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Heuristiques efficaces pour le couplage dans des
hypergraphes

Résumé : Le problème consistant à trouver un couplage maximal dans un
hypergraphe uniforme ayant d parts est un problème important en optimisation
combinatoire. Dans ce travail, nous concevons d’abord des heuristiques pour
ce problème en généralisant les heuristiques de couplage dans des graphes.
Ensuite, nous proposons une nouvelle heuristique basée sur des méthodes de
mise à l’échelle de tenseur pour étendre le couplage via des sélections judicieuses
d’hyperarêtes. Des expériences sur des hypergraphes aléatoires, synthétiques et
réels montrent que cette nouvelle heuristique est simple à mettre en pratique
et supérieure aux autres pour trouver des couplages de grande cardinalité.

Mots-clés : couplage, hypergraphes, heuristique Karp–Sipser
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1 Introduction

A hypergraph H = (V,E) consists of a finite set V and a collection E of subsets of V . The set
V is called vertices, and the collection E is called hyperedges. A hypergraph is called d-partite
and d-uniform, if V =

⋃d
i=1 Vi with disjoint Vis and every hyperedge contains a single vertex from

each Vi. A matching in a hypergraph is a set of disjoint hyperedges. In this paper, we investigate
effective heuristics for finding large matchings in d-partite, d-uniform hypergraphs.

Finding a maximum cardinality matching in a d-partite, d-uniform hypergraph for d ≥ 3 is NP-
Complete; the 3-partite case is called Max-3-DM problem [24]. This problem has been studied
mostly in the context of local search algorithms [22], and the best known algorithm is due to
Cygan [7] who provides ((d + 1 + ε)/3)-approximation, building on previous work [8, 19]. It is also
shown that it is NP-Hard to approximate Max-3-DM within 98/97 [3]. Similar bounds exist for
higher dimensions: the hardness of approximation for d = 4, 5 and 6 are shown to be 54/53 − ε,
30/29− ε, and 23/22− ε, respectively [20].

Finding a maximum cardinality matching in a d-partite, d-uniform hypergraph is a special case
of the d-Set-Packing [21]. It has been shown that d-Set-Packing is hard to approximate within
a factor of O(d/ log d) [21]. The maximum/perfect set packing problem has many applications in
the literature such as combinatorial auctions [18] and personnel scheduling [16].

Our contributions in this paper are as follows. We propose four heuristics: The first two
heuristics are adaptations of the well-known Greedy [13] and Karp-Sipser [25] heuristics proposed
for bipartite graph maximum cardinality matching. Greedy traverses the edge list in random order
and adds an edge to the matching whenever possible. Karp-Sipser introduces certain rules to Greedy
to improve the cardinality. The third heuristic is inspired by a recent scaling-based approach
proposed for the maximum cardinality matching problem on graphs [10–12]. The fourth one finds
a matching for a reduced, (d − 1)-dimensional problem and exploits it for d-dimensions. This
heuristic uses an exact algorithm for the bipartite matching problem. We perform experiments to
evaluate the performance of these heuristics on special classes of random hypergraphs as well as
real-life data.

One plausible way to tackle the problem is to create the line graph G for a given hypergraph H.
The line graph is created by identifying each hyperedge of H with a vertex in G, and by connecting
two vertices with an edge in G, iff the corresponding hyperedges share a common vertex in H.
Then, successful heuristics for computing large independent sets in graphs, e.g., KaMIS [26], can
be used to compute large matchings in hypergraphs. This approach, although promising quality-
wise, could be impractical. This is so, since building G from H requires quadratic run time (in
terms of the number of hyperedges) and more importantly quadratic storage (again in terms of the
number of hyperedges) in the worst case. While this can be acceptable in some instances, in some
others it would not. We have such instances in the experiments. Notice that while a heuristic for
the independent set problem can be of linear time complexity in graphs, due to our graphs being
a line graph, the actual complexity could be high.

The rest of the paper is organized as follows. Section 2 introduces the notation and summarizes
the background material. The proposed heuristics are summarized in Section 3. Section 4 presents
the experimental results and Section 5 concludes the paper.
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Matchings in hypergraphs 4

2 Background and notation

Tensors are multidimensional arrays, generalizing matrices to higher orders. LetT be a d-dimensional
tensor whose size is n1×· · ·×nd. The elements of T are shown with Ti1,...,id , where ij ∈ {1, . . . , nj}.
A marginal is a (d − 1)-dimensional section of a d-dimensional tensor, obtained by fixing one of
its indices. A d-dimensional tensor where the entries in each of its marginals sum to one is called
d-stochastic. In a d-stochastic tensor, all dimensions necessarily have the same size n. A d-
stochastic tensor where each marginal contains exactly one nonzero entry (equal to one) is called
a permutation tensor. Franklin and Lorenz [14] show that if a nonnegative tensor T has the same
zero-pattern as a d-stochastic tensor B, then one can find a set of d vectors x(1), x(2), . . . , x(d) such
that Ti1,...,id · x

(1)
i1
· · · · · x(d)id

= Bi1,...,id for all i1, . . . , id ∈ {1, . . . , n}. In fact, a multidimensional
version of the algorithm for doubly-stochastic scaling (of matrices) by Sinkhorn and Knopp [29]
can be used to obtain these d vectors.

