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A WELL-BALANCED SCHEME FOR CHEMOTACTIC TRAVELLING WAVES
AT THE MESOSCOPIC SCALE

VINCENT CALVEZ∗, LAURENT GOSSE† , AND MONIKA TWAROGOWSKA‡

Abstract. We investigate numerically a model consisting in a kinetic equation for the biased motion of
bacteria following a run-and-tumble process, coupled with two reaction-diffusion equations for chemical signals.
This model exhibits asymptotic propagation at a constant speed. In particular, it admits travelling wave solu-
tions. To capture this propagation, we propose a well-balanced numerical scheme based on Case’s elementary
solutions for the kinetic equation, and L-splines for the parabolic equations. We use this scheme to explore the
Cauchy problem for various parameters. Some examples far from the diffusive regime lead to the co-existence
of two waves travelling at different speeds. Numerical tests support the hypothesis that they are both locally
asymptotically stable. Interestingly, the exploration of the bifurcation diagram raises counter-intuitive features.

Key words. Chemotaxis; Kinetic equations; Run-and-tumble model; Solitary wave; Exponential layers;
Well-balanced scheme.

AMS subject classifications. 35Q92, 65M06, 92C37, 92C45.

1. Introduction.

1.1. Concentration waves of chemotactic bacteria. This work deals with numerical
simulation of bacteria collective motion at the mesoscopic scale. In particular, we focus on
wave propagation in the long time asymptotics (see Fig. 1.1). Bacteria perform run-and-tumble
motion in a liquid medium [8, 32, 7]. They alternate between run phases of ballistic motion
and tumble phases of rotational diffusion. It is often assumed that tumbles are instantaneous
reorientation events, where the cell changes velocity (from v′ to v, say). On the other hand,
the duration of runs is modulated by temporal-sensing chemotaxis (chemokinesis). Accord-
ingly, cells spend more time (in average) in favorable directions, for which the concentration
of some molecular signal is increasing. This strategy allows them to navigate in heterogeneous
environments.

Remarkably, self-organized collective motion can emerge from this individual process. Here,
we focus on concentration waves of bacteria E. coli in a capillary assay (or a micro-channel),
as described in the seminal article by Adler [2], see [42] for a review from the modelling per-
spective. The following model was proposed in [38, 39], together with its validation on tracking
experimental data:

∂tf(t, x, v) + v∂xf(t, x, v) =

∫
V

T (t, x, v′)f(t, x, v′)dν(v′)− T (t, x, v)f(t, x, v). (1.1a)

The bacteria population is described by its density f(t, x, v) in the position×velocity space at
time t > 0. Here, we restrict to the one dimensional case (x, v) ∈ R × V , as we seek planar
travelling waves in the original three dimensional setting. Here, V is the compact interval of
admissible velocities, and ν is a symmetrical probability measure on this interval. The tumbling
rate T (t, x, v) depends on time, space and velocity through several molecular signals, called
chemoattractants. Following [37, 45, 38, 39], we make the hypothesis of two chemical species: an
amino-acid signal M released by the bacteria (e.g. aspartate, serine) and a nutrient N consumed
by the bacteria (e.g. oxygen, glucose). Assuming that both signals contribute additively to the
tumbling rate T , we assume that it is given by the following expression:

T (t, x, v) = 1 + χM · φ
(
DM

Dt

∣∣∣∣
v

)
+ χN · φ

(
DN

Dt

∣∣∣∣
v

)
, φ(·) = −sgn(·), (1.1b)
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Fig. 1.1: (a) Cartoon of concentration waves of bacteria, as reported in [2, 39]: The population
of bacteria is initially located on the left hand side of the channel after centrifugation. Shortly,
a large fraction of the population detaches and propagate to the right side at constant speed.
Individual trajectories follows a run-and-tumble process in first approximation: cells alternate
between straight runs and fast reorientation events (tumbles). The duration of run phases is
modulated by sensing temporal variations of the chemical gradients in the environment. We refer
to [7] for biological aspects of motions of E. coli. (b) Numerical simulation of a travelling wave
emerging from system (1.1). (Left) Spatial distribution of density of cells and concentration of
the signal and the nutrient. (Right) Density of a wave as a function of time and space.

where D
Dt stands for the material derivative along the direction given by the velocity v, i.e.

D
Dt = ∂t + v∂x. The sign function has been chosen for at least three reasons: (i) There exists
experimental evidence that bacteria can dramatically amplify small amplitudes during temporal
sensing [7, 34]. This motivates the choice of non linear functions such as the sign function. But
see [39] where a more appropriate choice of sigmoidal function was proposed. (ii) Existence of
travelling waves solution for this conservative problem rely on the specific choice of the sign

function in (1.1b). It would be highly relevant to replace it with φ
(
DlogM
Dt

∣∣∣
v′

)
, as suggested

in [43, 31, 47, 36], but the mathematical picture seems by far more complicated. (iii) It is
a numerical challenge to cope with the lack of regularity of the sign function, and resulting
consequences on the lack of regularity of density profiles.

Chemoattractant concentrations evolve according to standard reaction-diffusion equations,
with production, and uptake reaction terms, respectively:∂tM −DM∂xxM + αM = βρ,

∂tN −DN∂xxN + γρN = 0,
(1.1c)

where DM , DN , α, β, γ are positive constants, denoting respectively the diffusion coefficient of
M , the diffusion coefficient of N , the rate of degradation of M , the rate of production of M by
the bacteria, and the rate of consumption of the nutrient N by the bacteria. Also, ρ denotes
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the spatial density of cells:

ρ(t, x) =

∫
V

f(t, x, v)dν(v).

Kinetic modeling of bacteria motion dates back to Stroock [41] and Alt [4]. We refer to
[34, 20, 17, 15, 44, 36] for the description of the run-and-tumble process at multiple scales. In
particular, [45] and [22] deals with the modelling of the same experiment with a similar model
including an additional variable (the internal state of the bacteria). Also, [3, 18] is concerned
with the modelling of interactions between two strains within the same wave of propagation.

Kinetic models have been the basis for the derivation of macroscopic models of cell chemo-
taxis [34, 33, 16, 17, 40, 20, 30, 44, 35]. Mathematical analysis of kinetic models for chemotaxis
was performed in [16, 29, 30, 10, 9] from the perspective of global existence and regularity of
solutions. Numerical analysis of kinetic models for chemotaxis was performed in [21, 25, 28].
In [46], the author proposed a Monte Carlo algorithm to simulate (1.1) with the aim to resolve
travelling waves.

The constructions of travelling waves for system (1.1) was investigated in [11]. It was
proved that travelling wave solutions exist under certain conditions on the parameters. Fur-
thermore, some careful analysis revealed that such waves are not unique in general, contrary to
the macroscopic model obtained in the diffusion limit.

The main objectives of the present work are twofold: (i) We propose an efficient numerical
scheme to approximate system (1.1), which is able to capture the waves over long period of
time, despite their lack of regularity (ii) We explore some cases where several travelling waves
co-exist, and investigate their stability, from a numerical perspective.

1.2. Numerical simulations of travelling waves. Numerical approximation of problem
(1.1) is delicate because it requires an algorithm able to accurately reproduce attraction toward
waves of constant velocity on large domains, along with reliable large-time behavior, non-linear
coupling, and material derivatives representing real biological behavior. To be more precise,
consider the following points:

• In order to preserve shape and speed of a travelling wave over large domains a nu-
merical scheme has to balance correctly the transport and the tumbling operator. We
propose a well-balanced approximation of the kinetic equation in the framework of scat-
tering matrices. Their construction is based on the generalized Case’s solutions for the
stationary problem of (1.1a) which allows to preserve constant velocity profiles. The
well-balanced technique reduces also the time-growth of numerical errors [5], which is
extremely important due to the time scales of the problem.

