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ABSTRACT

Causal broadcast constitutes a fundamental communica-
tion primitive of many distributed protocols and applica-
tions. However, state-of-the-art implementations fail to for-
get obsolete control information about already delivered
messages. They do not scale in large and dynamic systems.
In this paper, we propose a novel implementation of causal
broadcast. We prove that all and only obsolete control infor-
mation is safely removed, at cost of a few lightweight control
messages. The local space complexity of this protocol does
not monotonically increase and depends at each moment
on the number of messages still in transit and the degree of
the communication graph. Moreover, messages only carry a
scalar clock. Our implementation constitutes a sustainable
communication primitive for causal broadcast in large and
dynamic systems.

Keywords: Causal broadcast, complexity trade-off, large and
dynamic systems

1 INTRODUCTION

Causal broadcast constitutes the core communication prim-
itive of many distributed systems [9]. Applications such
as distributed social networks [3], distributed collaborative
software [10, 19], or distributed data stores [2, 4, 6, 15, 24]
use causal broadcast to ensure consistency criteria. Causal
broadcast ensures reliable receipt of broadcast messages,
exactly-once delivery, and causal delivery following Lam-
port’s happen before relationship [14]. When Alice com-
ments on Bob’s picture, nobody sees Alice’s comment with-
out Bob’s picture, and nobody sees multiple occurrences of
Alice’s comment or Bob’s picture.

Vector clock-based approaches [16, 18, 20] need to keep
all their control information forever. They cannot forget
any control information. The consumed memory mono-
tonically increases with the number of processes that ever
broadcast a message O(N). They become unpractical in
large and dynamic system comprising from hundreds to
millions of processes joining, leaving, self-reconfiguring, or
crashing at any time.
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In this paper, we propose a novel implementation of
causal broadcast that forgets all and only obsolete control
information. A process p that has i incoming links receives
each message i times. A messagem is active for p between its
first and last reception by p. Process p keeps control infor-
mation about all its active messages. As soon as a message
becomes inactive, the process can forget all control infor-
mation related to it. Consequently, processes do no store
any permanent control information about messages. When
no message is active, no control information is stored in the
system. Our contribution is threefold:

• We define the notion of link memory as a mean for each
process to forbid multiple delivery. Link memory allows
each process to identify processes from which it will re-
ceive a copy of an already delivered message. This allows
each process to safely remove obsolete control informa-
tion about broadcast messages that will never be received
again. We prove that using causal delivery, each process
can build such knowledge even in dynamic systems where
processes may join, leave, self-reconfigure, or crash at any
time.

• We propose an implementation of causal broadcast that
uses the notion of link memory, where each process man-
ages a local data the size of which isO(i ·A)where i is the
number of incoming links and A is the number of active
messages. Moreover, the only control information piggy-
backed on messages is a scalar Lamport clock.

• We evaluate our implementation using large scale simula-
tions. The experiments highlight the space consumed and
the traffic generated by our protocol in dynamic systems
with varying latency. The results confirm that the pro-
posed approach scales with system settings and use.

The rest of this paper is organized as follows. Sec-
tion 2 describes the model, highlights the issue, introduces
the principle solving the issue, provides an implementation
solving the issue along with its complexity analysis. Sec-
tion 3 shows the experiments. Section 4 reviews related
work. We conclude and discuss about perspectives in Sec-
tion 5.
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2 PROPOSAL

In this section, we present a causal broadcast protocol pro-
viding a novel trade-off between speed, memory, and traf-
fic. Among others, it safely removes obsolete control infor-
mation about broadcast messages. Its memory consumption
increases and decreases over receipts. The key ideas are:
(1) Every process broadcasts or forwards a message once,
hence every link carries a message once. A process expects
to receive as many copies of a message as its number of links.
Once a process received all expected copies, it can forget
about this broadcast message, i.e., it can safely remove the
control information associated to this broadcast message.
(2) Adding links between pair of processes adds uncertainty.
The receiver cannot state any longer when it should expect
a message from a link. (3) By exploiting causal order, pro-
cesses remove this uncertainty. Causal order allows pro-
cesses to remove batches of obsolete information while rea-
soning about temporarily buffered broadcast messages.

2.1 Model

A distributed system comprises a set of processes that can
communicate with each other using messages. Processes
may not have the knowledge of all processes in the sys-
tem. Instead, processes build and maintain overlay net-
works: each process updates a local partial view of logical
communication links, i.e., a set of processes to communicate
with. The partial view is usually much smaller than the ac-
tual system size. We use the terms of overlay networks, and
distributed systems interchangeably.

Definition 1 (Overlay network). An overlay network G =
(P, E) comprises a set of processes P and a set of directed links
E ⊆ P × P . An overlay network is static if both sets P and E
are immutable. Otherwise, the overlay network is dynamic. An
overlay network is strongly connected if there exists a path – i.e.
a link or an sequence of links – from any process to any other
process. We only consider strongly connected overlay networks.

Definition 2 (Process). A process runs a set of instructions se-
quentially. Processes communicate with each other using asyn-
chronous message passing. A process A can send a message to a
process B sAB(m), or to any process sA(m); receive a message
from a process B rAB(m), or from any process rA(m). A pro-
cess sends messages using the set of links departing from it, called
out-viewQo. Processes reachable via these links are called neigh-
bors. A process receives messages from the set of links arriving to
it, called in-viewQi. Processes are faulty if they crash, otherwise
they are correct. We do not consider Byzantine processes.