A d-partite, d-uniform hypergraph H = (V1 ∪ · · · ∪ Vd, E) can be naturally represented by a
d-dimensional tensor. This is done by associating each tensor dimension to a vertex class. Let
|Vi| = ni. Let the tensor T ∈ {0, 1}n1×···×nd have a nonzero element Tv1,...,vd iff (v1, . . . , vd) is an
edge of H. Then, T is called the adjacency tensor of H. We will use this correspondence for our
third heuristic which enhances Karp-Sipser with tensor-scaling to improve the matching cardinality.
In H, if a vertex is a member of only a single hyperedge we call it a degree-1 vertex. Similarly, if
it is a member of only two we call it a degree-2 vertex.

In the k-out random hypergraph model, given V , each vertex u ∈ V selects k hyperedges from the
set Eu = {e : e ⊆ V, u ∈ e} in a uniformly random fashion and the union of these edges form E. We
are interested in the d-partite d-uniform case, and hence Eu = {e : |e∩Vi| = 1 for 1 ≤ i ≤ d, u ∈ e}.
This model generalizes the random k-out bipartite graphs [31]. Devlin and Kahn [9] investigate
fractional matchings in these hypergraphs, and mention in passing that k should be exponential in
d to ensure that a perfect matching exists.

3 Heuristics for maximum d-dimensional matching

A matching which cannot be extended with more edges is called maximal. In this work, we
propose heuristics for finding maximal matchings on d-partite, d-uniform hypergraphs. For such
hypergraphs, any maximal matching is a d-approximate matching. The bound is tight and can
be verified for d = 3. Let H be a 3-partite 3 × 3 × 3 hypergraph with the following edges e1 =
(1, 1, 1), e2 = (2, 2, 2), e3 = (3, 3, 3) and e4 = (1, 2, 3). The maximum matching is {e1, e2, e3} but
the edge {e4} alone forms a maximal matching.

3.1 A Greedy heuristic for Max-d-DM

There exist two variants of Greedy proposed for graph matching in the literature. In short, the
first one [13] randomly visits the edges whereas the second one randomly visits the vertices [27].
We consider the first variant where Greedy traverses the hyperedges in random order and adds the
current hyperedge to the matching whenever possible. Since any maximal matching is possible
as its output, Greedy is a d-approximation heuristic. It provides matchings of varying quality,
depending upon the order in which the hyperedges are processed.

RR n° 9224
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3.2 Karp-Sipser for Max-d-DM

A widely-used heuristic to obtain a (maximal) matching in graphs is the Karp-Sipser heuristic [25].
On a graph, the heuristic iteratively adds a random edge to the matching and reduces the graph
by removing its endpoints, as well as their edges. Whenever possible, Karp-Sipser does not apply
a random selection but reduces the problem size, i.e., number of vertices in the graph, by one via
two rules:

• Rule 1: At any time during the heuristic, if a degree-1 vertex appears it is matched with its
only neighbor.

• Rule 2: Otherwise, if a degree-2 vertex u appears with neighbors {v, w}, u (and its edges) is
removed from the current graph, and v and w are merged to create a new vertex vw whose set
of neighbors is the union of those of v and w (except u). A maximum cardinality matching
for the reduced graph can be extended to obtain one for the current graph by matching u
with either v or w depending on vw’s match.

Both rules are optimal in the sense that they do not reduce the cardinality of maximum matching
in the current graph they are applied on. We now discuss how to adapt Karp-Sipser for d-partite, d-
uniform hypergraphs. Similar to the original one, the modified heuristic iteratively adds a random
hyperedge to the matching, remove its d endpoints, as well as their hyperedges. However, the
random selection is not applied whenever hyperedges defined by the following lemmas appear.

Lemma 1. During the heuristic, if a hyperedge e with at least d − 1 degree-1 endpoints appears,
there exists a maximum cardinality matching in the current hypergraph containing e.

Proof. Let H ′ be the current hypergraph at hand and e = (u1, . . . , ud) be a hyperedge in H ′ whose
d−1 endpoints are degree-1 vertices. Let M ′ be a maximum cardinality matching in H ′. If e ∈M ′,
we are done. Otherwise, assume that ud is the endpoint matched by a hyperedge e′ ∈ M ′ (note
that if ud is not matched M ′ can be extended with e). Since ui, 1 ≤ i < d, are not matched in M ′,
M ′ \ {e′} ∪ {e} defines a valid maximum cardinality matching for H ′.

