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Abstract

Peacocks are increasing processes for the convex order. To any peacock, one can
associate martingales with the same marginal laws. We are interested in finding the
diffusion associated to the uniform peacock, i.e., to the peacock with uniform law at
all times on a time-varying support [a(t),b(t)]. Following an idea from Dupire [9],
Madan and Yor [20] propose a construction to find a diffusion martingale associated
to a peacock, under the assumption of existence of a solution to a particular stochastic
differential equation (SDE). In this paper we derive the SDE associated to the uniform
peacock and give sufficient conditions on the (conic) boundary to have a unique
strong or weak solution and analyse the local time at the boundary. Eventually, we
focus on the constant support case. Given that the only uniform martingale with
time-independent support proves to be a constant, we consider more general (mean
reverting) diffusions. We prove existence of a solution to the related SDE and derive
the moments of transition densities. Limit-laws and ergodic results show that the
transition law tends to a uniform distribution.

Keywords: Uniformly distributed Stochastic Differential Equation, Conic Martin-
gales, Peacock Process, Uniformly distributed Diffusion, Mean Reverting Uniform SDE.

AMS classification codes: 60H10, 60J60

1 Introduction

A peacock is an integrable process that is increasing in the convex order. In other words,
a peacock is a process with (i) constant expected value and (ii) whose transform via any
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positive and convex function ¥ has an increasing expectation; see [13, Definition 1.3]. More
precisely, a process X with a constant expectation is a peacock if the map ¢ — E(W(X})) is
increasing for any convex function ¥ such that E(|¥(X;)|) < oo for all £. From this equiv-
alent representation, it is trivial to show via the law of iterated expectations and Jensen’s
inequality that any martingale is a peacock. Reciprocally, it is known from Kellerer [17]
that for any peacock there exist martingales (called associated martingales) with the same
marginal laws. As Kellerer’s proof is not constructive, specifying explicitly the martingales
associated to a given peacock is not trivial. Madan and Yor tackled this problem by provid-
ing three different construction schemes: Skorohod embedding, inhomogeneous independent
increments and continuous martingales [20]. The first two methods provide martingales
taking the form of time-changed Brownian motions. The last method consists of inverting
Fokker-Plank’s formula (also known as the Forward Kolmogorov equation). Those meth-
ods require various assumptions. For instance, in the last approach, the authors of [20]
mention that the solution exists if the diffusion coefficient is Lipschitz.

Peacock’s theory is of practical interest. Numerous examples from financial mathe-
matics are provided in the introduction of [13]. Actually, the main purpose of the whole
book is to find various martingales associated to a given peacock, stressing the relevance
of this mathematical problem. The first goal of our paper is to contribute to the peacock
literature by studying the specific case of the uniform peacock. The associated diffusion
martingale, called uniform diffusion martingale (UDM), is found explicitly. Diffusions with
uniform marginal distributions have important applications. Indeed, any stochastic process
(X¢)i>0 taking the form of conditional expectations X; := E[Y|F;] for some random vari-
able Y with values in a bounded interval is obviously a martingale. When no information
is provided about Y on top of its bounds, it makes sense to work under the maximum-
entropy principle, and postulate uniform martingale dynamics for X. Such a framework
covers for example the case where Y represents the loss given default (or recovery rate) of
a firm. In this context, X; represents the “best guess” (in the mean-square sense) of the
loss given default (or recovery rate) of a firm based on the information available at time
t. Moreover, diffusions are specifically appealing when one wishes to introduce correlation
between processes. For example, suppose that in a mathematical finance context one has
designed a modeling suite that is based on diffusion processes technology. This is common
for volatility smile modeling in several asset classes for example, or for interest rate and
credit modeling in particular. One now wishes to add a model for a dynamics of the loss
given default of a portfolio. Without any prior knowledge, it is decided that this loss given
default will have a maximum entropy uniform distribution. Now using one of our uniform
diffusions for this would have the advantage of aligning the random shock structure with
the rest of the modeling suite. Indeed, we would be able to simulate the loss given default
in time using the same Gaussian shocks that we use for all other modeling processes. This
also allows one to correlate the loss given default to other processes in an easy way, be
they loss given default of other portfolios or different variables. This can be done by sim-
ply correlating the Brownian motions driving the relevant processes. Also, one may have
control of the volatility of the loss given default through the diffusion parameters. A sim-
ilar reasoning could be applied to maximum entropy random correlations or even random
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default probabilities. This altogether stresses the relevance of studying UDM. While the
latter appears to be essentially unique, we show that there are infinitely many associated
uniform diffusions (UD, not necessarily UDM), whose drift term can take very different
forms. Analyzing the latter is the second goal of the paper; we give two motivations for
this. First, bounded stochastic processes received surprisingly little attention in the liter-
ature (see e.g. the Jacobi process or the ®-martingale, [8, 12, 14]). UDs could be used to
model random probabilities or stochastic correlations in a maximum-entropy framework.
Second, UDs are of particular interest due to the probability integral transform. Indeed,
let (Uy)i>0 be a UD with support [0, 1] and G(+;t) be the quantile function associated to a
given distribution function F'(+;¢), in the sense that G(F(x;t);t) = x. Assume further that
F is C? in the first argument and C! in the second. Then, X; := G(Uy; t) has distribution
function F'(-;¢) and (from Ito’s lemma) (X;):;>o is a diffusion. Hence, one can generate a
diffusion with the required marginal laws starting with a UD.

Starting from an idea of [9] further used in [3] and [20], we will show that the SDE

. 1/2
b(i
dX, = <]I{Xt6[—b(t),b(t)}} %(b(t)Q - Xf)) awy ,

has a solution which is a martingale, whose marginals X; have a uniform density on
[—b(),b(t)] for any ¢ > 0, under some conditions on the increasing function b. In partic-
ular, we show strong existence and uniqueness for the case b(t) = t*, with a > 1.

The case b(t) = v/t has to be dealt with using different techniques. For the case
0 < a < 1 case, we use the approach in [13, p. 253-260], and we obtain a weak solution
and uniqueness in law.

We further show that the solution process spends zero time at the boundaries. In
a second part, we extend our analysis to deal with uniform diffusions that may not be
martingales. One reason for this is that martingales constant in time, i.e. X; = Xy where
X can be a random variable, seem to be the only UDMs when dealing with the time-
independent support case (b(t) = ¢). Hence, UDs with constant support are also analyzed.

