Ionic parameters identification of an inverse problem of strongly coupled PDE's system in cardiac electrophysiology using Carleman estimates - Archive ouverte HAL
Article Dans Une Revue Mathematical Modelling of Natural Phenomena Année : 2019

Ionic parameters identification of an inverse problem of strongly coupled PDE's system in cardiac electrophysiology using Carleman estimates

Résumé

In this paper, we consider an inverse problem of determining multiple ionic parameters of a 2 × 2 strongly coupled parabolic-elliptic reaction-diffusion system arising in cardiac electrophysiology modelling. We use the bidomain model coupled to an ODE system and we consider a general formalism of physiologicaly-detailed cellular membrane models to describe the ionic exchanges at the microscopic level. Our main result is the uniqueness and a Lipschitz stability estimate of the ion channels con-ductance parameters of the model using subboundary observations over an interval of time. The key ingredients are a global Carleman-type estimate with a suitable observations acting on a part of the boundary.
Fichier principal
Vignette du fichier
Abidi-et-al-bidomain-MMNP.pdf (394.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01923862 , version 1 (15-11-2018)

Identifiants

Citer

Yassine Abidi, Mourad Bellassoued, Moncef Mahjoub, Nejib Zemzemi. Ionic parameters identification of an inverse problem of strongly coupled PDE's system in cardiac electrophysiology using Carleman estimates. Mathematical Modelling of Natural Phenomena, 2019, Mathematical Modelling in Cardiology, 14 (2), ⟨10.1051/mmnp/2018060⟩. ⟨hal-01923862⟩
246 Consultations
389 Téléchargements

Altmetric

Partager

More