Lemma 2. During the heuristic, let e = (u1, . . . , ud) and e′ = (u′1, . . . , u
′
d) be two hyperedges

sharing at least one endpoint where for an index set I ⊂ {1, . . . , d} of cardinality d− 1, the vertices
ui, u

′
i for all i ∈ I only touch e and/or e′. That is for each i ∈ I, either ui = u′i is a degree-2 vertex

or ui 6= u′i and they are both degree-1 vertices. For j /∈ I, uj and u′j are arbitrary. Then, in the
current hypergraph, there exists a maximum cardinality matching having either e or e′.

Proof. Let H ′ be the current hypergraph at hand and j /∈ I be the remaining part id. Let M ′ be a
maximum cardinality matching in H ′. If either e ∈M ′ or e′ ∈M ′, we are done. Otherwise, ui and
u′i for all i ∈ I are unmatched by M ′. Furthermore, since M ′ is maximal, both uj and u′j must be
matched by M ′ (otherwise, M ′ can be extended by either e or e′). Let e′′ ∈ M ′ be the hyperedge
matching uj . Then M ′ \ {e′′} ∪ {e} defines a valid maximum cardinality matching for H ′.

Whenever such hyperedges appear, the rules below are applied in the same order:

• Rule 1: At any time during the heuristic, if a hyperedge e with at least d − 1 degree-1
endpoints appears, instead of a random edge, e is added to the matching and removed from
the hypergraph.

RR n° 9224



Matchings in hypergraphs 6

• Rule 2: Otherwise, if two hyperedges e and e′ as defined in Lemma 2 appear, they are
removed from the current hypergraph with the endpoints ui, u

′
i ∀i ∈ I. The remaining two

distinct endpoints uj and u′j , j /∈ I are merged to create a new vertex uju
′
j . The hyperedge

list of the new vertex is defined by the union of uj ’s and u′j ’s hyperedge lists (except e
and e′). After obtaining a maximal matching on the reduced hypergraph, depending on the
hyperedge matching uju

′
j , either e or e

′ can be used to obtain a larger matching in the current
hypergraph.

Although the extended rules usually lead to improved results in comparison to Greedy, Karp-Sipser
still adheres to the d-approximation bound of maximal matchings. To see this, we can use the toy
example given as a worst-case for Greedy. For the example given at the beginning of Section 3,
Karp-Sipser generates a maximum cardinality matching by applying the first rule. However, when
e5 = (2, 1, 3) and e6 = (3, 1, 3) are added to the example, neither of the two rules can be applied.
As before, in case e4 is randomly selected, it alone forms a maximal matching.

3.3 Karp-Sipser-scaling for Max-d-DM

Karp-Sipser can be modified for better decisions in case neither of the two rules hold. In our variant,
instead of a random selection, we first scale the adjacency tensor of H and obtain a d-stochastic
tensor T. We then augment the matching by adding the edge which corresponds to the largest
value in T. The modified heuristic is summarized in Algorithm 1.

Our inspiration comes from the d = 2 case and more specifically from the relation between
scaling and matching. It is known due to Birkhoff [4] that the polytope of n× n doubly stochastic
matrices is the convex hull of the n× n permutation matrices. A nonnegative matrix A where all
entries participate in some perfect matching can be scaled with two positive diagonal matrices R
and C such that RAC is doubly stochastic. Otherwise, provided that A has a perfect matching,
it can still be scaled to a doubly stochastic form, but not with these positive diagonal matrices. In
this case, the entries not participating in any perfect matching tend to be zero in the scaled matrix.
This fact is exploited to provide randomized approximation algorithms for graph matching [10, 11].
By using the scaling as a preprocessing step and choosing edges with a probability corresponding
to the scaled entry, the edges which are not included in a perfect matching become less likely to
be chosen. The current algorithm differs from these approaches by selecting a single hyperedge at
each step and applying scaling again before the next selection.

Unfortunately for d ≥ 3, there is no equivalent of Birkhoff’s theorem as demonstrated by the
following lemma.

Lemma 3. For d ≥ 2, there exist extreme points in the set of d-stochastic tensors which are not
permutations tensors.

Proof. We provide a 2× 2× 2 tensor T3 with an inspiration from [6]. For convenience, we depict
T3 by two 2× 2 matrices as follows which are the marginals of the 3rd dimension:

T3
:,:,1 =

[
1
2 0
0 1

2

]
and T3

:,:,2 =

[
0 1

2
1
2 0

]
The maximum matching cardinality in this tensor is 1 and it cannot be written as a linear com-
bination of permutation tensors. This particular extreme point can be extended for higher d by

RR n° 9224
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Algorithm 1 Karp-Sipser-scaling
Input: A d-partite d-uniform n1 × · · · × nd hypergraph H = (V,E)
Output: A maximal matching M of H
1: M ← ∅ I Initially M is empty
2: S ← ∅ I Stack for the merges for Rule 2
3: while H is not empty do
4: Remove the isolated vertices from H
5: if ∃e = (u1, . . . , ud) as in Rule 1 then
6: M ←M ∪ {e} I Add e to the matching
7: Apply the reduction for Rule 1 on H
8: else if ∃e = (u1, . . . , ud), e′ = (u′

