,
with an application to the worst-case ratio of heuristics for packing problems. SIAM Journal
on Discrete Mathematics, 2(1):68–72, 1989.

[25] M. Karoński and B. Pittel. Existence of a perfect matching in a random (1+e−1)–out bipartite
graph. J. Comb. Theory B, 88(1):1–16, 2003. ISSN 0095-8956.

[26] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer compu-
tations, pages 85–103. Springer, 1972.

[27] R. M. Karp and M. Sipser. Maximum matching in sparse random graphs. In FOCS’81, pages
364–375, Nashville, TN, USA, 1981.

[28] O. Kaya and B. Uçar. Scalable sparse tensor decompositions in distributed memory systems.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, pages 77:1–77:11, Austin, Texas, 2015. ACM.

[29] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Finding Near-Optimal In-
dependent Sets at Scale. In Proceedings of the 16th Meeting on Algorithm Engineering and
Exerpimentation (ALENEX’16), 2016.

[30] A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM T.
Math. Software, 16:303–324, 1990.

[31] J. Shetty and J. Adibi. The enron email dataset database schema and brief statistical report.
Information sciences institute technical report, University of Southern California, 4, 2004.

[32] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific J. Math., 21:343–348, 1967.

[33] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. FROSTT: The
formidable repository of open sparse tensors and tools, 2017. URL http://frostt.io/.

[34] D. W. Walkup. Matchings in random regular bipartite digraphs. Discrete Math., 31(1):59–64,
1980.

RR n° 9224

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

