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Abstract — In this work a new numerical strategy will be assessed to evaluate the fretting problem 

under cylindrical contact conditions. For that purpose, a methodology introduced recently to describe 

the mechanical fields in the proximity of the contact edges will be used to enrich fretting simulations 

using the X-FEM. This strategy is expected to represent a breakthrough concerning the solution of this 

kind of contact problems, once that it permits to perform fretting simulations with coarser meshes 

facilitating the implementation in an industrial context.  
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1. Introduction 

The problem of fretting happens when we have mechanical parts in contact experiencing tangential 

oscillatory displacements of small amplitude (the order of 𝜇m). This kind of problems are responsible 

for high levels of stress concentration close to the contact surfaces which associated with the wear makes 

cracks very likely to occur. Things can be even worse when bulk fatigue loads are present leading to a 

premature failure of the components [1, 2]. A classic example where fretting fatigue takes place is the 

connection between blades and discs in aeronautical compressors. In this case, the centrifugal load 

experienced by the pads in association with the vibration loads, due to the interactions between the 

blades and the airflow, give origin to the fretting fatigue phenomenon. 

The fretting problem is challenging in an industrial context where analytical solutions are seldom 

available, making FE simulations with fine meshes needed to capture the stress concentration around 

the contact surfaces. It makes the problem extremely expensive. In this work, a new methodology to 

describe the mechanical fields close to the contact edges through a crack analogy approach [3] will be 

used to enrich fretting simulations performed on coarse meshes. The enrichment technique used here is 

the X-FEM, taking advantage of the similarity found to describe the mechanical fields around the contact 

edges in fretting problems with the ones found in linear elastic fracture mechanics problems around the 

crack tip. A nonlocal approach to estimates precisely the position of the contact edge will also be 

proposed and assessed, once that, as we perform simulations with coarse meshes, the right position of 

the contact edges starts to be unknown. 

2. Overview of the method 

2.1. Crack analogy approach 

Recently, Montebello et al. proposed a new methodology to describe the mechanical fields in fretting 

problems [3]. They have done an analogy to fracture mechanics problems and described the velocity 

field close to the contact edges through separated variables. The idea consisted in describing the local 

velocity field in a referential attached at the contact edges as product of some nonlocal intensity factors, 

that are capable to capture the external loads effects, and some local spatial reference fields, that are 
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able to catch the local geometric effects of the problem. The velocity field can then be expressed as 

follows: 

                                             𝒗𝑅′(𝒙, 𝑡) = 𝐼̇𝑠(𝑡)𝒅𝑠(𝒙) + 𝐼�̇�(𝑡)𝒅𝑎(𝒙) + 𝐼�̇�(𝑡)𝒅𝑐(𝒙)                                      (1)  

where we first need to compute the symmetric and antisymmetric parts of the spatial reference fields  

𝒅𝑠 and 𝒅𝑎, respectively. First, it is needed to show the problem to be solved and the load history applied 

to perform the decomposition of the velocity field. The problem solved is the cylindrical contact 

configuration shown in Figure 1a. Firstly, a normal load P is applied on the pad pressing it against the 

specimen that is fixed on the bottom and on both lateral sides (note the small perturbation in the normal 

load before its final plateau). Secondly, a tangential oscillatory load Q is applied on the pad imposing 

the fretting conditions, Figure 1b. The ratio Q/P<𝜇 is always respected, where 𝜇 is friction coefficient. 

It ensures the partial slip condition.  

 

 

Figure 1 - (a) Cylindrical contact under fretting conditions, (b) load history applied to extract the spatial 

reference. 

The spatial reference fields 𝒅𝑠 and 𝒅𝑎 can be computed extracting the velocity field in some strategic 

points of the load history, Figure 1b: 

                                            𝒅𝑠(𝑥) =
𝒙(𝑡𝑏) − 𝒙(𝑡𝑎)

𝑡𝑏 − 𝑡𝑎
, 𝒅𝑎(𝑥) =

𝒙(𝑡𝑑) − 𝒙(𝑡𝑐)

𝑡𝑑 − 𝑡𝑐
                                      (2) 

The idea is to catch separately the contributions of the normal load and the tangential load to describe 

the mechanical fields. It is worth mentioning that when these fields are computed the whole contact is 

in stick condition, therefore, both bodies behave as only one and the nonlinear effects inside the slip 

zones are not taken into account. In this case, the problem is very close to a fracture mechanic problem 

where the contact edge behaves like the crack tip in fracture mechanic problems. The normal load 

behaves as a load in mode I and the tangential load behaves as a load in mode II in fracture mechanics 

problems. This is the reason why 𝒅𝑠 and 𝒅𝑎 are named like this, symmetric and antisymmetric part, 

respectively. The nonlocal intensity factors 𝐼̇𝑠 and 𝐼�̇� can be computed projecting the actual velocity 

field, extracted from fine FE simulations, on the basis 𝒅𝑠 and 𝒅𝑎: 