1, . . . , u
′
d) and I as in Rule 2 then

9: Let j be the part index where j /∈ I

10: Apply the reduction for Rule 2 on H by introducing a merged vertex uju
′
j

11: E′ = {(v1, . . . , uju
′
j , . . . , vd) : ∀(v1, . . . , uj , . . . , vd) ∈ E} I Edges of uj

12: S.push(e, e′, uju
′
j , E′) I Store the current merge

13: else
14: T← Scale(adj(H)) I Scale the adjacency tensor of H
15: e← arg max(u1,...,ud) (Tu1,...,ud

) I Find the maximum entry in T
16: M ←M ∪ {e} I Add e to the matching
17: Remove all hyperedges of u1, . . . , ud from E
18: V ← V \ {u1, . . . , ud}
19: while S 6= ∅ do
20: (e, e′, uju

′
j , E

′)← S.pop() I Get the most recent merge
21: if uju

′
j is not matched by M then

22: M ←M ∪ {e}
23: else
24: Let e′′ ∈M be the hyperedge matching uju

′
j

25: if e′′ ∈ E′ then
26: Replace uju

′
j in e′′ with u′

j

27: M ←M ∪ {e′}
28: else
29: Replace uju

′
j in e′′ with uj

30: M ←M ∪ {e}

setting Td
u1,u2,u3,...,u3

= T3
u1,u2,u3

for each nonzero element T3
u1,u2,u3

and for higher n by setting
Td

3,...,3 = · · · = Td
n,...,n = 1.

These extreme points can be used to generate other d-stochastic tensors as linear combinations.
Due to the lemma above, we do not have the theoretical foundation to imply that hyperedges
corresponding to the large entries in the scaled tensor will likely participate in a perfect matching.
Nonetheless, the entries not in any perfect matching tend to become zero, however, we cannot be
sure that this happens to all. For the worst case example of Karp-Sipser described above, the scaling
indeed helps the entries corresponding to e4, e5 and e6 to become zero.

Let S3 be the tensor obtained by swapping the 2nd and 3rd dimensions of T3. We can see that

the tensor
1

2
T3 +

1

2
S3 has a perfect matching, however, obtained by a linear combination of two

extreme points that are not permutation tensors. This shows that even when the heuristic selects
entries from such extreme points, we can still end up with a high quality matching.

On a d-partite, d-uniform hypergraph H = (V,E), the Sinkhorn-Knopp algorithm used for

RR n° 9224



Matchings in hypergraphs 8

scaling operates in iterations, each of which requires O(|E| × d) time. In practice, we perform only
a few iterations (e.g., 10–20). Since, we can match at most |V |/d hyperedges, the overall run time
cost associated with scaling is O(|V | × |E|). A straightforward implementation of the second rule
can take quadratic time in the worst case of a large number of repetitive merges with a given vertex.
In practice, more of a linear time behavior should be observed for the second rule.

3.4 Reduction to bipartite graph matching

A perfect matching in a d-partite, d-uniform hypergraphH remains perfect when projected on a (d−
1)-partite, (d− 1)-uniform hypergraph obtained by removing one of H’s dimensions. Matchability
in (d−1)-dimensional sub-hypergraphs has been investigated in [1] to provide an equivalent of Hall’s
Theorem to hypergraphs with d dimensions. These observations lead us to handle the d-partite,
d-uniform case by recursively asking for matchings in (d− 1)-partite, (d− 1)-uniform hypergraphs
and so on, until d=2.

Let us start with the case where d = 3. Let G = (VG, EG) be the bipartite graph with the vertex
set VG = V1 ∪ V2 obtained by deleting V3 from a 3-partite, 3-regular hypergraph H = (V,E). The
edge (u, v) ∈ EG iff there exists a hyperedge (u, v, z) ∈ E. One can also assign a weight function
w(·) to the edges during this step such as

w(u, v) = |{z : (u, v, z) ∈ E}| . (1)

A maximum weighted (product, sum, etc.) matching algorithm can be used to obtain a matching
MG on G. A second bipartite graph G′ = (VG′ , EG′) is then created with VG′ = (V1 × V2) ∪ V3

and EG′ = {(uv, z) : (u, v) ∈ MG, (u, v, z) ∈ H}. Under this construction, any matching in G′

corresponds a valid matching in H. Furthermore, if the weight function (1) defined above is used
the following holds.

Proposition 4. Let w(MG) =
∑

(u,v)∈MG
w(u, v) be the size of the matching MG found in G. Then

G′ has w(MG) edges.

Thus, by selecting a maximum weighted matching MG and maximizing w(MG), the largest
number of edges will be kept in G′.