Causal broadcast ensures properties similar to those of
reliable broadcast. Each process may receive each broadcast
message multiple times but delivers it once. In this paper, we
tackle the issue of implementing these properties.

Definition 3 (Uniform reliable broadcast). When a process A
broadcasts a message to all processes of its system bA(m), each
correct process B eventually receives it and delivers it dB(m).
Uniform reliable broadcast guarantees 3 properties: (1) Validity:
If a correct process broadcasts a message, then it eventually de-
livers it. (2) Uniform Agreement: If a process – correct or not –
delivers a message, then all correct processes eventually deliver it.
(3) Uniform Integrity: A process delivers a message at most once,
and only if it was previously broadcast.

In static systems, implementing these properties only re-
quires a local structure the size of which grows and shrinks
over receipts [22]. Every process knows the number of
copies of each delivered message it should expect. When
this number drops down to 0, the process safely removes the
control information associated to the delivered messages.
This forbids multiple delivery for the process will never re-
ceive – hence deliver – this message again.

However, in dynamic systems where processes join, leave,
or self-reconfigure their out-view at any time, the removal of
a link may impair the consistency of the number of expected
messages. Either processes cannot safely garbage collect ob-
solete control information, or processes suffer from multi-
ple delivery.

In this paper, we solve this issue by exploiting causal
broadcast’s ability to ensure a specific order on message de-
livery. To characterize the order among events such as send,
or receive, we define time in a logical sense using Lamports
definition.

Definition 4 (Happens-before [14]). The happens-before re-
lationship defines a strict partial order of events. The happens-
before relationship→ is transitive (e1 → e2 ∧ e2 → e3 =⇒
e1 → e3), irreflexive (e1 6→ e1), and antisymmetric (e1 →
e2 =⇒ e2 6→ e1). The sending of a message always precedes
its receipt sAB(m) → rBA(m). Two messages are concur-
rent if none happens before the other (rA(m1) 6→ sA(m2) ∧
rA(m2) 6→ sA(m1)).

Definition 5 (Causal order). The delivery order of messages
follows the happen before relationships of the corresponding
broadcasts. dA(m)→ bA(m

′) =⇒ dB(m)→ dB(m
′)

Definition 6 (Causal broadcast). Causal broadcast is a uni-
form reliable broadcast ensuring causal order.

2.2 Linkmemory

We define link memory as a mean for processes to forbid
multiple delivery while safely removing obsolete control in-
formation. Processes attach control information about ex-
pected messages to each link of their respective in-view.

Definition 7 (Link memory). Assuming a link (A, B),
Process B remembers among its delivered messages those that
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(a) Process B broadcasts b and
awaits a copy of b from Pro-
cess A.

A
{C : b}

B
{A : b}

C
∅

b

b

(b) Process A receives, delivers,
and forwards b. It expects a copy
from Process C.

A
{C : b}

B
∅∅∅

C
∅

b

(c) Process B and Process C re-
ceive b. They do not expect
other copies. Process C delivers
and forwards b.

A
∅∅∅

B
∅

C
∅

(d) Process A receives its last ex-
pected copy of b. The message b
is completely removed from the
system.

Figure 1: Link memory allows to safely remove obsolete control information in static systems.

it will receive from this link; and forgets among its deliv-
ered messages those that it will never receive from this link.
rememberBA(m) ≡ dB(m) ∧ ¬rBA(m)

Theorem1 (Link memory forbids multiple delivery). A pro-
cess that delivers only messages it does not remember using link
memory delivers each broadcast message exactly once.

Proof. We must show that, for any message m, its receipt
cannot lead to its delivery if a copy of m has already been
delivered before: @m, dB(m) → rBA(m) ∧ rBA(m) →
dB(m).
The delivery dB(m) implies a prior receipt rB(m) →
dB(m). Assuming that each link carries each messages
once, and this receipt comes from link (A, B), then Pro-
cess B cannot receive, hence deliver, m from (A, B) again:
@m, rBA(m) → dB(m) ∧ dB(m) → rBA(m) ∧
rBA(m)→ dBA(m).
If this receipt comes from any other link (C, B), C 6= A,
Process B remembers m on other links, and among oth-
ers, on link (A, B): ∀m, rBC(m) → rememberBA(m).
Assuming that each link carries each message once, Pro-
cess B eventually receives a copy of m from link (A, B):
rememberBA(m)→ rBA(m). Since remembering a mes-
sage forbids its delivery, this cannot lead to another delivery
ofm: @m, rBA(m)→ dB(m).
Finally, since every process delivers, hence forwards each
message once, each link carries each messages once.