The paper is structured as follows. In Section 2 we formulate the problem consisting
of finding a UDM evolving in [—b((),b(t)] where b is regular enough, and we give the
form of the diffusion coefficient. Because the latter fails to be Lipschitz, we study the
solution rigorously in Section 3, and prove that the related SDE admits a unique strong
solution. Being bounded on a finite horizon, the solution is a genuine martingale and,
from Fokker-Planck, it is the diffusion martingale associated to the uniform peacock, i.e.
a diffusion with uniform marginal law at all times, evolving in the desired conic boundary
(Theorem 1 as well as the broader Theorem 2). In Section 4 we relax the martingale
condition and study mean reverting UD obtained by re-scaling the conic UDM, where
now the uniform law has a constant support that is no longer expanding. A special case
of interest is uniform in [—1,1]; the other cases can be obtained by scaling and shifting
transforms. In Section 5 we prove limit-law results for the mean reverting uniform [—1, 1]
re-scaled process. In doing so, we derive the exact transition density of the SDE solution.
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While we know that the solution margins are uniform by construction, this will not hold
for the transition densities in general. We characterize the limit laws via their moments
(Theorem 4). We show that, under some conditions, any initial condition Uy, = 2 at a
given time s in the transition density is “forgotten” after a long enough time, and the
limit tends again to a uniform. We further show in Section 6 that the rescaled processes
have zero local time at the boundaries (Theorem 5). In Section 7 we revisit the two
previously known cases and hint at new choices for the time-dependent boundaries. In
the linear case we study the process’ pathwise activity, finding that the pathwise activity
of the mean reverting diffusion vanishes asymptotically. The behavior of the process is
illustrated based on numerical simulations that confirm our earlier characterization of the
SDE having the desired marginal distribution and our limit-law type results.

2 Conic diffusion martingales with uniform distribu-
tion

We set out to construct a martingale diffusion process X, i.e. a diffusion process driven
by a Brownian motion W that is a martingale, with marginal at time ¢ having a uniform
distribution in an interval [a(t), b(t)] with a(t) < b(¢) for all ¢ > 0. The martingale condition
implies that E(X;) = E(X,) for all ¢ > 0, whereas the uniform distribution requirement
implies that E(X;) = [a(t) + b(¢)]/2 for all ¢ > 0. Thus we have a(t) + b(t) = a(0) + b(0)
for all ¢ > 0. We will assume a(0) = b(0) = 0, taking the initial condition X, to be
deterministic and with value zero (Dirac delta law in 0). Hence b(t) = —a(t) for all ¢ > 0.
With such preliminaries in mind, we state the following

Problem 1 (Designing conic martingale diffusions with given uniform law). Consider the
diffusion process
dXt = O'(Xt,t)th, XO =0. (1)

Find a diffusion coefficient o(x,t) such that

1. The SDE (1) has a unique strong solution;

2. Foranyt > 0, the solution of (1) at timet, i.e., the random variable X, is uniformly
distributed in [—b(L),b(L)] for a non-negative strictly increasing continuous function
t — b(t) with b(0) = 0.

In other terms, our aim is to build a diffusion martingale X as in (1) such that the
process X has a density at time ¢ > 0 at the point x given by the uniform density

p(x,t) = Wpe—pwypeny /(2 (L)) - (2)

Following [14], we call such martingales “conic” to stress that their support opens up in
time.

In Problem 1, function b is restricted in a first step to be increasing in time. The
reason is that the tight upper (resp. lower) bound of any bounded martingale must be



D. Brigo, M. Jeanblanc & F. Vrins. SDEs with uniformly-distributed solutions. 5

a non-decreasing (resp. non-increasing) function [25]. Hence, X is a conic martingale; it
is a martingale that exhibits a conic behavior. We will need strict monotonicity in the
following derivation, so we assumed b to be strictly increasing in Problem 1.

Following [20, eq. (8)], the martingale solution of the SDE dX; = o(Xy,t)dW; will
have marginals with density g(z,t) if the diffusion coefficient is o?(x,t) = é—?& where
Clt,x) = [Z(y — x)g(y,t)dy. In the case g(x,t) = p(z,t), where p is defined in (2) one
obtains )

2 b(t) 2 2
o (2, t) = Wael-b(0),b0)} @(b(t) —a). (3)

For the ease of the reader, a derivation of this formula is given in the Appendix A the way
it had been originally derived in the preprint [3], see also [5].

3 Analysis of the SDE: solutions and distributions

The diffusion coefficient (3) does not satisfy the Lipschitz condition (mentioned in [20]) at
the frontier. Therefore, the SDE (1) is not guaranteed to admit a solution. In order to deal
rigorously with existence and uniqueness issues, we now give suitable regularity conditions
on the function ¢ + b(¢) under which eq. (1) with diffusion coefficient (3) admits a unique
strong solution that has indeed a uniform law at all times. In the more general case where
regularity of the boundary is relaxed we shall prove that the weak solution is unique in
law.

Theorem 1 (Existence and uniqueness of solution for candidate SDE solving Problem 1).
Let T'> 0 and b be a strictly increasing function defined on [0,T], continuous in [0,T] and
continuously differentiable in (0,T] and satisfying b(0) = 0. Assume b to be bounded in
(0,T]. The stochastic differential equation

: 1/2
b(t
d Xy = Wex,el—b(e).b(e)} (%(b(t)z - Xf)) W, Xo=0, (4)

whose diffusion coefficient is extended to t = 0 by continuity via
o(x,0):=0 forall x,

admits a unique strong solution which is uniformly distributed in [—b(t),b(t)] at every point
in time t. We thus have a conic diffusion martingale with the cone expansion controlled by
the time function b.

Proof. Observe first that the solution X to (4), if it exists, necessarily belongs to [—b(t), b(t)]
almost surely in order for the square root to be well defined. Moreover, this diffusion
coefficient has been guessed from Fokker-Plank’s inversion, showing that the solution, if it
exists, will be uniformly distributed in the [—b(¢), b(¢)] interval at any time ¢. This uniform
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behavior can be double checked by analyzing the moments of the resulting solution. This
is done in Appendix B for the sake of completeness.

It remains to prove that the solution X to (4) exists and is unique. To that end, it
is enough to show that o(x,t) satisfies the linear growth bound and is Holder-1/2 for all
t €10, 7] [18, p.135]. Clearly, o(x,t) in (3) satisfies the linear growth bound since it is
uniformly bounded on [0, T]. To see this, notice that

0 < (2, t) = Lpaerppion (0() /(1)) (V°(1) — 2*) < b(8)b(t) for all «

and that b(¢)b(t) is bounded on (0, 7] by assumption, with zero limit when ¢ | 0. This
allows us to conclude that
l}fg o?(z,t) =0 forall z.

Since o?(x,t) is continuous and bounded on (0,T] with the above limit, it admits a con-
tinuous extension at ¢ = 0 taking value zero. The extended o(z,t) is unique and uniformly
bounded on [0, 7.

We now proceed with the Holder continuity of o, for which the boundedness of b is

needed. Of course, f(x) = /|z| is Holder-1/2 on R since |\/|z| — /|y|| < /| — y] for all

x,y. We now check that o(z,t) is Holder-1/2 uniformly in ¢ > 0 (¢ = 0 is not a problem
given the above extension by continuity). Define /(t) := [—b(t), b(t)]. We check the possible
cases.