                    𝐼̇𝑠(𝑡) = ∫ 𝒗

Ω

∙ 𝒅𝑠𝑑Ω ∫ 𝒅𝑠

Ω

∙ 𝒅𝑠𝑑Ω⁄ , 𝐼�̇�(𝑡) = ∫ 𝒗

Ω

∙ 𝒅𝑎𝑑Ω ∫ 𝒅𝑎

Ω

∙ 𝒅𝑎𝑑Ω⁄                 (3) 

Now the linear part of the velocity field can be defined as follows: 

                                                               𝒗𝑒 = 𝐼̇𝑠(𝑡)𝒅𝑠(𝒙) + 𝐼�̇�(𝑡)𝒅𝑎(𝒙)                                                           (4) 
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The spatial reference fields 𝒅𝑠 and 𝒅𝑎 can be expressed in polar coordinates applying a POD to these 

fields: 

                                               𝒅𝑠(𝑥) ≅ 𝑓𝑠(𝑟)𝒈𝑠(𝜃), 𝒅𝑎(𝑥) ≅ 𝑓𝑎(𝑟)𝒈𝑎(𝜃)                                            (5) 

 

 

Figure 2 - (a) Comparison between the radial evolutions of ds and the radial evolution of the displacement field 

of a crack in mode I, (b) comparison between the tangential evolution of ds and the tangential evolution of the 

displacement field of a crack in mode I. 

 

Figure 3 - (a) Comparison between the radial evolutions of da and the radial evolution of the displacement field 

of a crack in mode II, (b) comparison between the tangential evolution of da and the tangential evolution of the 

displacement field of a crack in mode II. 

In Figures 2 and 3, these polar functions, used to describe the spatial reference fields under fretting 

conditions, are compared with the ones found to describe the mechanical fields close to the crack tip in 

linear elastic fracture mechanics (LEFM) problems. The similarity of these fields, depicted in Figures 2 

and 3, confirms the crack analogy approach proposed by [3] and encourages us to take advantage of this 
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behaviour to try to enrich fretting simulations performed using coarse meshes. It is possible to improve 

the accuracy to describe the velocity field adding a complementary part term to the description of the 

velocity field. This complementary term could be obtained computing the residual error of the linear 

approximation, expressed by the actual velocity field minus the linear approximation. However, if we 

wanted to consider the complementary part of the velocity field to enrich our simulations, it would be 

necessary a handful of modes (pairs of functions) in order to describe the spatial reference field of the 

complementary part of the velocity field, 𝒅𝑐, in polar coordinates. At least 5 modes are needed as shown 

in Figure 4a. It is also worth mentioning that the first mode describing this field (the most important 

one) has a radial exponential behaviour, as shown in Figure 4b, which means that the effects of this field 

are confined in a region close to the contact edges. Therefore, henceforward, only the spatial reference 

fields due to the linear part of the velocity field will be used to enrich the fretting simulations.  

 

 

Figure 4 - (a) Residual error to describe dc, (b) radial evolution of the first mode to describe dc. 

2.2. The X-FEM applied to solve fretting problems 

The problematic here is to capture the strong stress concentration around the contact edges in fretting 

problems using coarse meshes. To accomplish that the FE approximation will be enriched using the 

partition of unity framework as previously applied in LEFM [4]. In the standard FEM, the displacement 

field can be approximated and expressed as: 

                                                                         𝒖(𝒙) = ∑ 𝑁𝑖(𝒙)𝒖𝑖

𝑖∈𝐼

                                                                 (6) 

where 𝐼 is the set of all nodes discretizing the domain, 𝑢𝑖 is the displacement field at the node i and 𝑁𝑖 

is corresponding basis function of this node. It is well known that the FE basis function represents the 

partition of unity. The basic idea behind the X-FEM is the multiplication of the nodal basis functions 

𝑁𝑖(x) with some enrichment functions 𝜓(𝒙). Defining 𝐽 as the subset of enriched nodes, 𝐽 ⊂ 𝐼, the 

enriched approximation using the partition of unity can be expressed as: 

                                                𝒖(𝒙) = ∑ 𝑁𝑖(𝒙)𝒖𝑖

𝑖∈𝐼

+ ∑ 𝑁𝑗(𝒙) ∑ 𝜓𝛼(𝒙)𝒂𝑗,𝛼

𝛼𝑗∈𝐽

                                        (7) 

where 𝜓𝛼 are the set of enriched functions at each enriched node 𝑗 ∈ 𝐽 multiplying the new degrees of 

freedom 𝒂𝑗,𝛼. This approach permits us to inherit some properties of the FE basis functions, such as their 

compact support, and hence preserving advantages of the standard FEM, such as the symmetry and 

sparsity of the stiffness matrix. 
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The goal here is to take advantage of the possibility to describe the mechanical fields around the 

contact edges in fretting problems by means of a LEFM approach. Then, the displacement field in the 

proximity of the contact edges may be enriched using the following analytical functions, the same ones 

used to capture the strong stress singularity in LEFM problems: 

                                                  𝜓𝛼 = {sin
𝜃

2
, cos

𝜃

2
, sin

𝜃

2
sin 𝜃 , cos

𝜃

2
sin 𝜃}                                             (8) 

 

 

Figure 5 - Enriched scheme used to solve fretting problems. 