• The coupling between the density f and the concentrations (M,N) plays a crucial role
in maintaining the right direction of the propagation. Well-balanced discretizations
for linear diffusive equations including lower-order terms were recently introduced in
[27] and we apply these techniques to the parabolic part of the model (1.1) for a better
resolution of the time evolution of the concentrations M,N . However, this method gives
also a more accurate coupling with the kinetic equation through the tumbling operator,
because the space grids of the kinetic part and of the parabolic part are naturally tilted
in the appropriate way.

• Material derivatives in the tumbling operator account for the temporal variation of the
concentrations along bacteria trajectories. Our first naive trial was not coherent with
the underlying process. We realized that a basic upwind of this transport operator
behaves in a nice way.

The proposed numerical scheme is compared with more classical time-splitting techniques. In
particular, the resolution of the velocity profile and computation of the wave speed is verified
and the advantage of the well-balanced approach is shown.

A source of global error in our simulations turns out to be the dissociation between kinetic
and parabolic time steps. This proceeds by stipulating that either material derivatives in (1.1a),
or the macroscopic density ρ in (1.1c), are kept constant during each time step. Such a splitting
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assumption appears to be reasonable because (1.1) is only a weakly nonlinear system.

Remark 1. In spite of the weakness of the mean-field coupling, and the fact that strictly
parabolic equations like (1.1c) are likely to react “slowly” to perturbations of f , the nature of
the waves that we aim at capturing numerically puts such a “splitting strategy” in jeopardy.
Indeed, chemotactic waves travelling at constant velocity result from subtle balancing involving
all the equations in system (1.1)-(1.1b)-(1.1c). Yet, as soon as a numerical algorithm proceeds
by solving (1.1)-(1.1b) independently of (1.1c), the resulting kinetic equation only perceives x-
dependent coefficients: in a bounded domain, such an equation does not admit travelling waves
solutions, except the one with zero velocity.

1.3. Organization of the paper. This paper is organized as follows: Section 2 contains a
description of theoretical results about the existence of such travelling waves. Then, Section 3 is
devoted to a detailed description of the components involved in our numerical approximation of
model (1.1)-(1.1b)-(1.1c). In particular, the treatment of (1.1) proceeds by applying techniques
relying on Case’s elementary solutions (see section 3.2), and the one handling parabolic equations
(1.1c) relies on L-splines discretization (see section 3.3). Accordingly, sections 4 and 5 display
numerical results of increasing complexity.

2. Existence theory of chemotactic solitary waves. We summarize below the result
obtained in [11] concerning the existence of travelling waves. Firstly, the problem is recast in the
moving frame variable z = x− ct, where c denotes the wave speed, which is the main unknown
in our problem. It writes

(v − c)∂zf(z, v) =

∫
T (z, v′ − c)f(z, v′) dν(v′)− T (z, v − c)f(z, v)

−c∂zM(z)−DM∂zzM(z) + αM(z) = βρ(z)

−c∂zN(z)−DN∂
2
zN(z) + γρ(z)N(z) = 0

, (2.1)

where the tumbling rate T can take only four possible values depending on the sign of the
gradients,

T (z, v′ − c) = 1− χM sgn((v′ − c)∂zM(z))− χN sgn((v′ − c)∂zN(z))

= 1± χN ± χN . (2.2)

Under some restriction on the reaction-diffusion parameters (DM , α), there exist c, and functions
(f,M,N) solutions of the travelling wave problem (2.1), see the precise statement in Theorem
2.1 below. The conditions which are imposed on the parameters to guarantee existence of
a travelling wave solution are linked to the asymptotic behavior of the solution of the linear
stationary problem

(v − c)∂zf(z, v) =

∫
T (z, v′ − c)f(z, v′) dν(v′)− T (z, v − c)f(z, v), (2.3)

for a given c, in a given field of chemical concentrations M(z), N(z) which satisfy the following
sign rules: (∀z < 0) ∂zM(z) > 0, and (∀z > 0) ∂zM(z) < 0 ,

(∀z) ∂zN(z) > 0.
(2.4)

The tumbling rate T associated with such given concentrations M(z), N(z) can take only four
possible values 1±χM ±χN , according to the rule of signs depicted in Figure 2.1. We introduce
the notation

T+ = 1 + (χM − χN )sgn(v), T+ = 1− (χM + χN )sgn(v).
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Under mild conditions on the measure ν (essentially bounded below by a positive constant on
its support), the density f(z, v) decays exponentially fast on both sides of the origin z = 0.
There exist positive exponents λ−, λ+, and velocity distributions F−, F+ such that

f(z, v) ∼
z→−∞

eλ−zF−(v) , f(z, v) ∼
z→+∞

e−λ+zF+(v) . (2.5)

The meaning of the equivalence in (2.5) is made precise in [13, 11], in terms of some L2 weighted
space. The pairs (λ−, F−) and (λ+, F+) are given by the expressions,

• F−(v) =
1

T−(v − c) + λ−(v − c)
,

where λ− is the smallest positive root of

∫
v − c

T−(v) + λ(v − c)
dv = 0 , (2.6)

and

• F+(v) =
1

T+(v − c)− λ+(v − c)
,

where λ+ is the smallest positive root of

∫
v − c

T+(v − c)− λ(v − c)
dv = 0 . (2.7)

On the one hand, the existence of a positive root λ+ in the latter equation (2.7) is guaranteed
if c is larger than c∗, where c∗ is defined as the unique velocity such that∫

v − c∗
T+(v − c∗)

dv = 0 . (2.8)

On the other hand, the existence of a positive root λ− in equation (2.6) is guaranteed provided
c is less than c∗, where c∗ is defined as the unique velocity such that∫

v − c∗

T−(v − c∗)
dv = 0 . (2.9)

We now state precisely the conditions for existence of travelling wave solutions.

Theorem 2.1 ([11]). Assume (χM , χN ) ∈ (0, 1/2) × [0, 1/2). Assume that ν is absolutely
continuous with respect to Lebesgue’s measure: dν(v) = ω(v)dv, where the p.d.f. ω belongs to
Lp for some p > 1. Assume in addition that the reaction-diffusion parameters α,DM satisfy the
following conditions:

c∗ +
√

(c∗)2 + 4αDM

c∗ +
√

(c∗)2 + 4αDM + 2DMλ−(c∗)
≤ explicit constant , (2.10a)

−c∗ +
√

(c∗)2 + 4αDM

−c∗ +
√

(c∗)2 + 4αDM + 2DMλ+(c∗)
≤ explicit constant , (2.10b)

Either χN ≥ χM , or

√
α/DM + λ+(0)√
α/DM + λ−(0)

≤ explicit constant . (2.10c)

Then, there exist a non-negative velocity c, and a set of nonnegative functions,

(f,M,N) ∈
(
L1 ∩ L∞(R× V )

)
× C2(R)× C2(R),

being solution of the travelling wave problem (2.1)-(2.2).
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Fig. 2.1: Expression of the tumbling rate T±± (2.2) depending on the signs of z and v − c. The
expected profiles of M and N are plotted in dashed lines, in order to get the correct value of
T±± at a glance. Note the dependency with respect to c, as some signs change relatively to v− c
from bottom to top in the (z, v) plane.