1. If 2,y ¢ 1(t), the diffusion coefficient vanishes and one gets |o(x,t) —o(y,t)| =0
2. If z,y € I(t), using the Holder-1/2 continuity of \/|z| :

ol 1) — o(9,0)] = \/@wb?(w—xz—wz(t)
\/ ¢| R0 — ) — @0 — )

=\f¢7_ﬁ¢|y+xmy—x|_ B VIOV
= V2l

and we are done since b is assumed to be bounded in (0, 7).

IN

3. xellt), y>ob(t):

0. 1) — oy )] = lo(w, )] = | 2 @ =22 = | XD oy ¥ w0 — <

b(t) b(t)
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< /%\/26(15) V(L) =z < 4/2b()/ |z — |

and again we are done since b is bounded in ¢.

4. If x € I(t), y < —b(t) (so that —y > b(t

lo(z,t) —o(y,t)| = |o(z,t)] “ ;\/b z/b(t) + o <

\ /%\/Qb(t)\/x +b(t) < \/2b()VE—y

5. The case x ¢ I(t), y € I(t) is similar to steps 3 and 4.

Hence, the solution X to (4) exists, is unique and has the desired uniform behavior in
the conic [—b(t), b(t)] boundary.
O

Remark 1 (Indicator function in the diffusion coefficient). The solution of the SDE with-
out the indicator function exists and is equal to the solution with the indicator function in

the diffusion coefficient. Therefore, one could omit the indicator whenever the coefficient
is featured inside a SDE.

The special case b(t) = kt gives us a conic martingale with uniform distribution where
the boundaries grow symmetrically and linearly in time. This example was considered
originally in [3] and also in [13] (see for instance ex. 6.5 p.253 with p(z) = x and f(z) =
1/21c(—1,17}). More generally, Theorem 1 covers the case b(t) = t*, for o > 1. Staying in
the class of boundaries %, we see that the case a < 1 violates our assumptions, since in
that case b is not bounded in 0, and has to be dealt with differently. For 0 < o < 1, and
with the square root case in mind in particular, we now introduce a different approach to
prove existence of the SDE solution as well as uniqueness (in law), as done in the peacock
processes literature [13].

Theorem 2 (Existence of solution for SDE solving Problem 1 under milder conditions
on the boundary). Let b a continuous strictly increasing function defined on [0,T] and of
class C" in (0,T], with b(0) = 0 and T a positive real number. Assume bb to be integrable
n (0,T]. The stochastic differential equation (4), namely

1/2
b(i
dXy = Wix,e[—v0)p())} (bgti (b*(t) — Xf)) dw,, t>0, Xqo=0,

admits a weak solution that is unique in law and its solution X 1is distributed at every point
in time t as a uniform distribution concentrated in [—b(t),b(t)]. We thus have a conic
diffusion martingale with the cone expansion controlled by the time function b.
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Proof. From the same argument as in Theorem 1, the solution X to the SDE (4), if it
exists, is uniformly distributed in [—b(t),b(¢)]. The solution of (4) has to be understood
in a first step as a process satisfying, for any £ > ¢ > 0
. 1/
' b(s) 12 2
Xe =X+ | Lyx,e=nis)b0s)} b(s) (b°(s) — X7) dW,

where X, has a uniform law in (—b(e),b(¢)). The value of X at time 0 is defined by
continuity when e goes to zero (we will prove that the limit exists), and (4) can be written
X = fot I X el—b(s),b(s)1} (bgs; (b%(s) — Xg))l/2 dW, which has a meaning even if ¢(0,x) is
not well defined.

It remains to prove that a solution X to (4) exists. We apply the methodology intro-
duced in [13, Lemma 6.8] in the particular case where, using the notation of [13, Lemma
6.8], h is the density of a uniform law on [-1,1], with a,(y) as defined in (6.49) therein set
to 1 — y?/2. In that work, the authors introduce a process Y = (Y;)ser such that, for all

t>s
Y, = /deH——/\/l—Y?dB

with marginals having uniform distribution on [-1,1], where B is a Brownian motion on
R (not merely R7), meaning that it is a process with continuous paths and stationary
independent increments . Then, setting

Xt = b(t)Zt ) Zt = Y;,/(L) (5)

for t > 0, where ~ is an increasing differentiable function, leads to a process with uniform
marginals on [—b(t), b(t)] (since by construction Z; has a uniform law). It remains to find
v such that X is a martingale with the prescribed dynamics. Using [23, lemma 5.1.3.], and

defining G(y) = \[ 1—y?and U as Uy : fW(t) B(Yy)dB,, there exists an F = (Fy))i>0
Brownian motion W such that

dU, = B(Z,) V/A(t)dW, .
It follows that ]
A%, = =< Z3(Odt + B(Z) /3 (1) AW, (6)
and by integration by parts

dX, = b(t)B(Z,) /3 (t)dW, (7)

and the process X is a local martingale. Equating the diffusion coefficient of (4) to that
of (7) yields to identifying 5(t) = 2 béti so that a valid choice for our time-change process

is y(t) = 2Inb(t). The process X is a true martingale on [s, T'] for any s > 0: indeed by
assumption on the integrability of bb

0 (,1) = Lizersnawny (0()/b(1) (07(£) — 2*) < b(t)b(?)



D. Brigo, M. Jeanblanc & F. Vrins. SDEs with uniformly-distributed solutions. 9

and hence

E [(/sta(u,Xu)qu>2] =E Ut az(u,Xu)du} < /fb(t)b(t)dt <C.

It remains to prove that X; = b(t)Yglnb(t) goes to 0 a.s. when t goes to 0. This proof is
similar to the proof given in [13, p. 260-261], where it is shown that X converges to some
Xo when ¢ goes to 0. This is done by giving a bound for the number of downcrossings of
X on the interval [a,b] for the time interval ]0, ], using Dubins’ inequality and showing
that X, converges in probability to 0 since E(]X,| > ¢) goes to 0 when u goes to 0. This
identifies X = 0. Again in [13, p. 261] it is shown that one has uniqueness in law and the
argument can be straightforwardly repeated for our process here. O

4 Mean reverting uniform diffusions with constant
boundaries

Notice that the martingale that is uniform in the expanding boundary ¢ — [ — b(t), b(t)] is
unique, in the sense that there is only one diffusion coefficient that will make the diffusion
martingale attain a uniform law in [— b(¢), b(¢)]. One can check this informally by inspect-
ing the “inverse Fokker-Planck” equation approach detailed in Appendix A. This is not
surprising since it can be shown, using a generalized form of the backward Kolmogorov
equation, that continuous and strong Markov martingales are uniquely determined by
their marginal distributions, see e.g. [21, Section 2].! However, there are infinitely many
diffusions with uniform margins in general, because one can play with the drift/diffusion
coefficient pair. For example, there are many different b(¢) that would lead to a uniform
Z = X/b in [—1,1] via re-scaling, as we show below. Before looking at that, we discuss
briefly mean reversion, since this property will be discussed below in relation with Z.