For d-dimensional matching, a similar process is followed. First, an ordering i1, i2, . . . , id of
the dimensions is defined. At the jth step, the matching is found between the dimension cluster
i1i2 · · · ij and dimension ij+1 by similarly solving a bipartite matching instance where the edge
(u1 · · ·uj , v) exists iff vertices u1, . . . , uj were matched in previous steps and there exists an edge
(u1, . . . , uj , v, zj+2, . . . , zd) in H. Although sounds promising, in our experiments, this approach
yields worse results than the above mentioned heuristics. We believe, this happens, since at each
step, we impose more and more conditions on the matching and there is no chance to recover from
bad decisions.

Unlike the previous heuristics, this algorithm does not have any approximation guarantee. We
depict this with the following lemma.

Lemma 5. The worst-case approximation ratio of the bipartite-reduction algorithm is Ω(n) if an
arbitrary matching is returned in G′ or weight function (1) is used.

Proof. We discuss initially the case for d = 3 and assume n ≥ 5. Consider an n × n × n hy-
pergraph H with edges ei = (ui, vi, zi), e

′
i = (ui, v1+i mod n, z2) and e′′i = (ui, v1+i mod n, z3) for

i ∈ {1, . . . , n}. There is a perfect matching containing all edges e1, . . . , en.

RR n° 9224



Matchings in hypergraphs 9

Suppose we create G by projecting the 3rd dimension. Then, the edges in G are either of the
form hi = (ui, vi) with w(hi) = 1 or h′i = (ui, v1+i mod n) with w(h′i) = 2. Both {h1, . . . , hn}
and {h′1, . . . , h′n} form perfect matchings in G. If the weight function (1) is used, the algorithm
will necessarily find the perfect matching {h′1, . . . , h′n}. Otherwise, any matching algorithm can
arbitrarily return {h′1, . . . , h′n}.

Assuming that {h′1, . . . , h′n} is returned, the graph G′ will have 2n edges. The edges will be
either in the form hei = (uiv1+i mod n, z2) or he′i = (uiv1+i mod n, z3) for i ∈ {1, . . . , n}. As seen,
z2 and z3 are the only two vertices of the 3rd dimension which can be matched.

The algorithm will return a perfect matching, if we project a dimension other than the 3rd
one. To extend H such that the approximation ratio is Ω(n) whichever dimension is projected,
we need to introduce the following four additional set of edges: e

(3)
i = (u2, vi, z1+i mod n), e

(4)
i =

(u3, vi, z1+i mod n), e
(5)
i = (u1+i mod n, v2, zi) and e

(6)
i = (u1+i mod n, v3, zi) for i ∈ {1, . . . , n} that

mirror {e′1, . . . e′n} and {e′′1, . . . , e′′n}. In this case, the maximum matching in G′ will always be 5, as
again the edges in {e1, . . . , en} will be ignored.

The result holds for higher d by noting that H alongside its extension are valid 3-partite
hypergraphs that can occur after a matching for vertices in dimensions i1, . . . , id−2 has been found.

3.5 Performing local search

A local search heuristic is proposed by Hurkens and Schrijver [22]. It starts from a feasible maximal
matching M and performs a series of swaps until it is no longer possible. In a swap, k edges of M
are replaced with at least k + 1 new edges from E \M so that the cardinality of M increases by
at least one. These k edges from M can be replaced with at most d × k new edges. Hence, these
edges can be found by a polynomial algorithm enumerating all the possibilities. The approximation
guarantee improves with higher k values. Local search algorithms are limited in practice due to
their high time complexity. The algorithm might have to examine all

(|M |
k

)
subsets of M to find a

feasible swap at each step. The algorithm by Cygan [7] which achieves (d+1+ε
3 )-approximation is

based on a different swap scheme but is also not suited for large hypergraphs.

4 Experiments

To understand the relative performance of the proposed heuristics, we conducted a wide variety
of experiments with both synthetic and real-life data. We compare the adapted Greedy and Karp-
Sipser heuristics with the proposed Karp-Sipser-scaling. When d = 3, we also consider a local
search heuristic [22].In the d = 3 case, this heuristic repeatedly replaces one hyperedge from a
matching M with hyperedges from E \M to increase the cardinality of M . We did not consider
local search schemes for higher dimensions or with better approximation ratios as they are too
computationally expensive. For the random models examined in Section 4.1, we generate ten
random hypergraphs for each parameter setting and report the average cardinality of the heuristics
over these ten instances. For each hypergraph, we perform ten runs of Greedy and Karp-Sipser
with different random decisions and take the maximum cardinality obtained. Since we do not have
random decisions within Karp-Sipser-scaling, we run it only once.

RR n° 9224



Matchings in hypergraphs 10

k k
d dd−3 dd−2 dd−1 d dd−3 dd−2 dd−1

2 - 0.87 1.00 2 - 0.84 1.00
3 0.80 1.00 1.00 3 0.88 1.00 1.00

n = 10 4 1.00 1.00 1.00 n = 30 4 0.99 1.00 1.00
5 1.00 1.00 1.00 5 * 1.00 1.00
2 - 0.88 1.00 2 - 0.87 1.00
3 0.85 1.00 1.00 3 0.84 1.00 1.00

n = 20 4 1.00 1.00 1.00 n = 50 4 ∗ 1.00 1.00
5 1.00 1.00 1.00 5 * * *

Table 1 – The average maximum matching cardinalities on random k-out hypergraphs for k ∈
{dd−3, dd−2, dd−1}, d ∈ {2, . . . , 5}, and n ∈ {10, 20, 30, 50}. Each number is the average of maximum
matching cardinalities for five random k-out hypergraphs. No runs for k = dd−3 for d = 2, and the
problems marked with ∗ were not solved within 24 hours.