Algorithm 1 shows a set of instructions that implements
causal broadcast for static systems. It uses reliable FIFO
links to ensure causal order [7], and implements link mem-
ory to forbid multiple delivery. Every process maintains a
local structure the size of which increases and decreases over
receipts. The first receipt of a broadcast message from a
link tags the other links (see Line 15). The receipt on other
links of this broadcast message removes the corresponding
tag (see Line 16). Figure 1 depicts its functioning in a system
comprising 3 processes. In Figure 1a, Process B broadcasts
b. It awaits a copy of b from the only link in its in-view. In
Figure 1b, Process A receives b. It delivers it, for no link in

Algorithm 1: Causal broadcast for static systems.
1 Qo // Out-view

2 Qi // In-view

3 E ← ∅ // Map of expected messages Qi : M
∗

4 DISSEMINATION:
5 function C-broadcast(m)
6 receive(m, )

7 upon receive(m, l)
8 if ¬received(m, l) then
9 foreach q ∈ Qo do sendTo(q, m)
10 C-deliver(m)

11 function received(m, l)
12 rcvd← ∃q ∈ E withm ∈ E[q]
13 if ¬rcvd then
14 foreach q ∈ Qi do
15 E[q]← E[q] ∪m
16 E[l]← E[l] \m
17 return rcvd

its in-view is tagged with b, meaning this is a first receipt.
It tags the other link in its in-view with b and forwards b
to its out-view. In Figure 1c, Process B receives the awaited
copy of b from Process A. It removes the corresponding en-
try. The broadcast protocol at Process B does not consume
space anymore. Process C receives b. It detects a first receipt
so it delivers and forwards b. It does not tag any link, for the
only link from its in-view is the link from which it just re-
ceived b. In Figure 1d, the last process to await a copy of b
finally receives it. None of processes remembers about b. No
copy of b travels in the system. This implementation forbids
multiple delivery in static systems while safely removing ob-
solete control information.

However, implementing link memory becomes more
challenging in dynamic systems where processes can start
sending messages to any other process at any time. Any pro-
cess can receive an already forgotten message from any other
process. Figure 2 illustrates the issue. In Figure 2a, Process A
broadcasts a. It expects a copy from both Process B and Pro-



draft OPODIS’18

A
{B,C : a}

B
∅

C
∅

a

a

(a) Process A broadcasts a and
expects a copy from both Pro-
cess B and Process C.

A
{B,C : a}

B
∅

C
∅∅∅

a a

(b) Process C receives, delivers,
and forwards a. It does not ex-
pect additional copies.

A
{B : a}

B
∅∅∅

C
∅

a a

(c) Process B adds a link to Pro-
cess C. Then it receives, delivers,
and forwards a.

A
∅∅∅

B
∅

C
{A : a}

a

(d) Process C receives and mis-
takes a for a new message. It de-
livers, and forwards a.

Figure 2: Causal broadcast (Algorithm 1) fails to forbid multiple delivery in dynamic systems.

cess C. In Figure 2b, Process C immediately receives, deliv-
ers, and forwards a. It does not tag any link and expects to
never receive this message again. However, network condi-
tion delays the receipt of b from Process B. In Figure 2c, Pro-
cess B adds a communication link towards Process C. Then
it receives, delivers, and forwards b. Since Process C now
belongs to its out-view, the forwarding includes Process C.
In Figure 2d, Process C receives a again. However, it did not
keep control information about this message. It mistakes it
for a first receipt. It delivers and forwards a. Not only Pro-
cess C suffers multiple delivery but this has cascading effects
over the whole system.

The rest of this section describes how causal broadcast
can exploit causal order to initialize link memory, an imple-
mentation of such broadcast, and its complexity analysis.

2.3 Linkmemory for dynamic systems

This section demonstrates that causal broadcast can use
causal order to initialize link memory, thereby enabling the
use of link memory in dynamic systems.

Algorithm 1 already implements the maintenance of link
memory over receipts. Every process safely removes obso-
lete control information over receipts. However, Figure 2
highlights that new links lack of consistent initialization.
The challenge consists in initializing such memory without
history of past messages. Causal broadcast starts to build the
knowledge on-demand, i.e., when a process wants to add a
link to another process. The protocol disables the new link
until initialized. This initialization requires round-trips of
control messages and message buffering. Causal broadcast
takes advantage of causal order to provide guarantees on
messages included in buffers.

Figure 3 depicts the principle of the approach. When a
Process A adds a link to Process B, Process A notifies Pro-
cess B using a control messageα. This control messageα, as
all control messages that will follow (β, π, ρ), must be deliv-
ered after all its preceding messages. Hence, at receipt, Pro-
cess B implicitly removes obsolete information: messages
delivered by Process A before the sending of the notifica-
tionA1. At receipt of α, Process B can start gathering con-

trol information about its delivered messages in a bufferBα.
Among other, Process B wants to identify messages concur-
rent to the correct establishment of the new link. Process B
acknowledges Process A’s notification using a control mes-
sageβ. At receipt ofβ, Process A removes obsolete informa-
tion: messages delivered by Process B before the sending of
the acknowledgmentA1 ∪ B1. This solves the issue identi-
fied in Figure 2, for a would belong toA1 or B1. However,
this is not sufficient to initialize link memory. Process A
sends a control message π to Process B, and starts to gather
control information about its delivered messages in a buffer
Bβ . Upon receipt of π, Process B closes its first bufferBα.

Lemma 1 (Messages in buffer Bα). The buffer Bα contains
messages delivered by Process B after the sending of β and before
the receipt of π.
This includes all messages delivered by Process A before the send-
ing of π that were not delivered by Process B before the sending
of β: A2. Above all, this also includes all messages delivered by
Process B that were not delivered by Process A at the sending of
π: B2.