In this paper we define mean reversion as follows. A real-valued squared-integrable
Markov process (;(w))s>o mean reverts towards a long term mean 0 € R if the following
holds: for all s in the time domain of the process and all possible values & for the process
at time s, one has

gIOICIE[ftKS = f_] =40 )

where 0 is a deterministic constant. This condition implies that wherever the process state
is found at a given future time, the long term mean from that time onward is a constant
deterministic value that does not depend on the chosen time and state. We also require
limyt, Var(&) to exist and be finite.

Mean reversion is an important property that tells us that the process expectation
tends to forget a specific initial condition in the long run from any past time. However, it

1We are grateful to an anonymous referee for providing this reference.
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is a special case of a more general property. If we assume that the process has a density
with respect to the Lebesgue measure at all times { > 0, denote by

pgt|§3(33; y) dr = ]P){gt € dm|§s = y}

the conditional density of & at da given & = y, with s < {. We have that the whole law
forgets earlier conditions if

#im Deje, (3 y) exists, is a density in = and depends neither on s nor on y.
tT+oo

We now focus on mean reversion and will get to the general law later in Section 5.

Take tp > 0 and consider the solution of the SDE (4) for ¢ > t,. If one starts from
X solving eq. (4), one immediate way to obtain a diffusion (Z;);>y, with a standard
uniform distribution at all times by taking Z; = X,;/b(t) and a random initial condition
independent from W. We will see that this leads in particular to a simple mean reverting
linear drift. This does not mean however that this is the only way to obtain a mean
reverting uniform diffusion, there are many others.

Theorem 3. Assumptions on b as in Theorem 1 but extended to all T: let b be a strictly in-
creasing function defined on [0, +00), continuous and continuously differentiable in (0, +00).
Assume b(0) = 0. Assume b to be bounded in (0,T] for all T > 0. Assume further that
limyt1 o0 b(t) = +00. Consider, for t > to, the SDE

) ) 1/2
Az, = —%tht + 1z e <%(1 - ZE)) AWy, Zto =(~U([-1,1]) (8)

with ¢ independent of W. The unique solution to this equation mean reverts to 0 with
reversion speed (defined as minus the drift rate) b/b and is distributed at any point in time
as a uniform-[—1, 1] random variable.

Proof. The proof is immediate. Indeed, if we consider the SDE for Z; derived by Leibnitz
rule, for £ > 0, we see that the coefficients of the SDE of Z are the same as the coefficients
for the SDE Z above. Since X is distributed as a uniform in [—b,b], Z := X/b will be
distributed as a uniform in [—1,1]. For the mean reverting behavior, we first note that
limyy oo IE(Z) = 0, and lim4; Var(Z) = 1/3. Actually, we are in a special case where
mean and variance are constant. Furthermore, whenever Z is above the long term mean
0, the drift is negative, pointing back to 0, while the variance remains bounded. A similar
symmetric pattern is observed when Z; is below zero. To address mean reversion more
generally, we may analyze Z. From the martingale property of X, for ¢t > s > 0,

b(s)Z

E(Zl‘fs) = m s
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hence
E(Zt‘Zg - Z) == b—(z

and it follows that, for t > s > t,

- b(s
lim E (Zt|ZS - z) O
t+00 tt+oo b(t)

We thus see that after a sufficiently long time the value z at time s is forgotten by the
mean. O

Remark 2. Note that mean reversion holds also under the weaker assumptions of Theorem
2 similarly extended to (0, +00), provided that again limgyo b(t) = +00. This is the case
for example with ¢* with v € [1/2,1). More generally, we can find uniform diffusions whose
drift and diffusion coefficients take a completely different form with respect to the “6/b”
proportional drift we studied in this section. A specific example is provided in Appendix
C, obtained by transforming a Brownian motion using its own distribution function.

5 Exact transition moments, limit laws and ergodic
properties

We have shown above that mean reversion holds. In fact, we can say more than this, and
we now analyze the limit behaviour of the process law and its exact moments.

5.1 The special case b(t) = by exp(kt)

In the special case b(t) = by exp(kt) with by > 0 we need X starting with

Xty ~ U([—bo exp(kto), bo exp(kto)]). In this case we could also take to = 0 since there is no
singularity at time 0. The setting is slightly different than our earlier setting because even
with to = 0 the cone would not start with a point but rather with the interval [—by, by]. In
particular, the initial condition for X would not be Xy = 0; instead, X, would be requested
to be a random variable with uniform law in [—bg, by]. In this case we have the special
property that

b(t)/b(t) = k

is constant and the general SDE

. . 1/2
~ b(t) ~ b(t ~ ~
A=~ Zdt + Lz <(—<1 - ZE)) AWy, Ziy =~ U([=1,1])  (9)

~—

bl1) (1)

is in fact a time homogeneous diffusion

- - oN1/2 .
dZ, = —kZdt + Loy <k(1 - Zf)) dW,, Zyy =C~U(-1,1])  (10)
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to which we can apply standard boundary and ergodic theory techniques for time homo-
geneous one-dimensional diffusions, see for example [16].

Let’s analyze eq. (10) using the standard theory. First of all in this case we already
know from our previous analysis of X that, if p is the density of a U([—1, 1]) random variable
then p satisfies the Fokker Planck equation for the marginal density of the diffusion (10)
so that

‘C*ﬁ =0 )
where £* is the forward diffusion operator of the Fokker Planck equation. This means
that p is the invariant measure for the diffusion (10). This can be further confirmed by
standard calculations: given a diffusion process with drift x4 and diffusion coefficient o,
under suitable conditions (see for example [19]) the invariant measure is proportional to

2
o?(x) exp (—2 f;; ;g(g;))du)
which, with our u(z) = —kz and o(x) = (k(1 — xz))l/ ? results immediately in a uniform

density. Hence we have that the uniform is the invariant measure of our diffusion and that
our diffusion is ergodic. We also have

Jim pz,..z,(y; %) = limpz,z,(y; 2) = ply) forall s>0, = €[-1,1].

5.2 The general case with curved boundary

Now we move to the case of the general boundary b(t) in eq. (9). We already know that
the density p satisfies the Fokker Planck equation for the marginal density of (9). Given
that dp/0t = 0 and that the Fokker Planck equation reads dp;/0t = L;p; we deduce that

Lip=10

for the operator L* of (9). Hence p is also the invariant measure for the more general case
(9). It’s not clear beforehand however that the diffusion (9) has a limit transition law. To
check this, we first derive the exact moments of the transition laws. We have the following,
proven in Appendix D.