Proof. (Sketch) The strategy of proof is inspired from the macroscopic limit of (2.1) in the
diffusive regime [38]. It is based on a fixed-point argument on the signal concentration M . It is
assumed a priori that N is increasing (∂zN is positive), and that M is unimodal (∂zM changes
sign only once), with a unique maximum located at z = 0, see (2.4). The resulting tumbling
rate is deduced according to the rule of signs in Figure 2.1. One of the main results contained in
[11] states that the spatial density ρ(z) =

∫
f(z, v) dν(v), obtained from (2.3), is unimodal too.

Furthermore, it reaches its maximum point at z = 0, as for M . As a by-product, M̃ , defined as
the solution the following reaction-diffusion (elliptic) equation,

−c∂zM̃(z)−DM∂zzM̃(z) + αM̃(z) = βρ(z) (2.11)

is unimodal, which is consistent with the preliminary assumption (2.4). However, its maximum
point may not coincide with z = 0, except if c is chosen appropriately, see Figure 2.2. If c is
chosen such that the maximum point of M̃ is located at z = 0, then M̃ = M can be chosen
consistently to solve the full coupled system (2.1). This motivates the following definition of an
auxiliary function c 7→ Υ(c),

(c∗, c
∗) 3 c 7→ Υ(c) = ∂zM̃(0). (2.12)

Since M̃ is unimodal, we have the following simple observation: if Υ(c) > 0, then the maximum

of M̃ is reached for z > 0, whereas if Υ(c) < 0, then the maximum of M̃ is reached for z < 0.
These monotonicity considerations pave the way for a variational procedure:

1. On the one hand, condition (2.10a) guarantees that Υ(c) is positive as c↘ c∗;
2. On the other hand, (2.10b) guarantees that Υ(c) is negative as c↗ c∗;
3. Moreover, it is continuous1 with respect to c;
4. Therefore, there exists c ∈ (c∗, c

∗) for which the maximum of M̃ is located at z = 0.
The third condition (2.10c) guarantees that c can be chosen to be positive, which is a
requirement for checking that N is increasing afterwards.

1Continuity of the function Υ requires some regularity in the kinetic problem (2.3). In particular, the velocity
distribution is supposed to be absolutely continuous with Lebesgue’s measure for that purpose. Continuity fails
in the case of a discrete measure supported on a finite number of velocities, as in the numerical scheme discussed
later in this article.
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Fig. 2.2: Illustration of the solution M̃ of the elliptic equation (2.11), where ρ is deduced from
the kinetic equation in (2.1). (Left) Here, c is chosen too small. As a result, the spatial density

ρ is tilted towards the right side. Accordingly, the maximum value of M̃ is shifted to the right as
well. (Right) The opposite conclusion holds if c is chosen too large. (Bottom) Using a continuity
argument, there must exist a value of c for which the two maximum points coincide. However,
one should use any kind of intuition with caution, as there is no monotonicity with respect to
c in general.

It is a natural question to ask whether conditions (2.10) can be removed. Another issue is about
uniqueness of the travelling wave. As a side result of the present numerical investigation, we
found that there may exist several values of c for which travelling wave exists, for some regions
of the parameter set which violate (2.10). This is in contradiction with the macroscopic limit
of (2.1) in the diffusive regime, for which there exists a unique wave speed. We presume that
there exist some parameter values for which no travelling exist, see [12].

Theorem 2.1 is concerned with a continuum of velocities. This is a crucial assumption to
ensure continuity of the auxiliary function Υ. The case of a discrete number of velocities has
been developed in [12], where it is shown that the function Υ is well-defined.

3. Approximation of the weakly nonlinear system. Hereafter, an efficient numerical
strategy for model (1.1) is presented so as to reduce as much as possible the time-growth of
accumulating errors. For such purposes, well-balanced (WB) schemes were proved convenient,
see [5]. A uniform Cartesian grid in the (t, x)-variables is defined through grid parameters
∆x,∆t > 0 so that xj = j∆x for convenient j ∈ Z, tn = n∆t, n ∈ N. By convention, our
control cells are Cj = (xj− 1

2
, xj+ 1

2
). We shall also consider staggered cells (xj−1, xj).

3.1. Review of kinetic well-balanced schemes. Equations (1.1) constitute a weakly
nonlinear system. Especially, parabolic equations (1.1c) are expected to react slowly to (macro-
scopic) density fluctuations. Thus, it makes sense to stipulate that either material derivatives
DM
Dt ,

DN
Dt in (1.1a), or the macroscopic density ρ in (1.1c), are constant during a time-step

∆t > 0. Well-balanced schemes for (1+1)-dimensional linear collisional models were thoroughly
presented in [24, Part II]. Roughly speaking, a WB treatment of models like (1.1a) consists in
(formally) concentrating the scattering events at fixed locations of the computational grid (see
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xj+1
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2
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Fig. 3.1: Localization of the scattering events (tumbling) in well-balanced method for models
like (1.1a). (Left) According to (3.2), transport is solved in the cell Cj using the approximated
values of f at the interfaces. (Right) The value at each interface is reconstructed by solving the
stationary boundary-value problem (3.3a) in each staggered cell.

Figure 3.1),

∂tf + v∂xf = ∆x
∑
j∈Z

(∫
V

T (t, x, v′)f(t, x, v′)dν(v′)− T (t, x, v)f(t, x, v)

)
δ(x− xj− 1

2
). (3.1)

Applying the nowadays standard Godunov procedure to the former (and more singular) equa-
tion, a time-marching numerical scheme is derived. Scattering events are rendered through
supplementary jump relations at each xj− 1

2
: according to [26],

fn+1
j (v) =


fnj (v)− ∆t

∆x
v
(
fnj (v)− f̃n

j− 1
2

(v)
)
, if v > 0

fnj (v)− ∆t

∆x
v
(
f̃n
j+ 1

2

(v)− fnj (v)
)
, if v < 0

, (3.2)

where shorthand notation was used: fnj (v) ' f(tn, xj , v), and f̃n
j− 1

2

(v) (resp. f̃n
j+ 1

2

(v)) denote

the approximated value of f at the interface xj− 1
2

(resp. xj+ 1
2
). The latter approximations

take into account the scattering operator, as explained below. The presence of “Dirac collision
terms” in (3.1) induces a static discontinuity at each interface separating two control cells Cj−1
and Cj . Hence, the approximated value f̃n

j± 1
2

which appears in (3.2). The way to relate these

interface states and the values of fj at the center of the control cells is done through a scattering
matrix. Conceptually, well balanced schemes are constructed to be exact on equilibrium states.
This motivates to compute either analytically, or numerically the following (forward/backward)
boundary-value problem (BVP) on each staggered cell (xj−1, xj) (see Figure 3.1),

v∂xg =

∫
V

T nj− 1
2
(v′)g(x, v′)dν(v′)− T nj− 1

2
(v)g(x, v), x ∈ (xj−1, xj), (3.3a)

where T n
j− 1

2

(v) is “frozen” in space and time. Such a quantity stands for a reliable approximation

of the tumbling mechanism at each interface xj− 1
2
, as described in Section 3.4. This BVP is

complemented with inflow data(∀v > 0) g(xj−1, v) = fnj−1(v),

(∀v < 0) g(xj , v) = fnj (v).
(3.3b)

Remark 2. The well-balanced scheme using the equilibrium equation (3.3a) to derive the
interface states is exact on stationary solutions, that is waves with speed c = 0. So, if c 6= 0, it is
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not endowed with an exact balance between transport and collision operators, as already explained
in Remark 1. Moreover, the wave speed c is not known a priori and the steady equation (2.3)
isn’t easy to be used for deriving a scheme which remains consistent with (1.1).