Proof. Since control messages are delivered after preceding
messages, all broadcast messages delivered by Process A be-
fore the sending ofα precede the buffering: ∀m, dA(m)→
sA(αAB) =⇒ m 6∈ Bα. Since messages are de-
livered once, ∀m, dA(m) → sA(πAB) ∧ dB(m) →
sB(βAB) =⇒ m 6∈ Bα. This removesA1 and B1.
The buffer Bα contains the rest of messages delivered by
Process B before the receipt of π. This includes messages
delivered by Process A between the sending of α and π but
not delivered by Process B before the sending of β (A2); and
messages delivered by Process B but not delivered by Pro-
cess A before the sending of π (B2).

Upon receipt of π, Process B continues to gather control
information about its delivered messages in another buffer
Bπ . Some messages in this buffer will be expected from Pro-
cess A, but Process B cannot determine which ones just yet.
It sends the last acknowledgment ρ to Process A. Upon re-
ceipt of this acknowledgment, Process A closes its buffer and
sends it using the new link. Afterwards, Process A uses the
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A

B

A1

α

A1 ∪ B1

β

B1 ∪ A2

π

Bα

A2 ∪ B2

ρ

Bβ

B2 ∪ A3

B
β

Bπ

A′3 ∪ B3 withA′3 ⊆ A3

Figure 3: Initializing the link memory from Process A to Process B. Control messages α, β, π, and ρ are delivered after all
preceding messages while Bβ is not. At receipt of Bβ , Process B classifies the messages: Bβ ∩ (Bα ∪ Bπ) = B2 ∪ A′

3 are
messages to ignore;Bβ \Bα \Bπ = A3 \A′

3 are messages to deliver;Bπ \Bβ = B3 are messages to expect from Process A.

new link for causal broadcast, for it knows that Process B
will receiveBβ before upcoming broadcast messages on this
new link, and the receipt of Bβ will allow Process B to ini-
tialize this new link memory.
Upon receipt ofBβ , Process B stops buffering inBπ .

Lemma 2 (Messages in buffer Bβ ). The buffer Bβ contains
messages delivered by Process A after the sending of π and before
the receipt of ρ.
This includes all messages delivered by Process B before the send-
ing of ρ that were not delivered by Process A before the sending
of π: B2. This also includes all messages delivered by Process A
that were not delivered by Process B at the sending of ρ: A3.

Proof. The proof is similar to that of Lemma 1. Control mes-
sages shift roles. π becomes ρ; β becomes π; α becomes
β.

Lemma 3 (Messages in buffer Bπ). The buffer Bπ contains
messages delivered by Process B after the sending of π and before
the receipt ofBβ .
This may includes messages delivered by Process A before the
sending of Bβ that were not delivered by Process B before the
sending of ρ: A′

3. This also includes all messages delivered by
Process B that were not delivered by Process A at the sending of
Bβ : B3.

Proof. The proof is similar to that of Lemmas 2 and 3. The
difference being that Bβ is not necessarily delivered after
preceding messages. Hence, the receipt of Bβ follows the
sending of ρ but Process B cannot state if it received all, part,
or none of messages inA3. Thus,A′

3 ⊆ A3.

UsingBα,Bβ , andBπ buffers, Process B identifies messages
in Bβ it must deliver against messages it must ignore, and
messages in Bπ it must receive from Process A. This allows
Process B to initialize link memory.

Theorem2 (Bα,Bβ , andBπ initialize link memory). A pro-
cess consistently initializes link memory at receipt of Bβ using
Bα andBπ .

Proof. From Lemma 1, Bα = A2 ∪ B2. From Lemma 2,
Bβ = B2 ∪ A3. From Lemma 3,Bπ = A′

3 ∪ B3.
First, we must show that Process B delivers all and only mes-
sages fromBβ it did not deliver yet: m ∈ A3 \ A′

3.
Since Bβ \ Bα \ Bπ = (B2 ∪ A3) \ (A2 ∪ B2) \ (A′

3 ∪
B3) = A3 \ (A′

3 ∪ B3). Since B3 ∩ A3 = ∅, we have
Bβ \Bα \Bπ = A3 \ A′

3.
Second, we must show that Process B initializes the new link
memory with all and only messages fromBπ that Process A
did not deliver at the sending ofBβ : m ∈ B3.
Bπ \ Bβ = (A′

3 ∪ B3) \ (B2 ∪ A3). Since B3 ∩ B2 = ∅
andA′

3 ⊆ A3,Bπ \ (Bβ \Bα) = B3.

2.4 Implementation

PRC-broadcast stands for Preventive Reliable Causal broad-
cast. It prevents both causal order violations and multiple
delivery by using all and only links that are safe [20], and
the memory of which is correctly initialized and maintained.
PRC-broadcast ensures that control messages are delivered
after all their preceding messages by sending them on reli-
able FIFO links used for causal broadcast. PRC-broadcast
uses a local structure the size of which increases and de-
creases over receipts. Every process safely removes obsolete
control information about past broadcast messages.

Algorithm 2 shows the instructions of PRC-broadcast.
Figure 4 illustrates its operation in a scenario involving 3
processes. In this example, Process B adds a link to Pro-
cess C. Process B disables the new link for causal broadcast
until it is safe and guaranteed that Process C correctly ini-
tialized its memory.
Process B sends a first control message α to Process B using
safe links (see Line 17 and Figure 4a).
After being routed to Process C by intermediary processes
(see Figure 4b), α reaches Process C (see Figure 4c). Pro-
cess C starts to register messages it delivers in a buffer Bα.
Process C acknowledges the receipt ofα by sending a second
control message β to Process B using safe links (see Line 25).
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A

B

C

α

(a) Process B adds a link to Process C. PRC-
broadcast ensures its safety. Process B sends a first
control message α to Process C using Process A as
mediator.