Figure 5 depicts schematically the fretting enrichment technique applied to solve fretting problems. 

The lower case “r” represents the enrichment radius, which permits to define the elements that will be 

enriched during the simulations. As can be seen, one has a composition of enriched nodes, in the 

proximities of the contact edges and some blended elements (yellow elements) surrounding the fully 

enriched elements (blue and green elements). It is worth mentioning here that, in order to apply the 

enrichments to this problem, the position of the contact edges were assumed to be known, either due to 

previous simulation performed on fine meshes or due to analytic solutions. 

3. Results 

To check if the enrichment technique in association with the crack analogy approach are capable to 

improve the results of fretting simulations on coarse meshes, the problem shown in Figure 6a will be 

solved. It is worth mentioning that this cylindrical contact configuration under partial slip regime admits 

analytical solution. Hence, the analytical solution of the studied problem with both standard and enriched 

FE simulations will be compared. 

The load history applied to this problem is depicted in Figure 6b. In this case, first a vertical 

displacement, 𝑢𝑦, is applied on the pad pressing it against the rectangular specimen, which is fixed on 

the bottom. After that, a tangential sinusoidal displacement, 𝑢𝑥, is applied on the pad imposing the 

fretting conditions. All the simulations were performed considering a quasi-static elastic behaviour. The 

young modulus, 𝐸, used is 200 GPa and the  Poisson ration, 𝑣, is 0.3. The pad and the specimen have 

the same material properties. The relation 𝑄 𝑃⁄ < 𝜇 is respected during the whole load history, where 

Q is the total tangential load and 𝑃 is the total normal load between the contact surfaces, ensuring that 

no gross slip is observed.  
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Figure 6 – (a) Fretting problem model, (b) Load history applied. 

The simulations were run considering structured rectangular linear elements near the contact 

surfaces. The contact problem was solved using the LATIN method [5], considering the Coulomb’s law 

with a friction coefficient of 0.9. The LATIN method is not the core of this work, but this technique has 

already been used to compute damping due to friction in joints [6] and solve fretting problems [7]. After 

the simulations the stress evolution in two different directions were analysed. Firstly, the stress evolution 

was evaluated at a fixed position on the contact surface, left edge, while we moved away vertically from 

the contact edge inwards the specimen, Figure 7. Secondly, the stress evolution was assessed along the 

contact surfaces, Figure 8. To verify the gain introduced by the fretting enrichments, three simulations 

were performed. The first one considers a standard FE simulation with a coarse mesh, with only 18 

elements discretizing the contact region (0.025 mm). The second one considering the same mesh used 

in the first simulation, but in this case the fretting enrichments were applied to the problem. The third 

simulation was performed using the standard FE method, but discretizing the problem with a fine mesh, 

around 88 contact elements (0.005 mm), which allows us to obtain results very close to the analytical 

ones. 

  

 

Figure 7 - Stress evolution vertically inwards the specimen: (a) σxx stress component, (b) σxy stress component. 

It is possible to see that whenever the enrichments are present, the results provided by the simulations 
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are better, Figures 7 and 8. Particularly, when we analyse the 𝜎𝑥𝑥 stress component in the vertical 

direction, Figure 7a, it is possible to see that even using a coarse mesh the enriched simulation has a 

very good accordance with the analytical solution (red curve). Whereas, when we analyse the 𝜎𝑥𝑦 stress 

component, Figure 8b, one can see a high improvement in the results when the enrichments are used. In 

this case, the solution is almost as accurate as the one obtained using a mesh 5 times smaller (0.005 

mm).  

All simulations were performed considering an enrichment radius of 0.6a. Figure 9 depicts the 

influence of the enrichment radius on the simulations, where different simulations were run keeping the 

same mesh and load conditions but changing the enrichment radius. What can be seen is that for 

enrichment radius higher than 0.4a the results remain almost the same. It is good once that there is no 

need to enrich large areas around the contact edges. 

 

 

Figure 8 - Stress evolution along the contact surface: (a) σxx stress component, (b) σxy stress component. 

 

Figure 9 - Enrichment radius influence (mesh size at the contact zones 0.025 mm). 

4. Preliminary conclusions 

Fretting simulations under cylindrical contact conditions were enriched aiming to increase the quality 

of the FE solutions performed on coarse meshes. The enrichment functions were chosen by means of a 
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crack analogy approach. To enrich the simulations the X-FEM was used. The idea of this kind of 

approach is to reduce the computational costs to solve these types of local problems. The first results 

seem promising once that the quality of the FE solutions after introduce the enrichments functions were 

notably increased. Further studies must be done to keep verifying the advantages and drawbacks of the 

use of this type of approach to enrich fretting simulations. Besides, a new nonlocal approach to estimate 

precisely the position of the contact edge should be developed, once that, this task becomes increasingly 

difficult as we start to work with coarse meshes.   
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