To deal with the integral contribution in (3.3a), a numerical quadrature in the v-variable is
characterized by nodes and weights, which are symmetrical with respect to zero:

V = {v−K , ..., v−1, v1, ..., vK} ∈ (−1, 1)2K , Ω = {ω−K , ..., ω−1, ω1, ..., ωK} ∈ R2K
+ , (3.4)

such that vk 6= 0, vk < vk+1 for all k. We denote by k ∈ K = [−K,K] \ {0} the set of indices.
We assume that the weights are normalized, such that

∑
k∈K ωk = 1. For notational purposes,

we also define V ∈ (R∗+)K such that V = (−V) ∪ V, and W = [V,V] ∈ R2K . The integral term
in (3.3a) is approximated by, ∑

k∈K

ωkT
n
j− 1

2
(vk)g(x, vk). (3.5)

To complete the scheme (3.2), we seek the linear transformation that relates the outgoing states
f̃(xj− 1

2
, v) with the incoming states (3.3b) through the BVP (3.3). In the discrete velocity

setting (3.4), it is given by a 2K × 2K S-matrix which is denoted by Sn
j− 1

2

. In short, the BVP

(3.3) boils down to the following linear relation,(
f̃(xj− 1

2
,V)

f̃(xj− 1
2
,−V)

)
= Snj− 1

2

(
fnj−1(V)
fnj (−V)

)
. (3.6)

Plugging this relation into the transport part on each cell (3.2), after some shift in the indices,
we arrive at our numerical scheme written in a concise way,(

fn+1
j (V)

fn+1
j−1 (−V)

)
=

(
1− |W|∆t

∆x

)(
fnj (V)

fnj−1(−V)

)
+ |W|∆t

∆x
Snj− 1

2

(
fnj−1(V)
fnj (−V)

)
. (3.7)

Define the diagonal matrix,

Γ = diag(ωk|vk|), k = 1, ..., 2K,

the next Lemma states basic properties of the scheme (3.7).

Lemma 3.1. For any nonnegative initial data 0 ≤ f0(x, v) ∈ L1(R × V ), V standing for
(−1, 1), the scheme (3.7) preserves both non-negativity and total mass (hence a uniform L1

bound) of fnj (±V) as soon as

max(V) ·∆t ≤ ∆x, (CFL condition), (3.8)

∀j, ΓSnj−1/2 Γ−1 is left-stochastic. (3.9)

Proof. Under condition (3.8), (3.7) realizes a nonnegative combination of its inputs as soon
as the entries of Snj−1/2 are nonnegative. Yet, assume moreover that (3.9) holds, we compare
with the standard upwind scheme for free transport,

∀n ≥ 0, ∆x
∑
i∈Z

ρn+1
i = ∆x

∑
j∈Z,k∈{1,...K}

ωk(fn+1
j (vk) + fn+1

j−1 (−vk)).

Yet, by requiring (3.9), one secures that,(
ωk|vk| f̃j− 1

2
(vk)k=1,...,K

ωk|vk| f̃j− 1
2
(−vk)k=1,...,K

)
= ΓSnj−1/2 Γ−1

(
ωk|vk| fnj−1(vk)k=1,...,K

ωk|vk| fnj (−vk)k=1,...,K

)
,
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which brings the following (current-preservation) property,∑
k∈{1,...K}

ωk|vk|(f̃j− 1
2
(vk) + f̃j− 1

2
(−vk)) =

∑
k∈{1,...K}

ωk|vk|(fj−1(vk) + fj(−vk)),

so that, from the expression (3.7), it follows that

∆x
∑
j∈Z

ρn+1
j =

∑
j∈Z,k∈{1,...K}

ωk(∆x− vk∆t)(fnj (vk) + fnj−1(−vk))

+ ∆t
∑

j∈Z,k∈{1,...K}

ωk vk(f̃j− 1
2
(vk) + f̃j− 1

2
(−vk))

=
∑

j∈Z,k∈{1,...K}

ωk(∆x− vk∆t)(fnj (vk) + fnj−1(−vk))

+ ∆t
∑

j∈Z,k∈{1,...K}

ωk vk(fj−1(vk) + fj(−vk))

= ∆x
∑
j∈Z

ρnj ,

This Lemma is somehow the complementary of [26, Proposition 1]; it furnishes an easy-to-
check (sufficient) condition for both positivity- and mass-preservation for a scheme written in
the form (3.7). However, except for elementary two-stream models, like the ones studied in [28],
it is usually difficult to check the “left-stochastic” property in practice. In the next section, we
propose two choices for deriving S-matrices Sn

j− 1
2

.

3.2. Derivation of two different S-matrices. Our first option builds on the original
analysis of “Case’s elementary solutions” devoted to the accurate description of solutions to
the stationary BVP (3.3), which involves exponentially damped modes. A second option draws
onto second-order finite-differences, see [25, Chap. 10].

3.2.1. Case’s elementary solutions. Following [1, 6, 14], solutions of (3.3) are sought
as a (finite) combination of Case’s elementary modes with separated variables:

G(x, v) = exp(−λx)ϕ(v). (3.10)

Plugging G into (3.3), approximated with the velocity quadrature (3.5), we get an equation for
the pair (λ, ϕ):

(∀k)
(
Tnj− 1

2
(vk)− λvk

)
ϕ(vk) =

∑
`∈K

ω`T
n
j− 1

2
(v`)ϕ(v`). (3.11)

Thus, each “constant of separation” λ is a solution to the following equation:

∑
k∈K

ωk
Tn
j− 1

2

(vk)

Tn
j− 1

2

(vk)− λvk
= 1. (3.12)

Clearly, λ = 0 is a special solution, which results from mass conservation. The corresponding
eigenvector ϕ is:

ϕ(v) =
1

Tn
j− 1

2

(v)
. (3.13)
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Other solutions are given by the equivalent relation

∑
k∈K

ωk

(
Tn
j− 1

2

(vk)

vk
− λ

)−1
= 0. (3.14)

By studying the variations of the left-hand-side with respect to λ, one deduces the existence of
exactly 2K − 1 distinct solutions which are interlaced, like

Tn
j− 1

2

(v−1)

v−1
< λ−K+1 <

Tn
j− 1

2

(v−1)

v−2
< λ−K+2 < (. . . ) <

Tn
j− 1

2

(v−K)

v−K
< λ0

<
Tn
j− 1

2

(vK)

vK
< λ1 <

Tn
j− 1

2

(vK−1)

vK−1
< λ2 < (. . . ) < λK−1 <

Tn
j− 1

2

(v1)

v1
. (3.15)

Remark 3. There is some subtlety hidden there, because the values Tn
j− 1

2

(vk)/vk do not

necessarily respect the order of (1/vk). This would be the case if Tn
j− 1

2

(v) depends only on the

sign of v, as assumed implicitly in (3.15), e.g. in a stationary chemical field M(t, x) = M(x),
for which DM

Dt = v′∂xM . In full generality, the value of T depends on the sign of two material
derivatives, which are obviously affine with respect to v. Consequently, there exist two cutting
values, where each contribution in T changes sign. Both values on each sides of these cuts
respect the order of (1/vk), simply because T is piecewise constant.