A

B

C
α

(b) Process A receives α and routes it
to Process C.

A

B

C
α
Bα : {c1}

β c1

(c) Process C receivesα and answers by send-
ing β to Process B using Process A as medi-
ator. Then, Process C broadcasts c1 and reg-
isters it inBα.

A

B

C Bα : {c1}c
1
β

c1

(d) Process A receives β and routes it to Process B.
Process A receives c1 and forwards it to both its
neighbors.

A

B
β

Bβ : [c1, b1]

C Bα : {c1}

π
c
1
b
1

(e) Process C receives and discards c1. Process B receives β and replies π to Pro-
cess C using Process A as mediator. Process B receives c1 and forwards it to its
neighbor. Process B broadcasts b1. It registers c1 and b1 inBβ .

A

B
Bβ : [c1, b1]

C Bα : {c1, c2}b
1

b1 π

c2

(f) Process A receives c1 and discards it. Process A receivesπ and
routes it to Process C. Process A receives b1 and forwards it to its
neighbors. Process C broadcasts c2 and registers it inBα.

A

B
Bβ : [c1, b1, b2]

C
π
Bα : {c1, c2}
Bπ : {b1, c3}

c
2

b
2

c2

ρ b1 c3

(g) Process A receives c2 and forwards it to its neighbors. Process B
broadcasts b2 and registers it inBβ . Process C receives π and replies ρ
to Process B using Process A as mediator. Then it receives and forwards
b1. Then it broadcasts c3. It registers b1 and c3 inBπ .

A

B
ρ

Bβ : [c1, b1, b2, c2]

C
Bα : {c1, c2}
Bπ : {b1, c3}c

3 b
2

c
2

c3 b2

B
β

(h) Process A receives and discards b1. Process A receives and
routes ρ to Process B. Process A receives and forwards b2 then
c3. Process B receives, forwards, and registers c2. Then Pro-
cess B receives ρ and sends Bβ to Process C using the new
link.

A

B

C
Bα : {c1, c2}
Bπ : {b1, c3}
Bβ : [c1, b1, b2, c2]

c
3 b

2

c
2

c3 b2

(i) Once Process A sent Bβ , the new link is safe. Process C receives Bβ .
Process C does not deliver c1, b1 and c2, for it already delivered them.
Process C delivers b2 and expects another copy from Process A, for it con-
stitutes a new message. Process C expects to eventually receive c3 from
Process B.

Delivered by
Process B

To deliver:
Bβ \Bα \Bπ
[c1, b1, b2, c2] \ {c1, c2} \ {b1, c3}

[b1, b2] \ {b1, c3}

[b2]

To expect from B:
Bπ \Bβ

{b1, c3} \ [c1, b1, b2, c2]

{c3}

To ignore:
Bβ ∧ (Bα ∪Bπ)

[c1, b1, b2, c2] ∧ ({c1, c2} ∪ {b1, c3})

[c1, b1, b2, c2] ∧ {b1, c1, c2, c3}

{c1, b1, c2}

Delivered by
Process C

(j) Process C categorizes each message ofBβ andBπ .

Figure 4: Using buffers and control messages, PRC-broadcast provides reliable causal broadcast.



draft OPODIS’18

Algorithm 2: PRC-broadcast at Process p.
1 B ← ∅ // @Sender Map of buffers Qo :M

∗

2 S ← ∅ // @Receiver Map of buffers Qi :M
∗ ×M∗ × bool

3 DISSEMINATION:
4 function PRC-broadcast(m)
5 C-broadcast(m)
6 upon C-deliver(m)
7 buffering(m)
8 PRC-deliver(m)

9 function buffering(m)
10 foreach q ∈ B doB[q]← B[q] ∪m
11 foreach 〈Bα, Bπ, receivedπ〉 ∈ S do
12 if receivedπ thenBπ ← Bπ ∪m
13 elseBα ← Bα ∪m

14 LINKMEMORY:
@Sender

15 upon openo(to)
16 Qo ← Qo \ to
17 send-α(p, to)

@Receiver

18 upon openi(from)
19 Qi ← Qi \ from

20 upon receive-β(from, to)
21 B[to]← ∅
22 send-π(from, to)

23 upon receive-α(from, to)
24 S[from]← 〈∅, ∅, false〉
25 send-β(from, to)

26 upon receive-ρ(from, to)
27 send-Bβ(from, to, B[to])
28 B ← B \ to
29 Qo ← Qo ∪ to

30 upon receive-π(from, to)
31 〈Bα, Bπ, 〉 ← S[from]
32 S[from]← 〈Bα, Bπ, true〉
33 send-ρ(from, to)

filter messages to ignore →
to deliver →
to expect →

34 upon receive-Bβ(from, to, Bβ)
35 〈Bα, Bπ, 〉 ← S[from]
36 S ← S \ from
37 foreachm ∈ Bβ \Bα \Bπ do
38 receive(m, from)
39 E[from]← Bπ \Bβ
40 Qi ← Qi ∪ from