Theorem 4 (Transition moments for the time-inhomogeneous mean reverting uniform
diffusion (9)). Let &, := mod(n,2) stand for the odd indicator and p, = (1 —&,)/(n+ 1)
denote the n-th moment of a random variable uniformly distributed in [—1,1]. Then, the
conditional moments M, (s, t; z) .= E(Z" Z, = 2),t > s are given by

ntén ntén
2

- s J(2(j—&n)+1)
M, (s, t;2) = pn + Z (—1)k(22k_£" — Hok—¢,) Z O‘j,k[n](_l)j (%)

j=k
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with a[n] being "o by-"ten Jower triangular matrices (i.e. ajiln] = 0 for all k > j)
whose lower entries are defined as

1 ifj=k="tn
ntén nitén —1 . . . n n .
asln] =4 —(=1)"" 2,2 el (-1 ifj ="t k< (11)

aj k[n—2]n(n—1)

R —3R0G—ENTT) otherwise .

Corollary 1 (Limit law for the transition densities of (9)). When b is grounded and non-
decreasing, the solution of the SDE (9) conditional on Z, = z € [—1,1], s > 0 admits
a stationary law in the sense that each conditional moment of the solution tends to a
constant. If, moreover, lim,,+, 1/b(t) = 0 then then stationary law is U([—1, 1]).

Proof. The only t-dependency in the M, (s,t; z) expression given in Theorem 4 appears
in the ratio b(s)/b(t). From the positivity and non-decreasingness assumptions about b,
one clearly has 0 < lim,;, b(s)/b(t) < 1. Hence, M,(s,t; z) is the sum of two terms: the
n-th uniform moment p, and a weighted sum of positive powers of terms in [0, 1] (which
obviously converges since it is finite). Moreover, in the special case where lim;_,,, 1/b(t) —
0, the finite sum collapses to 0, leading to lim;_,. M,(s,t;2) = p,. Because the uniform
distribution is uniquely determined by its moments, the asymptotic law is uniform, and
does no longer depend on s, asymptotically. O

The above theorem is illustrated on Figure 1. This result suggests that one could con-
nect the general case to the special time-homogeneous case discussed in Section 5.1. This
intuition can be confirmed by introducing a deterministic time change. This is performed
in Appendix E.

6 Local time at the boundaries and potential applica-
tions

We now discuss the behavior of the solution Z of (8) at the boundaries -1 and 1, and thus
the behaviour of the original X;, solution of (4), at the boundaries —b(¢) and b(t).

Theorem 5. Given a strictly increasing function b defined in [0,T], continuous, and dif-
ferentiable in (0,T], assume b(0) = 0 and bb to be bounded in (0,T]. The local time for the
process b(t) — X, (resp. Xy + b(t)) at level 0 is zero.

Proof. Let us introduce U, = b(t) — X;. Then

d(U): = Ljo<v,<2n(t)}y <%) U(2b(t) — Uy)dt .
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Figure 1: Evolution of the 2,...,8-th conditional moments (solid) and those of U([—1,1])
(dashed) for s = 2 up to 7" = 10 in the following order: blue, brown, red, orange, green,
dark green, purple. The conditional moments converge to those of the uniform in panels
(a), (b) and (c) since lim;_,o, 1/b(1) = 0, in contrast to panel (d) where lim;_,, 1/b(t) = 1.
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Then, denoting by L the local time of U at level a

P> /tll ds—/t]l s) )
= 0 {0<Us<2b(s)} 0 {0<Us<2b(s)} b(S) (26(8) - US)US )

o g b(s) 1
_ da ]I a s . ds[fsz 9
/0 /0 {0<a<2b(s)} b(s) (2()(3) - (1,)(1/

where the last equality comes from an extension of the occupation time formula ([24],
Chapter VI, Section 1, Corollary 1.6) as in [10].

We note that b(s)/b(s) is bounded from below by a positive constant ' for all s > 4.
We can casily see that this is indeed the case since b(s)b(s) is bounded by above in [0, T'] by
assumption, say by a constant K > 0, so that b(s)/b(s) = b(s)b(s)/b(s)> < K/b(5)? =: C.
This implies that b(s)/b(s) > C for all t > §. We obtain

> / dL? 20N e — g
t>C | da | Tj<q — > —t % __da,
- / / (05e=2ON (9h(5) — a)a = / (2b(5) — a)a

which implies that LY — LY = 0. By continuity, L} goes to 0 when § goes to 0. O

As a corollary, the solution to (4) spends zero time at the boundaries —b and b whenever

bb is bounded.

We conclude this section with a hint at potential applications of our processes and with
two remarks. Z can be used as a model for stochastic correlation whereas Y := (1 + Z)/2
can be used for example to model the dynamics of recovery rates or probabilities in the
case of no information (maximum entropy).

Remark 3. The above construction for Z , mean reverting uniform diffusions with fixed
boundaries based on rescaling the process X of Theorem 1, has the drawback of starting
time at ¢y > 0, without defining the dynamics in [0,¢y). This is done to avoid singularities
in ¢ = 0 with the rescaling. On the other hand, it has the advantage that the solution is
unique in the strong sense. An alternative for obtaining a similar process, especially for
cases like b(t) = /1, is to start from X constructed as in Theorem 2, requiring assumptions
on b that are weaker than in Theorem 1. If we do so, and recalling Y in the proof of Theorem
2 and eq. (5) in particular, we obviously could have Z, = Y, where v(1) = 21Inb(1), or
even Z; = Y;. Notice however that to get a diffusion with uniform law in [—1, 1] we could
directly define a process Z as 7, = Y, for any time change function o provided that
it is increasing. Indeed, this would not affect the marginals of Z as Y is a diffusion with
uniform marginals in [—1, 1] at all times.

Remark 4. The above rescaling approach yields a diffusion associated to the uniform
peacock with constant boundaries —1, 1. It is also obvious from eq. (6) that defining Z as
Zy = Y, ) will lead to a mean reverting diffusion. However, this is a mean reverting diffusion
process and not a diffusion martingale. Still, we know since [17] that there is a martingale
associated to any peacock. Hence a natural question is: what is the diffusion martingale
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associated with this peacock ? Looking at the Fokker-Planck equation, the answer turns out
to be: only the trivial martingale diffusions with zero drift and zero diffusion coefficients.
Indeed, forcing ¢(x,t) to be the density of a uniform with fixed boundaries at all time
implies that the left hand side of (17) vanishes, leading to o(x,t) = 0 for all x. In other
words, the only diffusion martingale associated to this peacock is the trivial martingale
Z; = ( for all t, where ( ~ U([—1,1]). This is in line with the more general result in [21]
cited above.

7 Specific choices of the boundary b(¢) and links with
peacocks

In this section we present a number of qualitatively different choices for b(¢). With a slight
abuse of notation, we will denote Z by Z in the rest of the paper.