Notice that the sign of λ0 6= 0 is determined by the sign of the mean flux∑
k∈K

ωk
vk

Tn
j− 1

2

(vk)
. (3.16)

As a conclusion, the solutions of the approximated BVP can be written in a general form as a
combination of 2K independent modes:

g(x, v) =
A

Tn
j− 1

2

(v)
+

K−1∑
`=−K+1

A`
Tn
j− 1

2

(v)− λ`v
exp(−λ`x), (3.17)

where the λ`’s are eigenvalues of a rank-1 perturbation of a diagonal matrix,

P = diag
(
Tj− 1

2
(V)V−1

)
− (ΩTj− 1

2
(V))⊗ (V−1)T ,

associated to an eigenvector ϕ`(v). The above formulation enables to build the scattering matrix
(3.6), which relates inflow data to values at the middle of the staggered cell (i.e. the interface
between Cj−1 and Cj), see Figure 3.1. Indeed, the degrees of freedom A, (A`) are obtained by
solving the following system of linear equations:

(∀k ∈ [1,K]) fnj−1(vk) =
A

Tn
j− 1

2

(vk)
+

K−1∑
`=−K+1

A`
Tn
j− 1

2

(vk)− λ`vk
exp(−λ`xj−1),

(∀k ∈ [−K,−1]) fnj (vk) =
B

Tn
j− 1

2

(vk)
+

K−1∑
`=−K+1

B`
Tn
j− 1

2

(vk)− λ`vk
exp(−λ`xj),

(3.18a)

which in the matrix form writes as(
fj−1(V)
fj(−V)

)
= M

(
A
B

)
.
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Next, values at any interface are obtained using the following reconstruction
(∀k ∈ [1,K]) f̃n

j− 1
2

(vk) =
A

Tn
j− 1

2

(vk)
+

K−1∑
`=−K+1

A`
Tn
j− 1

2

(vk)− λ`vk
exp(−λ`xj− 1

2
),

(∀k ∈ [−K,−1]) f̃n
j− 1

2

(vk) =
B

Tn
j− 1

2

(vk)
+

K−1∑
`=−K+1

B`
Tn
j− 1

2

(vk)− λ`vk
exp(−λ`xj− 1

2
).

(3.18b)
This definines a complementary matrix M̃ such that(

f̃j− 1
2
(V)

f̃j− 1
2
(−V)

)
= M̃

(
A
B

)
.

Eliminating the vector of coefficients A, B we obtain (3.6) with

S = M̃M−1. (3.19)

Remark 4. The numerical procedure described above relies on both the computation of
2K − 1 eigenvalues, and the resolution of a 2K × 2K linear system, at each time-step, at
each interface. However, based on the very simple structure of the scattering operator studied
here, namely T can take only four possible values, 1 ± χM ± χN , we can reduce that task to a
relatively small number of cases. Indeed, one should discuss the possible cutting values where
each contribution in T changes sign, making just 2× 2× (2K + 1) possibilities. All in all, this
scheme requires the pre-computation of 8K+4 sets of 2K−1 eigenvalues λ`, and linear systems
resolutions.

The previous analysis extends to the case of a frame moving at speed c: z = x− ct (see [11,
Section 7]). This makes sense when seeking wave propagation phenomena. This construction
shows some similarities with the one presented in [19].

3.2.2. Second-order finite-difference approximation. Oppositely, relying on [24, §10.4],
a simpler approach consists in discretizing the stationary problem in both velocity and space
variables with a second order finite-difference approximation: for any k,

vk
f̃j− 1

2
(vk)− fj−1(vk)

∆x
= −Tj− 1

2
(vk)

f̃j− 1
2
(vk) + fj−1(vk)

2

+
∑
`∈K

ω`Tj− 1
2
(v`)

f̃j− 1
2
(v`) + fj−1(v`)

2
if vk > 0,

vk
fj(vk)− f̃j− 1

2
(vk)

∆x
= −Tj− 1

2
(vk)

fj(vk) + f̃j− 1
2
(vk)

2

+
∑
`∈K

ω`Tj− 1
2
(v`)

fj(v`) + f̃j− 1
2
(v`)

2
if vk < 0.

Considering fj−1/2(vk) as unknowns we obtain a linear system at each interface

Qj−1/2

(
fj−1/2(V)
fj−1/2(−V)

)
= Q̃j−1/2

(
fj−1(V)
fj(−V)

)
, (3.20)
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where Qj−1/2, Q̃j−1/2 are 2K × 2K space and time dependent matrices:

Qj−1/2 = diag

(
|W|+ ∆x

2
Tj−1/2(W)

)
− ∆x

2
(ΩTj−1/2(W))⊗ 12K×1, (3.21a)

Q̃j−1/2 = diag

(
|W| − ∆x

2
Tj−1/2(W)

)
+

∆x

2
(ΩTj−1/2(W))⊗ 12K×1. (3.21b)

Lemma 3.2. Under the sufficient “non-resonance” condition,

vmin := min
K=1,...,K

(|vk|) > ∆x · (χM + χN ) , (3.22)

the matrix Q is invertible, so the scattering matrix is

Sj−1/2 = Q−1j−1/2Q̃j−1/2. (3.23)

Proof. The matrix Q = (q)m,n, m,n ∈ {1, ..., 2K} is invertible if it is strictly diagonally
dominant, that is, for each row m ∈ {1, ..., 2K} the following must hold

|qm,m| −
2K∑

n=1,n6=m

|qm,n| > 0.

Using the explicit formula for Q the above condition becomes

Γk =

∣∣∣∣|vk|+ ∆x

2
T (vk)− ∆x

2
ωkT (vk)

∣∣∣∣− ∆x

2

(∑
`∈K

|ω`T (vk)| − |ωkT (vk)|

)
.

Since T > 0 and ωk ≤ 1 we have T (vk)− ωkT (vk) ≥ 0, so omitting the moduli yields

Γk = |vk|+
∆x

2

∑
`∈K

ω`T (vk)− ∆x

2

∑
`∈K

ω`T (v`)

= |vk|+
∆x

2

∑
`∈K

ω` (T (vk)− T (v`)) ≥ min
k

(|vk|)−∆x · (χM + χN ) .

3.3. Well-balanced schemes for reaction-diffusion equations. Well-balanced dis-
cretizations for linear diffusive equations including lower-order terms were recently introduced
in [27], extending previous works mostly devoted to stationary models. In particular, it was
shown that in the vanishing viscosity limit, usual well-balanced schemes for the remaining hy-
perbolic equations were recovered.

As both the parabolic equations showing up in (1.1c) are very similar, the treatment of
a generic dissipative diffusion-reaction model for a generic unknown u(t, x) will be presented
hereafter. We seek a numerical approximation of Cauchy problem,

∂tu−D∂xxu+ p(x)u = q(t, x) (3.24)

with initial and boundary data, so that the resulting scheme recovers the collection of points
u(xj), for xj being the nodes of the grid. The main idea of the scheme is to derive numerical
flux functions using the properties of the ”L-spline” interpolation of the data unj that is solving
the stationary problem of (3.24) in (xj−1, xj)

−D∂xxv + pv = q (3.25)
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and imposing the C1 regularity conditions at interfaces. In (xj−1, xj), both p and q are assumed
to be constant, each ”local profile” is obtained by a standard variation of constants technique
involving exponential functions.