4.1 Experiments on random hypergraphs

We perform experiments on two classes of d-partite, d-uniform random hypergraphs where each
part has n vertices. The first class contains sparse random graphs, and the second one contains
random k-out hypergraphs.

For the first set of experiments, we create randomly a d-partite, d-uniform hypergraph Hi with
i × n hyperedges for i ∈ {1, 3, 5, 7}, n ∈ {4000, 8000}, and d ∈ {3, 6, 9}. These hypergraphs
are created by choosing the vertices of a hyperedge uniformly at random for each dimension.
Duplicates are not allowed. We then created another set of hypergraphs Hi+M , where we added
a perfect matching to Hi. The results of these experiments are seen in Figure 1, where we show
two subfigures for each d. In each sub-figure, the y-axis is the ratio of matching cardinality to n,
whereas the x-axis marks correspond to the experiments with Hi and Hi+M , for i = 1, 3, 5, 7. As
seen in this figure, Karp-Sipser performs consistently better than Greedy, and furthermore, Karp-
Sipser-scaling performs significantly better than Karp-Sipser. Karp-Sipser-scaling works even better
than the local search heuristic, and it is the only heuristic that is capable of finding planted perfect
matchings for a significant number of the runs. In particular on Hi+M ’s, when d > 3 it finds a
perfect matching in all cases except when d = 6 and i = 7. For d = 3 it finds a perfect matching
only when i = 1 and attains a near perfect matching when i = 3. Nonetheless its performance is
still better than the second best alternative, which is local search.

The second class we experimented on is random k-out hypergraphs where each vertex chooses
k of the hyperedges it can be a member of uniformly at random. Hence (ignoring the duplicate
ones), these hypergraphs have around d×k×n hyperedges. These k-out (d-partite and d-uniform)
hypergraphs have been recently analyzed in the matching context by Devlin and Kahn [9]. They
state in passing that k should be exponential in d for a perfect matching to exist with high prob-
ability. The bipartite graph variant of the same problem, i.e., with d = 2, has been extensively
studied in the literature [15, 23, 31]; a perfect matching almost always exists in a random 2-out
bipartite graph [31].

In our preliminary experiments, we implemented the linear program of d-dimensional match-
ing in CPLEX and found the maximum cardinality of a matching in k-out hypergraphs with
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(a) d = 3, n = 4000 (left) and n = 8000 (right)

(b) d = 6, n = 4000 (left) and n = 8000 (right)

(c) d = 9, n = 4000 (left) and n = 8000 (right)Figure 1 – The performance of the heuristics on d-partite, d-uniform random hypergraphs where Hi

contains i×n random hyperedges and Hi+M contains an additional perfect matching. In the plots,
the y-axis is the ratio of matching cardinality to n whereas the x-axis is the number of hyperedges.

RR n° 9224



Matchings in hypergraphs 12

k ∈ {dd−3, dd−2, dd−1} for d ∈ {2, . . . , 5} and n ∈ {10, 20, 30, 50}. For each (k, d, n) triple, we
created five hypergraphs and computed their maximum cardinality matchings. For k = dd−3, we
encountered several hypergraphs with no perfect matching, especially for d = 3. The hypergraphs
with k = dd−2 were also lacking a perfect matching for d = 2. However, all the hypergraphs we
created with k = dd−1 had at least one. Based on these results, we experimentally confirm Devlin
and Kahn’s statement. We also conjecture that dd−1-out random hypergraphs have perfect match-
ings almost surely. The average maximum matching cardinalities we obtained in this experiment
are given in Table 1. In this table, we do not have results for k = dd−3 for d = 2, and the cases
marked with ∗ were not solved within 24 hours.

In the follow-up experiments, we compared the performance of the proposed heuristics on
random k-out hypergraphs with d ∈ {3, 6, 9} and n ∈ {1000, 10000}. We tested with k values
equal to powers of 2 for k ≤ d log d. The results are summarized in Figure 2. The x-axis in each
figure denotes k, and the y-axis reports the matching cardinality over n. As also confirmed by the
previous set of experiments, Karp-Sipser-scaling has the best performance comfortably beating the
other alternatives. Similarly, Karp-Sipser performs better than Greedy. However, their performances
get closer as d increases, which is due to the fact that it gets harder to execute Rule 1 and Rule
2 and perform judicious decisions since we have more restrictions to encounter such cases with
higher d values. For these experiments, we report the performance of the heuristic which reduces
the problem to bipartite matching; it has worse performance than the rest of the heuristics, and
the gap in the performance grows as d increases.