7.1 The square-root case b(t) =/t
As we pointed out earlier, the case b(t) = v/t for (4), which leads to

! X2
dXe= B\~ 7 Lonevivp W, Xo=0

corresponds to the solution presented in [13].

7.2 The linear case b(t) = kt: numerical examples and activity

The case b(t) = kt fits the assumption of Theorem 1 since b(t) = k is bounded on [0, T] for
any 7' € R*. Notice also that b(¢)b(t) = k¢ vanishes for ¢ | 0. Our previous SDEs for X
(4) and Z (8) specialize to

1
dXy = Wix,e(—kt pa)) % \/ (kt)? — X2dW,, Xo=0, X;~U([-Fkt,kt]) forall t>0
(12)
and

1 1
dZy = —7 Zy dt + Wiz,e(-11) % V1=22dW,, Zy,=(~U([-1,1]) forall t>t,.

(13)
As a numerical example we implement the Euler scheme for X. We know from [11] that
under our assumptions the Euler scheme converges in probability. We thus implement a
Euler scheme for the SDE for X and show in Figure 2 a few sample paths.
We may also apply Theorem 5 to this particular case, to see that Z; = X;/(kt) for
L > Lo > 0 spends zero time at the boundaries —1 and 1. As a consequence, X; spends
zero time at the boundaries —kt and kt.
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Figure 2: 20 paths of the SDE (12) at time 1y with b(t) = v/t (left) and b(t) = ¢ (right).
Time step is 0.01 years. Euler Scheme.

More qualitatively, we observe that Z in (13) mean-reverts to 0 with speed 1/t. The
speed will be very large for small time but will become almost zero when time is large. The
diffusion coefficient, similarly, is divided by v/¢, so it will tend to vanish for large ¢. This
is confirmed by the following activity calculation. We may conclude that the process will
not be absorbed in the boundary and will tend to “slow down” in time, while maintaining
a uniform distribution.

We show that the pathwise activity of the uniform [—1, 1] process Z is vanishing for
large ¢ in the sense that the deviation of Z; 5(w) from Z;(w) collapses to zero for all § > 0,
all w € Q (the sample space) as t — oc.

Lemma 1.
V6 >0, Var(Z,5s — Z;) - 0ast — oo .

Proof. Notice that for all ¢ > 0, E(Z;) = 0 so that v := Var(Z;) = E(Z7?) = 1/3 is the
variance of a zero-mean uniform random variable distributed on [—1,1]. Then,
Var(Zys — Zy) = Var(Z2,5) + Var(Z}) — 2Cov(Zy, Zyys) = 2 (v — E(ZZ115)) -

Since Z is bounded, one can rely on Fubini’s theorem for all ¢ > 0 and exchange
time-integration and expectation,
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t+0 Z t+4d
E(ZtZt-l—J) = E (Zt <Zt — / ?sds +/ U(S, ZS)dW$>)
t t

. t+6 7 t+0
t t

t+6
_ @_/ E(4%5) 4
t

S

where we have used the fact that Zso(s, Zs) is bounded on the interval [¢,¢ + 0].
Hence, Var(Zyys — Z;) =2 (v — f(t,t 4+ 0)) where f(t,s) := E(Z,Z;) solves the ODE

of(ts) __Jf(ts)

ds s
Using the initial condition f(¢,t) = v, the solution is f(t, s) = vt/s. Finally, lim, ,, f(¢,t+
d) = limy_,o, vt/(t + §) = v showing that lim,_,o Var(Z,1s — Z;) = 0.
O

The activity result can be generalized to the following lemma.

Lemma 2. Let X; = xo—i—fot 0sdW and suppose X = (Xy)i>o is a bounded martingale such
that for allt > 0, a < Xy < b and P(0, = 0) < 1. Then, the path activity of X is collapsing
to zero as time passes.

Proof. Since martingales have uncorrelated increments, the variance of increments is the
increment of the variances:

Var(XL+§ — XL) = Var(XH,(j) — Var(Xt) .

Because the diffusion coefficient 6, is not identically null, the variance of X; (equal to
fOLTE(Qz)dS) is monotonically increasing. Since X is bounded, Var(X}) is bounded as well
and thus converges. This proves that for all ¢ > 0 there exists ¢* such that Var(X,,s—X;) <
e for all t > t*. O

We now illustrate the limiting distribution results with a numerical simulation. We
simulate the same process as before but conditional on an initial condition at a given time.
In particular, we plot in Figure 3 the histograms of the transition densities px, y,, 1 xq0, (; 0)
and DX a00y| X0y ( 0)

Our simulation confirms effectively our earlier results. For px,,,xq0, (+; 0) We condition
on time in 90 years, very far away in the future. Given the slowing activity of the SDE
solution process, the process will move very slowly after 90 years. Indeed, in the time it
takes to get 10 years further it shows a conditional density for the next ten years, at 100
years, that seems qualitatively Gaussian. This is compatible with the process being so
slow as to behave not too differently from an arithmetic Brownian motion qualitatively.
Still, our limit-law results tell us that in the very long run the conditional density should
go back to uniform. Indeed, this is illustrated in the simulated density px;,qo,[xe0, (1 0). We
see that if we wait long enough, 310 years in this case, the density goes back to uniform.
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Figure 3: Histograms for the transition densities of the solution X of SDE (12) conditional
on X, =0 at time s = 90 years. We take k = 1 and use the Euler scheme. Left hand side:
density pix,o,(Xa0, (1;0) at time ¢ = 100 years; right hand side: density px,q,,xo0, (+;0) at
time ¢ = 400y.

Remark 5 (Other boundaries). One could choose time-boundaries that are concave and
converge asymptotically to a constant value B, e.g. b(t) = Bt/(t+ ) or b(t) = B(1—e™P)
where B > 0,3 > 0. It is also possible to use convex boundaries, like e.g. b(t) = k(e —1),
k > 0,8 > 0. Finally, as mentioned ecarlier, we could study boundaries of the form
b(t) = kt*, o > 1/2, k > 0, since in this case too existence and uniqueness of the SDE
strong solution is guaranteed.

8 Conclusions and further research

We introduced a way to design Stochastic Differential Equations of diffusion type admitting
a unique strong solution distributed as a uniform law with conic time-boundaries. Our work
has deep connections with peacocks’ theory. For instance, existence results associated to
linear and square-root boundaries had been dealt with previously in the related literature.
In this paper however, we significantly extend the later by dealing with much more general
boundary shapes. Moreover, we also provide conditions to have pathwise uniqueness of
solutions. We then introduced mean reverting diffusion processes having constant uniform
margins at all times and gave limit-law theorems proving that the moments of the transition
densities also tend to uniform distributions after a long time. In doing so we derived the
exact moments of the transition densities of the mean reverting uniform-margins diffusions,
and by re-scaling, the exact transition densities of the uniform peacock SDEs we derived
initially. Our results may be used to model random probabilities, random recovery rates



D. Brigo, M. Jeanblanc & F. Vrins. SDEs with uniformly-distributed solutions. 20

or random correlations.
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Appendix

A Deriving the candidate SDE for a uniformly dis-
tributed martingale

Let us guess a candidate solution o for Problem 1. Here we follow the derivation in the
preprint [3], although this guess for the diffusion coefficient can be obtained immediately
from the published reference [20], as done in the main text above.