• Let rj− 1
2

=
√
pj−1/2/D > 0 in (xj−1, xj) and q̄j− 1

2
= qj− 1

2
/pj− 1

2
. Exponentials

{exp(rj− 1
2
x), exp(−rj− 1

2
x)}

(
resp. {exp(rj+ 1

2
x), exp(−rj+ 1

2
x)}
)

form a fundamental

basis for an operator L : v → −D∂xxv + pv in (xj−1, xj) (resp. (xj , xj+1)). Let v be a
steady state solution to (3.24). Then in (xj−1, xj) it is written as

v(x) =

〈(
A
B

)
,

(
exp(rj− 1

2
x)

exp(−rj− 1
2
x)

)〉
+ q̄j− 1

2
, (3.26)

where 〈·, ·〉 denotes the canonical scalar product and A,B are the inegration constants.
Solutions to (3.25) at xj−1, xj rewrite as(

vnj−1 − q̄j− 1
2

vnj − q̄j− 1
2

)
=

(
exp(rj− 1

2
xj−1) exp(−rj− 1

2
xj−1)

exp(rj− 1
2
xj) exp(−rj− 1

2
xj)

)
︸ ︷︷ ︸

Z
j− 1

2

(
A
B

)
. (3.27)

The determinant |Zj− 1
2
| = −2 sinh(rj− 1

2
∆x) 6= 0, so the matrix is invertible.

• A solution vj belongs to a unique stationary curve defined on (xj−1, xj+1), such that
u(xj±1) = vj±1, if at the node xj the C1 regularity is assured. Inside (xj−1, xj) we
have

v′(x) =

〈(
A
B

)
, rj− 1

2

(
exp(rj− 1

2
x)

− exp(−rj− 1
2
x)

)〉
, (3.28)

so that, the C1 smoothness at xj reads,

Rnj− 1
2

:=rj− 1
2

〈
Z−1
j− 1

2

(
vnj−1 − q̄j− 1

2

vnj − q̄j− 1
2

)
,

(
exp(rj− 1

2
xj)

− exp(−rj− 1
2
xj)

)〉
(3.29)

=rj+ 1
2

〈
Z−1
j+ 1

2

(
vnj − q̄j+ 1

2

vnj+1 − q̄j+ 1
2

)
,

(
exp(rj+ 1

2
xj)

− exp(−rj+ 1
2
xj)

)〉
=: Lnj+ 1

2
,

where relation (3.27) was used to replace the integration constants A,B.

The time-marching strategy consists in defining the discrete time derivative as the defect of C1

smoothness at each xj , that is, a difference of normal derivatives,

un+1
j = unj −

D∆t

∆x

[
Lnj+ 1

2
−Rnj− 1

2

]
, (3.30)

where Lj+ 1
2

(
resp. Rj− 1

2

)
is the right (resp. left) hand side of (3.29). By developing these

terms, the scheme for the time evolution of concentrations M , N rewrites as

• signal M : p = α, q = βρ, rj+1/2 =
√
p/D ≡ r

Mn+1
j = Mn

j +
∆t
√
αDM

∆x sinh(r∆x)

{(
Mn
j+1 − 2 cosh(r∆x)Mn

j +Mn
j−1

)
+
β

α

cosh(r∆x)− 1

sinh(r∆x)

(
ρnj+1/2 + ρnj−1/2

)}
, (3.31a)

where, presently, ρnj±1/2 can be defined as an arithmetic average.
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• nutrient N : p = γρ, q = 0, rj+1/2 =
√
γρj+1/2/DN

Nn+1
j = Nn

j +
∆t
√
γDN

∆x

{ √
ρj+1/2

sinh(rj+1/2∆x)

(
Nn
j+1 − cosh(rj+1/2∆x)Nn

j

)
−

√
ρj−1/2

sinh(rj−1/2∆x)

(
cosh(rj−1/2∆x)Nn

j −Nn
j−1
)}

. (3.31b)

Consistency is established like in [27, Theorem 6.2], essentially by performing Taylor expansions
in every hyperbolic trigonometric function while sending ∆x → 0. The scheme is just a linear
3-point space-discretization, although it is “exponential-fit” like Scharfetter-Gummel’s, so that
implementing a Crank-Nicolson (θ-method with θ = 1

2 ) time-integration is easy and produces
second order accuracy.

3.4. Approximation of material derivatives. The scattering matrix, evaluated at each
time-step and interface, requires a good approximation of material derivatives (1.1b) inside the
“sign” functions. We present here two methods, for which accuracy is addressed numerically in
the next sections. For brevity, only the concentration of M is considered, as identical formulas
apply to N as well:

• Method MD-1: One of the choices to approximate DM/Dt|nj+1/2 is to define a piecewise

constant approximation of M(t, x) centered at the grid nodes,

∀j, n ∈ Z× N, Mn
j = M(tn = n∆t, xj = j∆x),

and use the definition of the material derivative DM/Dt = ∂tM + v∂xM with

(∂xM)nj+1/2 :=
Mn
j+1 −Mn

j

∆x
, (3.32a)

(∂tM)nj+1/2 :=
1

2

(
Mn
j+1 −M

n−1
j+1

∆t
+
Mn
j −M

n−1
j

∆t

)
. (3.32b)

The space derivative is well defined at interfaces, but, not the approximation of the
time derivative: averaging might introduce additional errors.

• Method MD-2: Another way is to approximate directly the material derivative

DM

Dt
(x, t) =

1

∆t
(M(x, t)−M(x− v∆t, t−∆t)). (3.33)

The CFL condition (3.8) assures that x − v∆t ∈ (0,∆x). This definition is more
coherent with the behavior of bacteria which measure variations of concentration of
a chemical along their trajectory. As DM/Dt has to be defined at the interfaces, it
becomes natural to define also M on the interfaces, instead of on the grid nodes,

∀j, n ∈ Z× N, Mn
j = M(tn = n∆t, xj = (j + 1/2)∆x).

Using the linear combination of values at the cell boundaries with the upwinding with
respect to the velocity to approximate M(x− v∆x, t−∆t) we obtain

∆t
DM

Dt

∣∣∣∣n
j+1/2

= Mn
j+1/2 −


(

1−∆t
v

∆x

)
Mn−1
j+1/2 + ∆t

v

∆x
Mn−1
j−1/2 if v > 0(

1 + ∆t
v

∆x

)
Mn−1
j+1/2 −∆t

v

∆x
Mn−1
j+3/2 if v < 0

(3.34)

Remark 5. We note that using the well-balanced approximation of the parabolic equations
(1.1c) allows to avoid additional approximations in the method MD-2. More precisely, if the
concentrations of the signal M and the nutrient N are computed at interfaces, then the values
of ρj+1/2 in the scheme (3.31) coincide with the grid nodes.



16 V. Calvez, L. Gosse & M. Twarogowska

WB TS

Kinetic equation (1.1a) (3.6)-(3.7)-(3.18) (3.35)
Parabolic system (1.1c) (3.31) (3.36)

MD - 1 MD - 2

Tumbling operator (1.1b) (3.32) (3.34)

Table 4.1: Reference (names and equations) for the numerical methods used in the simulations.

3.5. Simple centered, time-splitting (TS) approach. For comparison purposes, we
present an alternative, standard scheme based on time-splitting. A main difference with respect
to well-balanced techniques lies in a “time localization” of transport and tumbling terms (see
[23]). Processes are separated, so that the scheme splits into two distinct phases. In case of the
kinetic equation (1.1a)-(1.1b), we have the following discretization:

1. transport with velocity vk is solved by the classical upwind algorithm,

f∗j (|vk|) = fnj (|vk|)− |vk|
∆t

∆x

(
fnj (|vk|)− fnj−1(|vk|)

)
,

f∗j (−|vk|) = fnj (−|vk|) + |vk|
∆t

∆x

(
fnj+1(−|vk|)− fnj (−|vk|)

)
, (3.35a)

It corresponds to scheme (3.7) with the identity as the scattering matrix.
2. tumbling is an ordinary differential equation solved by explicit integration,

fn+1
j (vk) = (1−∆tTnj (vk))f∗j + ∆t

2K∑
l=1

ωlT
n
j (vl)f

∗
j (vl), (3.35b)

where Tj(·) = T (xj , ·) is computed at each node, hence the word “centered”.