41 upon closeo(to)
42 B ← B \ to

43 upon closei(from)
44 S ← S \ from
45 E ← E \ from

In Figure 4c, Process C broadcasts c1 and registers it inBα.
After being routed to Process B (see Figure 4d), β reaches
Process B. Process B starts to register messages it delivers in
a buffer Bβ . Process B sends a third control message π to
Process C using safe links (see Line 22). In Figure 4e, Pro-
cess B delivers c1 then broadcasts b1. It registers them inBβ .
In Figure 4f, Process C broadcasts c2 and registers it inBα.
After being routed to Process C by intermediary processes
(see Figure 4f), π reaches Process C. Process C ends its first
buffer Bα. Process C starts to register messages it delivers
in Bπ . Process C sends a fourth and last control message
ρ to Process B using safe links (see Line 33). In Figure 4g
Process C delivers b1, broadcasts c3, and registers them in
Bπ . In the meantime, Process B broadcasts b2 and registers
it inBβ .
After being routed to Process B, ρ reaches Process B (see Fig-
ure 4h). Process B stops buffering and sends its buffer of
messages Bβ using the new link sBC(Bβ) (see Line 27). In
Figure 4i, this buffer contains b1, b2, and c2. The new link
is safe. Process B starts to use this link normally for causal
broadcast using Algorithm 1.

Once Process C receives the buffer, it ends its buffer Bπ
(see Figure 4i). Using Bα, and Bπ , Process C identifies
among messages from Bβ the array of messages to deliver
(see Line 38). In Figure 4j, this array only includes b2. Using
Bα, andBπ , Process C also identifies the set of messages to
ignore which is the rest of the buffer. In Figure 4j, this set in-
cludes c1, b1 and c2. Finally, Process C identifies among its
own delivered messages the messages to expect from Pro-
cess B (see Line 39). In Figure 4j, this set includes c3. This
set constitutes the memory of the new safe link. Afterwards,
messages received by this new link are processed normally.

PRC-broadcast builds link memory using control mes-
sages that acknowledges the delivery of preceding messages.
Every process safely removes obsolete control information
about past broadcast messages. The size of the local struc-
ture increases and decreases over receipts. In the next sec-
tion, we analyze the complexity of this causal broadcast im-
plementation.
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2.5 Complexity

In this section, we analyze the complexity of PRC-broadcast
in terms of broadcast message overhead, delivery execution
time, local space consumption, and number of control mes-
sages.
The broadcast message overhead is constant O(1). The
protocol uses reliable FIFO links to transmit messages.
The delivery execution time, i.e., the time complexity of
the receipt function isO(|Qi|). The protocol checks and up-
dates control information associated to each link in the in-
view Qi. The size of in-views can be much smaller than the
number of processes in the system |P |. For instance, peer-
sampling approaches [8, 21] provides every process with an
in-view the size of which is logarithmically scaling with the
number of processesO(ln(|P |)).
The local space consumption depends on the size of
buffers and the size of the in-view. Each link in the in-view
has its buffer of control information about messages. A mes-
sage appears in the structure after its first receipt and dis-
appears at its last receipt. So the local space complexity is
O(|Qi| ·M) where M is the number of messages already
delivered that will be received again from at least a link in
the in-view Qi. The local space consumption depends on
system settings (e.g. processes do not consume space when
the system topology is a ring or a tree) and use (e.g. processes
do not consume space when no process broadcasts any mes-
sage).
The overhead in terms of number of controlmessages per
added link in an out-view varies from 6 to 4 · |P |2 depend-
ing on the overlay network; P being the set of processes
currently in the system. It achieves 6 messages when Pro-
cess A adds Process B using Process C as mediator, and Pro-
cess B has Process A in its out-view. It achieves 8 control
messages when peer-sampling protocols build out-views us-
ing neighbor-to-neighbor interactions [11, 21]. It achieves
O(4 · log(|P |)) control messages when peer-sampling pro-
tocols allows processes to route their messages [12, 25]. It
achievesO(4 · |P |2) control messages when Process A adds
Process B without knowledge of any route. Process A and
Process B fall back to reliable broadcast instead of routing
to disseminate control messages.

This complexity analysis shows that PRC-broadcast pro-
poses a novel trade-off in terms of complexity. In systems al-
lowing a form of routing, processes only send a few control
messages to handle dynamicity. Every process maintains a
local structure the size of which increases and decreases over
receipts. Every process safely removes obsolete control in-
formation about past messages. It constitutes an advanta-
geous trade-off that depends on the actual system settings
and use instead of past deliveries. The next section describes
an experiment highlighting the effects of the system settings
on the space consumed by processes.