The Fokker-Planck eq. for (1) with p plugged in as a solution reads

op(x,t) 10
ot 20x2

where the index in § denotes the point where the Dirac delta distribution is centered. Now
we integrate twice both sides of (14) with respect to x and assume we can switch integration
with respect to = and differentiation with respect to ¢ (one can check a posteriori that the
solution we find has a continuous partial derivative with respect to ¢ so that Leibniz’s rule
can be used). We obtain

% ( / OO < / ‘io p(z,t)dz) dy> _ %UQ(:L‘,t)p(x,t) , (15)

assuming the relevant first and second derivatives with respect to x on the right hand side
vanish fast enough at minus infinity. Compute for ¢ > 0, substituting from (2),

(0*(z, )p(x,1)) . p(z,0) = do(2) , (14)

. y 0, if x < —b(t)
oz, t) = / </ p(z,t)dz) dy = (IZ;’((;” ,if @€ [=b(t), b(t)]
T T, if x > b(t)
and note that ¢ is continuous in x. Equivalently,
x + b(1))?
plz,t) = % Tier-o o013 T2 Tia>p)y - (16)
Thus, rewriting (15) as
t 1
WD) _ o t)pl) (17)

and substituting (16) we are done. To do this, we need to differentiate ¢ with respect to
time. The calculations are all standard but one has to pay attention when differentiating
terms in (16) such as

Tze—nt) bt = Lpa>—bt)y — Lizsv(e)}

which can be differentiated in the sense of distributions,

d d .
7 Tesbiyy = T Upep1(ayy = —Op1a)(t)
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One can check that all terms involving §’s either offset each other or are multiplied by a
function that vanishes at the point of evaluation.

Assuming b is differentiable, omitting time arguments and denoting differentiation with
respect to time with a dot one gets:

Op(w,t)  w+Db
ot A

<2bb — b(x + b)) Uzei—pa)y -

We notice that b appears only in ratios 6/ b, so that this quantity may be extended to time
t = 0 by continuity if needed provided that the limit exists.

The above quantity is the left hand side of (17). We can substitute p on the right hand
side and we have that

r+b . 10?(z,t
102 (2bb — b(.’l? -+ b)) H{me[—b.b]} = é (Qb ) ]I{me[fb,h]} .
After some algebra, one obtains
, bt), o -
o*(x,1) = Lwe-b(e) b(e)]) @(b(t)z — 7).

From the above development, we expect the diffusion coefficient o(x,t) defined as

o(x,t) = Wpe—bw) b))} \/%(b(t)Q —1?) (18)

to be a valid candidate for the solution X of (1) to be a martingale with marginals having
a uniform law in [—b, b].

B Proof that the solution of the peacock SDE (4) has
uniform law

Theorem 6. The solution X to the SDE (4) is a uniform martingale on [—b(t),b(t)] in
the sense that for allt > 0, X; is uniformly distributed on [—b(t), b(t)].

Proof. We start by noting that from Carleman’s theorem, it is well known that the continu-
ous uniform distribution on an interval [a, b] with finite a,b € R having uniformly bounded
moments, it is determined by its moments. See for example Chapter 30 of [1]. Hence, it
is enough to show that all moments of the random variable X, (¢t > 0) associated to (4)
coincide with those of the density Wy _pu)<z<p() f(t)

Let X be a random variable uniformly distributed on [a, b]. Then,

1

E(X") = —= > (@)
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In the special case where a = —b, this expression reduces to

B i
E(X")z{gﬂ if n is odd

Let us now compute the moments of

otherwise .

b(t)

@ b2(t) — 22

t
X, = / o(Xs,s)dW, o(t,z) = L—pwy<e<nn)
0

solving eq. (4). By It6’s lemma:

t 1 t
X7 = n/ XM lax, + §n(n - 1)/ X"26%(X,, s)ds
0 0

and we can compute the expression for the n-th moment, n > 2 using a recursion.
Using the property that Ito ’s integrals have zero expectation and exchanging integration
and expectation operators, which is possible since X" 20%(Xj, s) is bounded for all s and
n > 2, we obtain

E(X") — nE ( /O t X;L‘ldXs> + %n(n _1E < / t X:_QJQ(XS,s)ds)
_ @(/Otb(b)b() E(X7-2) / o ) . (19)

Notice that we have postulated in the last equality that the indicator y_ys)<x,<p(s)} In
o(t,z) is always 1. This is a natural assumption: it says that X cannot stay on a boundary
with a strict positive probability for a given period of time. This happens because in case
X reaches £b(t) at some time ¢, the process is locally frozen (o(¢,z) = 0) but the boundary
b(t) keeps on growing.

Obviously, E(X;) = X, = 0 since X is a martingale and one concludes from eq. (19)
that the n-th moment of X, is zero when n odd. For n even, eq. (19) can be written as

M, (t) :”(”T_l) ( /O b(5)b(s) Myu_s(s)ds — /O %M(s)ds)

with M, (t) := E(X}"). This can be written as a recursive differential equation

8ngz(t) _ b<t>@ (b(t)an(t) — Tlt)M”(t)>

with the constraint that f(¢,0) = E(X?) = 1. The solution to this equation is M, (t) =
b"(t)/(n+1). One concludes that X is uniform on [—b(t), b(t)] since all the odd moments
are zero and all the even moments are given by

A0
E(Xt ) = n+ 1
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and agree with those of a random variable uniformly distributed on [—b(t), b(t)]. O

C Other uniform diffusions

It is easy to get uniform diffusion with non-linear drift. The idea consists of mapping
a diffusion in a time-dependent way, using the corresponding distribution function. We
provide here a specific example where the diffusion is a Brownian motion W, and analyze
its asymptotic conditional distribution.

Proposition 1. Let W be a standard Brownian motion. Define Z; == 2P % —1. Z is

a stochastic process with uniform distribution in (—1,1) at all times (possibly with random
initialization Zy, = ¢ at to > 0). The dynamics of Z are given by

2 (147 L1+ 2 (. (1+Z4
iz = 2ot (L) o (o7 (S52) Jarw 2o (0 (152) Y.

H(t) o(ta)

It can be shown that this satisfies the Fokker-Planck equation with
p(x,t) = (1/2) W 1<acty as

uﬁtx)=@m@ﬂ%2+06ﬂmudux%=<<@4<1%;§>)2—1>/t

Moreover, the law of Z|Zs tends to that of a uniform in (—1,1) as t — oo.