A similar method for a generic reaction-diffusion equation (3.24) reads,

un+1
j = unj +

D∆t

∆x

([
unj+1 − unj

∆x

]
−
[
unj − unj−1

∆x

])
−∆t(pj u

n
j − qnj ). (3.36)

As usual, the CFL restriction for linear stability is:(
2D

∆x2
− ‖max(0, p)‖∞

)
∆t ≤ 1.

Such discretization of diffusive terms corresponds to (3.30), where q = p = 0 is forced into
(3.24). Corresponding L-spline interpolation reduces to piecewise-linear, because L is just the
second derivative, v 7→ −D∂xxv, which fundamental system is {1, x}.

4. First numerical assessments. We study the accuracy of numerical schemes presented
in the previous section. First, we focus on analyzing the properties of two types of scattering
matrices: one based on Case’s elementary solutions and another derived from a finite difference
approximation, see Section 3.2.1 and 3.2.2 respectively. Then, we compare how different numer-
ical approaches resolve the momentum of a travelling waves used to compute its mean velocity.
In particular, we compare:

• WB-WB: well-balanced for both kinetic (1.1a) and parabolic (1.1c) equations
• WB-TS: well-balanced for kinetic equation, time-splitting for parabolic ones
• TS-TS: time-splitting for both kinetic and parabolic equations

and two possible approximations of the material derivative, described in Section 3.4: one based
on definition (MD-1), another using upwinding (MD-2), see Table 4.1.
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4.1. General setting. If not otherwise specified, system (1.1)-(1.1c) is posed on [0, L] ×
[−1, 1] with specular boundary conditions for the kinetic equation, and

∂xM(t, x)|x=0 = ∂xM(t, x)|x=L = 0, ∂xN(t, x)|x=0 = 0, N(t, x = L) = N̄

for the parabolic system, where N̄ is an arbitrary positive constant. The macroscopic density
and velocity are approximated using the quadrature: for all j ∈ Z, n ≥ 0,

ρnj =
∑
k∈K

ωkf
n
j,k, unj =

∑
k∈K ωkvkf

n
j,k∑

k∈K ωkf
n
j,k

, (4.1a)

while the velocity c is set as the average value of a truncated macroscopic velocity,

c =
〈
unj · 1ρnj >10%maxj(ρnj )

〉
, (4.1b)

where 1A stands for the indicator function of a set A. Such a truncation allows to avoid the
influence of the numerical noise at low macroscopic densities.

4.2. Properties of the two S-matrices. The core part of the well-balanced scheme (3.7)
for equation (1.1a) is the scattering matrix. When it derives from finite differences (3.21)-(3.23),
then the minimal grid velocity must be bounded from below like (3.22). It forbids ”too slow
particles”, which increase both the stiffness of the linear system (3.20) and the condition number
of the S-matrix. A high condition number yields amplification of errors present in the incoming
states. S-matrices based on the Case’s solutions (3.18)-(3.19) are free from the condition (3.22),
however, their stability for numerous discrete velocities is still not entirely clear. Figure 4.1
displays condition numbers of both S-matrices described in Section 3.2 depending on the number
of points in a Gauss-Legendre quadrature for three different spatial grids, ∆x = 0.1, 0.05, 0.025.
Results for the S-matrix based on finite differences are displayed over the ones involving Case’s
solutions method. In both cases, the condition number increases with the number of discrete
velocities Nv, which implies smaller values of vmin. The sensitivity to slow particles moving at
vmin appears clearly weaker for S-matrices built on Case’s solutions.

4.3. Comparison with a time-splitting algorithm. We chose two tests: approximation
of the asymptotic states for the aggregation model, that is when χN = 0, and approximation of
the wave speed c for the full problem.

4.3.1. Breaking the symmetry. Without nutrient N , no travelling wave exist, so that
macroscopic density peaks symmetrically at x = 0. Due to compensation phenomena in the
velocity integral, see [11], this maximum is produced despite kinetic densities peak at slightly
different locations. Capturing efficiently such a subtle velocity repartition, see also [24, Fig.
10.6], is a first requisite. Accordingly, (1.1) is considered with χN = 0, all parameters equal

to one and initial data f(0, x, v) = 10e−x
2−v2 . The velocity space is discretized by a K = 8

point Gauss quadrature and ∆x = 0.01. Figure 4.2(a) shows, in the left column, the kinetic
density f(t, x, vk) for positive velocities (for negative velocities, profiles are symmetric) and the
macroscopic density ρ at steady-state for the WB-WB method (top) and TS-TS one (bottom);
in the right column, the symmetry breaking error ∆ρ = ρ(x)−ρ(−x). For an aggregated signal,
which is time-independent, i.e. T = 1+χM sign(v ·x), both methods yield a macroscopic density
correctly peaking at x = 0 (∆ρ ∼ 10−14). In a time-dependent case T = 1− χM sign

(
DM
Dt

)
, see

Figure 4.2(b), only well-balanced gives accurate results with ∆ρ ∼ 10−6 compared to ∆ρ ∼ 10
for the TS-TS method.

4.3.2. Approximation of the wave speed. In biological experiments involving travel-
ling pulses of E. coli [38] bacteria were initially located at one end of the micro-channel filled
with nutrient. They consumed the nutrient and moved towards its higher concentration. At
some point an aggregate of bacteria was formed and traveled with a constant speed within a
constant profile. In order to simulate this behavior it is necessary for a numerical scheme to be
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Fig. 4.1: Condition number of S-matrices as a function of K for three grids, ∆x =
0.1, 0.05, 0.0025. Comparison between the scattering matrix based on finite differences (3.23)
(top) and the scattering matrix based on the Case’s special functions (3.19) (bottom).

accurate enough when computing velocities, over large distances and for large times. We ana-
lyze the accuracy of different methods in approximating the speed of travelling waves emerging
from (1.1) defined on [0, L]× [−1, 1] with the following parameters

χM = 0.48, χN = 0.44, DM = 0.5, α = 40, DN = β = γ = 1

and the initial data

f0(x, v) = 3e−2x
2

, M0(x) = 0, N0(x) = 400
(π

2
+ tanh

(x
3
− 3
))

.

The simulations are performed on a mesh with ∆x = 0.05, V = {−1,−0.5, 0.5, 1} and homoge-
neous weights wk = 0.5. Figure 4.3 presents the comparison of the spatial distributions of the
macroscopic velocity at time t = 100 for MD-1 (on top) and MD-2 (on bottom) and WB-WB,
WB-TS, TS-TS methods. The well-balanced method for the kinetic equation produce small
oscillations in the back part of the wave, but the speed c can be computed with good accuracy.
The full time-splitting method (TS-TS) cannot balance correctly the macroscopic flux near the
wave maximum resulting in a jump in the velocity profile. Also, our choice to approximate ma-
terial derivatives through the upwinding technique (MD-2) improves significantly the accuracy.

5. Bi-stability of travelling waves. Quantitative spectral analysis in the discrete veloc-
ity case [11] showed that the function Υ(c) = ∂zM̃(z = 0, c) (2.11) may not be monotonically
decreasing, but can have positive jumps, see [11, Section 7]. As a consequence the condition
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Fig. 4.2: Symmetry of solutions to the aggregation model (N = 0) with χM = DM = α = β = 1,

f(0, x, v) = 10e−x
2−v2 ,M(0, x) = 0: (left) spatial distribution at steady-state of kinetic density

f(t, x, v) for positive velocities, macroscopic density ρ(t, x) and (right) the error of symmetry
∆ρ = ρ(x) − ρ(−x) for WB-WB method (top) and TS-TS (bottom) with K = 8 point Gauss-
Legendre quadrature and ∆x = 0.01.