4.2 Experiments with synthetic data

To evaluate and emphasize the contribution of scaling better, we compare the performance of
the heuristics on a particular family of d-partite, d-uniform hypergraphs where their bipartite
counterparts have been used in the literature to construct challenging graph instances for the
original Karp-Sipser heuristic [10].

Let A be an n × n matrix. Let R1 and C1 be A’s first n/2 rows and columns, respectively.
Similarly, let R2 and C2 be the remaining n/2 rows and columns, respectively. To create challenging
bipartite cases, the block R1×C1 is set to full and R2×C2 is set to empty. A perfect bipartite graph
matching is hidden inside the blocks R1×C2 and R2×C1 by introducing a non-zero diagonal to each.
In addition, a parameter t connects the last t rows of R1 with all the columns in C2. Similarly, the
last t columns in C1 are connected to all the rows in R2. The nonzero pattern of A for t ∈ {2, 32}
can be seen in Figure 3. Karp-Sipser is impacted negatively when t ≥ 1 whereas Greedy struggles
even with t = 0 because random edge selections will almost always be from the dense R1 × C1

block.
To adapt this scheme to hypergraphs/tensors, we generate a 3-dimensional tensor T such that

the nonzero pattern of each marginal for the 3rd dimension is identical to that of A. One can
continue to this process for constructions with larger d, i.e., set each marginal of a 4-dimensional
tensor to T. Table 2 shows the performance of the algorithms (i.e., matching cardinality normalized
with n) for 3-dimensional tensors with n = 300 and t ∈ {2, 4, 8, 16, 32}.

Thanks to scaling, the proposed Karp-Sipser-scaling heuristic always finds a perfect matching for
these 3-dimensional instances. However, Greedy and Karp-Sipser perform significantly worse. The
use of scaling indeed helps to minimize the influence of the misleading edges in the dense block
R1 × C1. An interesting observation is the performance of local search which also finds a perfect
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(a) d = 3, n = 1000 (left) and n = 10000 (right)

(b) d = 6, n = 1000 (left) and n = 10000 (right)

(c) d = 9, n = 1000 (left) and n = 10000 (right)

Figure 2 – The performance of the heuristics on d-partite, d-uniform k-out hypergraphs with n
vertices at each part. In the plots, the y-axis is the ratio of matching cardinality to n whereas the
x-axis is k. No local search heuristic for d = 9.
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Figure 3 – Bad n× n matrices for Karp-Sipser with t = 2 (left) and t = 32 (right).

Local Karp- Karp-Sipser-
t Greedy Search Sipser scaling
2 0.53 1.00 0.53 1.00
4 0.53 1.00 0.53 1.00
8 0.54 1.00 0.55 1.00
16 0.55 1.00 0.56 1.00
32 0.59 1.00 0.59 1.00

Table 2 – Performance of the proposed heuristics, i.e., ratio of cardinality to n, on bad 3-partite,
3-uniform hypergraphs with n = 300 vertices in each part.

matching on all bad instances, unlike the previous experiments.

4.2.1 Rule-1 vs Rule-2

We finish the discussion on the synthetic data by focusing on a test-case concerning solely the
Karp-Sipser algorithm. We mentioned before in Subsection 3.2 that Karp-Sipser has two rules which
are applied depending on the situation. In the bipartite model, a variant of Karp-Sipser in which
only the rule-1 reductions are considered and applied has received more attention than the original
version, because it is simpler to implement as well as to analyse. The simpler variant has been
shown to obtains good results both theoretically [25] and experimentally [10]. Recent work by
Anastos and Frieze [2] show that both rules help to obtain good results in random cubic graphs.

Here, we propose a family of hypergraphs to demonstrate that Karp-Sipser with the first and
second rules obtains significantly better results than Karp-Sipser with the first rule only.

As in the previous example first we consider the bipartite case. Let A be a n×n matrix. We set
Ai,j = 1 for i ≤ j where i, j ∈ {1, . . . , n}. In addition set A2,1 = 1 and An,n−1 = 1. That is A is
composed of an upper triangular matrix and two additional subdiagonal nonzeros. The 1st and the
2nd columns as well as the n-th and (n− 1) rows have degree 2. Assume without loss of generality
that rows 1 and 2 are merged by applying the second reduction rule on the first column (which is
discarded). Then in the reduced matrix the first column (corresponding to the second column in
the original matrix) will have degree-1. The first rule can be now applied and similarly the first
column in the reduced matrix will have degree equal to 1. The process continues in similar fashion
until the reduced matrix has the form of a 2 × 2 dense block. At this point applying the second
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d
n 2 3 6

1000 0.83 0.85 0.80
2000 0.86 0.87 0.80
4000 0.82 0.75 0.84

Table 3 – Maximum cardinality of matching over n observed in 10 experiments of the Karp-Sipser
heuristic where only rule-1 reductions are considered in the family of hypergraphs that favors rule-2
reductions for n ∈ {1000, 200, 4000} and d ∈ {2, 3, 6}. The proposed Karp-Sipser with the rule-2
reductions always obtains a perfect matching and therefore not represented in the table.

d
n 2 3 6

1000 0.45 0.47 0.31
2000 0.53 0.56 0.30
4000 0.42 0.17 0.45

Table 4 – The percentage of the times that rule-1 is applied over n of Karp-Sipser using only the
first rule for the best solutions shown in Table 3.

rule followed by the first rule yields a perfect matching. In contrast, if only rule-1 reductions are
allowed, we see that initially no reduction can be applied, and we have to rely on random selections,
which negatively impact the quality of the returned matching.