3 EXPERIMENTATION

PRC-broadcast proposes a novel trade-off between speed,
memory, and traffic. Most importantly, its space consumed
varies over receipts. In this section, we evaluate the im-
pact of the actual system on the space consumed and traf-
fic generated by processes. The experiments run on the
PeerSim simulator [17] that allows to build large and dy-
namic systems. Our implementation is available on the
Github platform at http://github.com/chat-wane/

peersim-prcbroadcast.
Objective: To confirm that local space complexity depends
on in-views and message receipts.
Description: We measure the average size of buffers and
arrays of expected messages. This constitutes the average
local space overhead consumed by PRC-broadcast to detect
and forbid multiple delivery in dynamic systems.
Runs involve 3 overlay networks comprising 100, 1k, and
10k processes. Spray [21] builds a highly dynamic overlay
networks. The resulting topology has properties close to
those of random graphs such as low diameter, or low clus-
tering coefficient. Such systems are highly resilient to ran-
dom crashes, and allows processes to balance the load of the
traffic generated by broadcasting. Each process maintains
an out-view logarithmically scaling with the number of pro-
cesses in the system. Each process of the 100-processes sys-
tem has an out-view of≈ 10 neighbors. Each process of the
1k-processes system has an out-view of ≈ 13.5 neighbors.
Each process of the 10k-processes system has a out-view of
≈ 15 neighbors. Each process dynamically reconfigures its
out-view: it gives half of its correctly initialized links to a
chosen neighbor; the latter gives half of its correctly initial-
ized links to the former as well. Each exchange leads to link
memory initialization and safety checks of the new links,
and removal of given links. Each process starts to recon-
figures its out-view as soon as it joins the system and recon-
figures its out-view every minute. This uniformly spreads
reconfigurations over the duration of the experiment.
Links are bidirectional, their safety must be checked in both
directions but the overhead remains minor. Since the peer-
sampling protocol that builds the system uses neighbor-to-
neighbor communication to establish new links, each con-
trol message is two hops away from its destination. Overall,
a new link requires 8 control messages to be initialized prop-
erly. Links have transmission delay, i.e., the time between
the sending of a message and its receipt is not null. The ex-
periments start with 1 millisecond transmission delay. At
15 minutes, the delay starts to increase. At 17 minutes, links
reach 300 milliseconds transmission delay. At 40 minutes,
links reach 2.5 seconds transmission delay and it stops in-
creasing.
From 2 minutes to 50 minutes, every second, 10 processes
chosen uniformly at random among all processes broadcast
a message.

http://github.com/chat-wane/peersim-prcbroadcast
http://github.com/chat-wane/peersim-prcbroadcast
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(b) Generated traffic overhead (number of control messages transit-
ing in the system including routed messages).

Figure 5: Overhead of PRC-broadcast required to ensure causal order and forbid multiple delivery in dynamic systems with
varying latency.

Results: Figure 5a shows the results of this experiment. The
x-axis denotes the time in minute. The top part of the figure
shows the local space overhead while the bottom part of the
figure shows the evolution of transmission delays.
Figure 5a confirms that the local space consumption de-
pends on the in-view size. Systems with larger in-views con-
sume more space. Each new delivered message adds control
information on each link of the in-view (see Algorithm 1).
Figure 5a confirms that the local space consumption de-
pends on network condition. The overhead increases as the
latency increases. Latency increases the time between the
first and the last receipt of each message. Processes store
messages longer until their safe removal.
Figure 5a confirms that the local space consumption de-
pends on broadcast messages. When processes stops broad-
casting, the space consumed at each process drops to 0. Each
process eventually receive each message and safely remove
the corresponding entry.
Figure 5a shows that at a rate of 10 broadcasts per second
and when latency stays under a realistic bound (300millisec-
onds), the overhead is lower than vector-based approaches.
Whatever system conditions, it would require a vector of
100, 1k entries, 10k entries to forbid multiple delivery in the
100-processes system, 1k-processes system, 10k-processes
system respectively. However, it is worth noting that the
overhead of PRC-broadcast increases linearly with the num-
ber of messages currently transiting. 100 broadcasts per sec-
ond would multiply measurements made on PRC-broadcast
by a factor of 10. In such case, the 100-entries vector would
be better than PRC-broadcast even under a latency of 300
milliseconds.
PRC-broadcast provides a novel trade-off between speed,

memory, and traffic. Among other, its space consumed
increases and decreases depending on the system and
its current use; instead of past use (see Section 4. This
result means that it constitutes an advantageous trade-off
in (i) dynamic systems (ii) comprising up to millions of
processes (iii) that could broadcast at any time.

Objective: To confirm that the generated traffic overhead
depends on the dynamicity of the system.
Description: We measure the average number of control
messages received by each process during a second. This in-
cludes the routing of messages. The setup is identical to that
of prior experiment.
Results: Figure 5b shows the results of this experiment. The
top part of the figure depicts the traffic overhead generated
by PRC-broadcast while the bottom part of the figure de-
picts the evolution of transmission delays.
Figure 5b shows that the number of control messages re-
ceived by processes depends on the dynamicity of the sys-
tem. The more dynamic the higher the traffic overhead.
At the beginning of the experiment, processes join the sys-
tem. Numerous links are established at once, hence the high
number of control messages. Then processes shuffle their
out-view during 50 minutes. The number of links to add
and remove is roughly constant over time, hence the stabi-
lization in number of control messages. Finally, processes
stop shuffling at 50 minutes. Processes do not receive addi-
tional control messages.
Figure 5b confirms our traffic overhead complexity analy-
sis. For instance, in the 10k-processes system, views com-
prises 15 processes which belong half from the out-view
and half from the in-view. Each process shuffles every
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Table 1: Complexity of broadcast algorithms at each process. N the number of processes that ever broadcast a message. P is
the set of processes in the system. w the number of messages received but not delivered yet. Qi is the set of incoming links. M
is the set of messages already delivered that will be received again from at least one link inQi.