Υ(c) = 0 can be satisfied by two different speeds c corresponding to a slow and a fast wave, see
Figure 5.1. This phenomenon depends on the velocity grid and model parameters.

Below, we address the local stability of each of these waves. We opt for a very basic velocity
set having only four values V = {−1,−vmin, vmin, 1}. We initialize the cell density profile with a
stationary profile in the shifted frame x−ct as solution of (2.3) for different values of parameter
c. Initial distributions of the signal M and the nutrient N are the solutions to the stationary
equations of the parabolic part of the model in the shifted frame.

Two problems are studied:

• For vmin = 0.5 and an appropriate choice of other parameters there exist two travelling
waves, Figure 5.1. We show that they are both locally stable.

• A numerical bi-stability diagram is sought, for various values of vmin.

During the course of our analysis, we noticed that it is very challenging to preserve waves
with high speed. Such waves are very narrow in the central part due to large values of dominant
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Fig. 4.3: Comparison of the macroscopic velocities at t = 100 obtained by different options of
numerical methods, see Table (4.1) for the details of the choices. (Top) Material derivative as
in MD-1 (3.32). (Bottom) Material derivative as in MD-2 (3.34).

eigenmodes λ in Case’s solutions. To maintain the stability of fast waves a sufficient refinement
in space, of order λ−1 is required. Figure 5.2 presents both macroscopic density and velocity
of a fast wave corresponding to vmin = 0.5 at times t = 5 and t = 30 for two different grids
∆x = 0.05, 0.018. The wave is not maintained on the coarse mesh. For a fast wave corresponding
to vmin = 0.6, the grid is such that ∆x = 0.004.

5.1. Observing bi-stability. For vmin = 0.5 then the condition Υ(c) = 0 is satisfied by
two values of c: cs ≈ 0.214 for the slow wave and cf ≈ 0.58 for the fast wave, see Figure 5.1. We
show numerical simulations of the Cauchy problem which support the fact that the waves are
both locally stable. More precisely, we initialize the Cauchy problem with stationary solutions
in shifted frame with four different speeds c = (0.214, 0.45, 0.55, 0.58) and we analyze their
long time behavior. Figure 5.3 presents the distribution of the spatial density ρ and the mean
velocity u at different times (4.1). Two waves corresponding to the exact slow and fast wave
are preserved. The other two initial conditions, for c = 0.45 and c = 0.55, converge to each of
the travelling waves, respectively. We note that smaller accuracy for faster waves is due to the
low space resolution, as described in the previous section.

5.2. Bifurcation diagram. Previously, we fixed the parameter vmin and we showed that
various initial conditions converge asymptotically to the slow, or the fast wave given by the
relation Υ(c) = 0. Now, vmin becomes a free parameter in the study of local stability of
admissible travelling waves. The Cauchy problem is initialized close to the profile of either the
slow or the fast wave, for each vmin. A bifurcation diagram of wave speeds as a function of
vmin is presented in Figure 5.4, including both exact roots of Υ(c) = 0 (for each vmin, green
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Fig. 5.1: Plot of the auxiliary function Υ(c) (2.12), for values of the parameter c ranging from
0 to c∗. Here, V = {−1,−0.5, 0.5, 1}, weights are uniform, and χM = 0.48, χN = 0.44, α = 40
and DM = 0.5. One clearly observe the co-existence of two wave speeds cs < cf such that
Υ(cs) = Υ(cf ) = 0. Notice the positive jump at the transition c = 0.5 for which the problem is
singular.

curves), and numerical ones obtained in the long time asymptotics (markers). The outcomes of
this bifurcation diagram are as follows:

• Both slow and fast waves remain stable numerically when they exist.
• The range of minimal velocity values vmin, for which two waves co-exist, is wide. The

smaller is the minimal velocity of the grid, the slower are the waves. Our numerical
scheme captures reliably all these waves.

• Behavior for extreme values of vmin is counterintuitive, but in agreement with theoretical
analysis. If vmin is small (resp. large) enough than the slow (resp. fast) wave disappears
and all solutions stabilize on the fastest (resp. slowest) wave.

• Numerical results for slow waves are in a very good agreement with theoretical curves.
For vmin = 0.1 the initial wave corresponds to c = 0 and convergence toward the fast
wave is not well resolved. It might come from a too long simulation time along with
numerical diffusion, which slows velocity down.

• Approximation of fast waves is quite challenging for any numerical process: as already
explained, faster waves are much less aggregated in the large, and much narrow close to
the peak. So, the scheme needs to balance both the transport and tumbling terms on
larger domains, as well as to capture small spatial scales around the peak of the wave.
Up to vmin = 0.5, our scheme manages to capture travelling waves with ∆x = 0.018.
At vmin = 0.6, stability is ensured for a smaller grid size.

6. Conclusion and outlook. Chemotactic exponential travelling profiles were studied,
both theoretically (by means of Theorem 2.1 and its sketch of proof) and numerically (see
Sections 3–5); in particular, unexpected bi-stability phenomena were observed, for which the
accuracy of recent well-balanced kinetic and parabolic discretizations was severely tested. Over-
all results are satisfying, mainly because both fast and slow travelling waves, in the cases where
they coexist, were captured in a stable way; however, fast waves may require a finer griding of
the computational domain (see Fig. 5.3). The practical bifurcation diagram agrees nicely with
theoretical values, see Fig. 5.4.

This being said, it sounds desirable to improve the global numerical strategy by getting rid
of the “splitting” between the kinetic equation (1.1a) and diffusion ones (1.1c). In a way similar
to a 1D Riemann solver for a system of nonlinear conservation laws, a numerical handling of
(1.1a)–(1.1c) as a whole set of equations is likely to bring more robustness and alleviate the
griding constraints. Two angles of attack can be tried for building such a solver:
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Fig. 5.2: Effect of the mesh refinement: evolution of the macroscopic density (solid line) and the
averaged velocity (dashed line), when the initial data is closed to the fast wave density profile
(cf ≈ 0.58). Parameters are the same as in Figure 5.1. (Left) The space step is ∆x = 0.05.
Successive times are t = 0 (top), t = 5 (middle), t = 30 (bottom). (Right) The space step
is ∆x = 0.018. Times are the same. Notice the need for a small space step to capture the
propagation of the fast wave. The slow wave is more robust for this choice of parameters.

• a direct coupling strategy between the already existing S-matrix derivations and Steklov-
Poincaré strategies presented in [27];

• or building two-stream (diffusive) relaxation approximations of (1.1c) and consider an
“augmented kinetic model” which encompasses the resulting three kinetic equations,
and for which an “augmented S-matrix” might be found.

In a context of entropy-dissipating PDE’s, the use of both S-matrices and L-splines within
numerical schemes allows to retrieve very high order accuracy close to steady-state, while main-
taining the stencil as narrow as possible. The reason is that dissipation of entropy yields loss
of information, hence irreversibility, so that distinguished “equilibrium states” do exist. For
large-time simulations, it appears therefore sufficient to secure high accuracy only in the vicin-
ity of such (problem-dependent) states, instead of asking for the same accuracy for a very wide
class of (smooth) functions, which can actually be solutions of the considered problem only for a
limited duration, at best, at the price of a more involved algebraic complexity of the algorithms.
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