For higher dimensions we follow a similar strategy. Assume a d-dimensional n× · · · × n tensor
T. We set Ti,j,...,j for i ≤ j where i, j ∈ {1, . . . , n} and T1,2,...,2 = Tn,n−1,...,n−1 = 1. By similar
reasoning, we see that Karp-Sipser will obtain a perfect matching whereas its variant will struggle.

We give some results in Table 3 that showcase the difference between the two. We test for
n ∈ {1000, 200, 4000 and d ∈ {2, 3, 6}. As we see the quality of Karp-Sipser is always 1 whereas the
other variant ranges from 0.7 · n to 0.87 · n.

Furthermore Table 4 depicts the percentage of times that rule-1 is applied over n in the solutions
presented at the equivalent entries at Table 3. We see that the more rule-1 is applied the higher the
quality seems to get. This is on par with the n−2 applications of rule-1 in the Karp-Sipser algorithm
which is the maximum number possible and which leads to the perfect matching. The difference is
that without the initial application of the second rule, the variant has to rely on random selections
until edges satisfying the first rule appear.

4.3 Experiments with real-life tensor data

We also evaluate the performance of the proposed heuristics on three real-life tensors selected from
FROSTT library [30]. The descriptions of the tensors are given in Table 5. As described before,
a d-partite, d-uniform hypergraph is obtained from a d-dimensional tensor by keeping a vertex for
each dimension index, and a hyperedge for each nonzero. Unlike the previous hypergraphs in this
section, the parts of the hypergraphs obtained from real-life tensors in Table 5 do not have an equal
number of vertices. In this case, although the scaling algorithm, i.e., Sinkhorn-Knopp, works along
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Local- Karp- Karp-Sipser- Bipartite-
Tensor d Dimensions nnz Greedy Search Sipser scaling Reduction
nips [17] 3 2, 482× 2, 862× 14, 036 3,101,609 1,847 1,991 1,839 2,007 2,007
Nell-2 [5] 3 12, 092× 9, 184× 28, 818 76,879,419 3,913 4,987 3,935 5,154 5,175
Enron [28] 4 6, 066× 5, 699× 244, 268× 1, 176 54,202,099 875 - 875 1,001 898

Table 5 – Three real-life tensors and the performance of the proposed heuristics on the corresponding
hypergraphs. For nips, a dimension of size 17 is dropped since this restricts the size of maximum
cardinality matching. No result for Local-Search for Enron, as it is four dimensional.

the same lines, its output is slightly different. Let ni = |Vi| be the cardinality at ith dimension
and nmax = max1≤i≤d ni be the maximum one. By slightly modifying Sinkhorn-Knopp, for each
iteration of Karp-Sipser-scaling, we scale the tensor such that the marginals in dimension i sum up
to nmax/ni instead of one. The results of these experiments are shown in Table 5 which are similar
to the results on bad instances; the performance of Greedy and basic Karp-Sipser are close to each
other and when it is feasible, local search is better than them. The proposed Karp-Sipser-scaling
heuristic is, again, beats these alternatives. Furthermore we observe that in these instances the
bipartite-reduction algorithm exhibits very good performance. In the two 3-partite hypergraphs its
performance is as good as Karp-Sipser-scaling, although it is outperformed by Karp-Sipser-scaling in
the enron dataset.

The instances Nell-2 and Enron highlight why the idea of creating a line graph and using an
independent set solver on the graph is impractical. For example in Nell-2, there is a vertex in the
second dimension with 1926389 hyperedges. The clique composed of the vertices corresponding to
those hyperedges will require more than 14000GBytes of memory assuming 4 bytes per edge and
storing each edge twice. In Enron, there is a vertex in the first dimension with 5258656 hyperedges;
the corresponding clique requires more than 110000Gbytes of memory.

5 Conclusion and future work

We have introduced generalizations of existing graph matching heuristics for the d-dimensional
matching problem. Furthermore, we proposed a new technique based on tensor scaling to extend
the matching by judiciously selecting the new hyperedges/nonzeros. The experimental analysis
on various hypergraphs/tensors shows that the proposed heuristic is significantly better than the
existing ones in terms of the matching cardinality. As future work, we plan to investigate the stated
conjecture that dd−1-out random hypergraphs have perfect matchings almost always. We also plan
to analyze the theoretical guarantees of the proposed algorithms.
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