Concentration waves of chemotactic bacteria: the discrete velocity case - Archive ouverte HAL
Chapitre D'ouvrage Année : 2017

Concentration waves of chemotactic bacteria: the discrete velocity case

Résumé

The existence of travelling waves for a coupled system of hyperbolic/ parabolic equations is established in the case of a finite number of velocities in the kinetic equation. This finds application in collective motion of chemotactic bacteria. The analysis builds on the previous work by the first author (arXiv:1607.00429) in the case of a continuum of velocities. Here, the proof is specific to the discrete setting, based on the decomposition of the population density in special Case's modes. Some counter-intuitive results are discussed numerically, including the coexistence of several travelling waves for some sets of parameters, as well as the possible non-existence of travelling waves.
Fichier principal
Vignette du fichier
Calvez-Gosse-Twarogowska-discrete-velocities-HAL.pdf (570 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01924071 , version 1 (15-11-2018)

Identifiants

Citer

Vincent Calvez, Laurent Gosse, Monika Twarogowska. Concentration waves of chemotactic bacteria: the discrete velocity case. Innovative Algorithms and Analysis, Springer International Publishing, 2017. ⟨hal-01924071⟩
72 Consultations
73 Téléchargements

Altmetric

Partager

More