But % ” ~ VVSJFT‘/ITSZ where Z ~ N(0,1). Hence,

Proof. Conditioning upon Z; is equivalent to conditioning w.r.t. Wy as Z, = 2 (wT;) -1
W, 142
PlZ, <x|Zy)=P| D — ) < —
@)= (o) <55

W$> |
Inverting the standard Normal CDF,

P(Z; < x|Z;) =P (z < vieT (5F) _W9> % <\/Zc1>—1 (L) — Wg) |

NG =7

Ws>=P<@<WS+mZ> Lt

t—s t—s

SoP(Z, < x|Zs) — (14+x)/2 as t — oo for all (s, Zs) where Z,; € (—1,1). O
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D Proof of Theorem 4 and first conditional moments

Let us prove Theorem 4.

Proof. The dynamics of powers of Z solving (9) are easily found from Ito’s formula. This
yields the ODE governing the conditional expectations for all n. For n = 0 one trivially
has My(s,t;2z) = 1. Now, set h(t) := b(t)/b(t) satisfying

exp {— /: h(u)du} ~exp {/tsdlnu} — b(s)/b(t)

Hence,
~ OM, (s, t;
M (s, t;2) = 1(3—81;’2) = —h(t)Mi(s,t;2) s.t. Mi(s,s;2) =z
which leads to M;(s,t;2) = z%.

For n > 2, one gets a recursive first order inhomogeneous ODE

My (s, 1; ) —@%Mn(s,t; 2) + @%Mn_g(s,t;z)
n(n+1) n—1
= Th(t) (n—HMn—2(87 t; Z) - Mn(57 t; Z)) ) (20)

whose solution is

M, (s, t;z) = 2" (%>n(n+1)/2 + @ /: <%)”("+1)/2 h(u)M,_5(s,u; z)du . (21)

Notice that the expression above satisfies the initial conditions M, (s, s;z) = 2" for all
n in 2,3,.... This is also the case for the expression stated in the theorem as a result of
the relationship between the entries of the a[n] matrices: as b(s)/b(t) = 1 when s = t, the
double sum collapses to the single j = k = (n +&,)/2 term. This concludes the check of
the initial conditions.

Replacing n by n + 2 in the M, (s,; z) expression given in the theorem yields
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n+2+§n n+2+&n
2

» v b(s) J(2(5—&n)+1)
o) = et 35O ) 3 a2 ()
n+£n n+22+€n (S) ](2] én)"!‘l)
= fn+2 + Z 72k Iqu—fn) [n+2]( 1) (_>
— (t)
n+2+£n(n+3 fn)
n n n = S
+(—1)#( n+2—/ﬁn+2)a%7%[”+2](—1) 5 <%
b(é) (n+3)
_ n+2 “\7 I I
[+ + (2 fin+-2) (b(t)) Thth
| (M)
o= D ) 3 gl 21 (30 )
k=1 j=k

nt24én b(s) () k( 2k—&n
Iy, = (_1) 2 % ;(—1) (Z —/I,Qk_§n>(l’,n+22+£n’k[n+2]

where we have used &, = &2 and @ni21ey ni2ie, [0+ 2] = 1 from (11) with n < n + 2.
2 ’ 2

It remains to check that this expression agrees with the solution (21) when setting
n < n + 2. The constant term trivially reads

The integral can be split in two parts with respect to M,,. The first part of M, is p,
and the second is the double sum. The first part is

(TL+2)(7L—|—1) /t b(u) (n—l—2)(n+3)/2h( ) d_ ntl X b(s) (n+2)(n+3)/2
2 N0 WHnG = s b(1)

L2 (1 _ <% >("+ 2><n+3)/2> |

It remains to show that the remaining integral agrees with I; 4+ Iy defined above. It
comes

N (n Eply) (2482 )\ SCGE)+D)
ajk[n]%/s <?> h(u) (&) du = J1(j, k,n)+J2(4, k,n)

where
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b(1)
b S )(n+2)(n+3)/2

(5) 712G —&n)—1)
(7, k,n) = oykn+2] <—> ,

Jo(g ko) = —aypn+2] | —=

(t)
It is easy to see that

n+é&n n+én

MN
—~
—_
S—
—
[\]
ol
Ay
S
=
N
ol
Ay
3
SN—r
—
SN—r
o
S~
—
<
o~
3
N—
~
=

k=1 j=k

On the other hand,

(=D = pawg,) ) (1) Ja(j, ko)

B b(s) k(,2k—En -« j
- _ <W) kz:;(—l) Ry : (=1 ajpln + 2]

Il
~

ntén

—) (%) ;H)’“(z%‘én ~ Mokt Jmizica 40+ 2]

where the last inequality results from (11) with n < n + 2; this is nothing but I5. This
completes the proof. O

—~

E General UD with time-changed homogeneous SDE

We confirm the intuition given the above moments result, showing that we can connect
the general case to the special time-homogeneous case discussed in Section 5.1. To do
this, it will be enough to introduce a deterministic time change. The following proposition
is essentially equivalent to the methodology in [13] that we already used in the proof of
Theorem 2, but given the different context we state and prove the proposition explicitly
for convenience.

Proposition 2. [General mean reverting SDE as a time—changed time homogeneous SDE]
Consider the general SDE (9) for Z; with t > ty. There exists a Brownian motion B such
that

Zy =&y for the deterministic time change 7(t) = In(b(1)) ,
where & is the solution of the following SDE driven by B:

ey = —& dt+ (1— &) W1y dB:
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provided that 5
tO - b_1(1)7 5’7’(150) - fO - Zto

and that the initial condition is assumed to be a random variable & with uniform law in
[—1,1] and independent of B.

Proof. Consider the SDE (9) for Z. This is driven by the continuous martingale

i\
M, — / 290 aw,
o \ b(s)
in that it can be written as

~ b(t) ~ ~\1/2
Az, = —%tht + (1 - Zf) Lz, e—1ay dM,y .
Note that the quadratic variation of M is given by (M), = 7(t). From the Dambis,
Dubins-Schwarz (DDS) theorem we know that there exists a Brownian motion B such
that

Mt == B<M>t - BT(t) .

If we further notice that dr(t) = (b(t)/b(t))dt we can write SDE (9) as
- - ~\ 172
17 = ~Zy dr(V) + (1= Z2) " Mize 1y dBr

so that if we set &) = Z and substitute in the last SDE above we conclude. O

The assumption that to = b~'(1) (we could also take a larger ty) is needed to avoid
negative time in the £ SDE, but this is not an issue since we are interested in the limiting
behaviour of the solution for the SDE of Z, for large .

Given our discussion in Section 5.1, we know that & is ergodic and has a uniform
invariant measure as limit law. We can then confirm our earlier result on the limit law of
Z: it will be a uniform law that forgets the initial condition at an earlier time, and the Z
process will be a deterministic time-change of an ergodic process.