message
overhead

delivery
execution time

local space
consumption

# control messages
per added link

reliable broadcast [9] O(1) O(1) O(N) 0
causal broadcast [23] O(N) O(W ·N) O(N +W ·N) 0
preventive broadcast [20] O(1) O(1) O(N) 3 to 2 · |P |2

this paper O(1) O(|Qi|) O(|Qi| ·M) 6 to 4 · |P|2

minute. Each shuffle adds and removes 7.5 links (twice half
of the out-view size). Since the peer-sampling protocol es-
tablishes links using neighbor-to-neighbor interactions, it
allows a form of routing where only 8 control messages
are required to initialize a new link. |exchanged links| ∗
|control messages|/60 ≈ 7.5 ∗ 8/60 ≈ 1 control mes-
sage per second.
Figure 5b shows that latency smooth and decreases the num-
ber of control messages. The peer-sampling protocol only
shuffles links already safe and the memory of which is ini-
tialized. Since increasing latency increases the initialization
time of links, processes exchange less links at each shuffle.
The generated traffic decreases accordingly. Latency also
spreads control messages over time, hence the smoothing in
measurements.
Assuming peer-sampling protocols that enable a form of
routing, PRC-broadcast forbids multiple delivery at the cost
of a few lightweight control messages in dynamic systems.
In this experiment, the underlying peer-sampling protocol
builds a random graph topology that has numerous desir-
able properties such as resilience to failures, quick dissemi-
nation of information, or load balancing [11]. It fits dynamic
systems where numerous processes join and leave contin-
uously. Nonetheless, other peer-sampling protocols could
be used depending on the configuration of the system. One
could minimize latency [5], or gather people based on user
preferences [12].

Overall, this section showed that PRC-broadcast pro-
poses a novel trade-off in terms of complexity. Its com-
plexity actually depends on the system (its dynamicity, its
latency, its topology) and current use (broadcasts per sec-
ond). PRC-broadcast forbids multiple delivery and safely
removes obsolete control information about broadcast mes-
sages. The next section reviews state-of-the-art approaches
designed to forbid multiple delivery.

4 RELATEDWORK

Causal broadcast ensures causal order and forbids multiple
delivery. PRC-broadcast uses the former to improve on the
complexity of the latter. This section reviews state-of-the-

art broadcast protocols that forbid multiple delivery in asyn-
chronous and dynamic systems.

Building specific dissemination topologies such as tree
or ring guarantees that every process receives each message
once [4, 22]. Processes deliver messages as soon as they ar-
rive. They do not need to save any control information about
messages, for they will never receive a copy of this mes-
sage again. While these approaches are lightweight, they
stay confined to systems where failures are uncommon, and
where churn rate remains low [13]. PRC-broadcast general-
izes on these specific topologies. It follows the same princi-
ple where the topology impacts on the number of receipts.
Its space complexity scales linearly with this number of re-
ceipts. In turns, PRC-broadcast inherits from the resilience
of the underlying topology maintained by processes. PRC-
broadcast supports dynamic systems without assuming any
specific topology.

Without any specific dissemination topology, each pro-
cess may receive each broadcast message multiple times. De-
spite multiple receipts, a process must deliver a message
once. Using local structures based on logical clocks [14],
every process differentiates between the first receipt of a
broadcast message and the additional receipts of this mes-
sage. It allows to deliver the former while ignoring the lat-
ter. Unfortunately, the size of these structures increases
monotonically and linearly with the number of processes
that ever broadcast a message [16, 18]. Processes cannot re-
claim the space consumed, for it would require running an
overcostly distributed garbage collection that is equivalent
to a distributed consensus [1]. This limits their use to con-
text where the number of broadcasters is known to be small.
PRC-broadcast uses local structures based on logical clocks
too. However, instead of saving the past deliveries of broad-
casters, its saves the messages expected from direct neigh-
bors. The set of expected messages varies over receipts, and
the number of neighbors can be far smaller than the set of
broadcasters. PRC-broadcast scales in large and dynamic
systems. Among others, PRC-broadcast fits contexts where
the number of participants is unknown, such as distributed
collaborative editing [19].

Table 1 summarizes the complexity of broadcast imple-
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mentations that handle asynchronous and dynamic systems.
To the best of our knowledge, all causal broadcast imple-
mentations use an underlying reliable broadcast in order to
forbid multiple delivery. Their local space complexity com-
prises O(N) where N is the number of processes that ever
broadcast a message. Compared to preventive causal broad-
cast [20], PRC-broadcast slightly increases the delivery ex-
ecution time, and doubles the number of control message
per added link. In turns, PRC-broadcast keeps a constant
overhead on broadcast message, and changes the terms of
local space complexity. Most importantly, the local space
consumed does not monotonically increase anymore.

5 CONCLUSION

In this paper, we proposed a causal broadcast implementa-
tion that provides a novel trade-off between speed, memory,
and traffic. Our approach exploits causal order to improve
on the space complexity of the implementation that forbids
multiple delivery. The local space complexity of this pro-
tocol does not monotonically increase and depends at each
moment on the number of messages still in transit and the
degree of the communication graph. The overhead in terms
of number of control messages depends on the dynamicity
of the system and remains low upon the assumption that the
overlay network allows a form of routing. This advanta-
geous trade-off makes causal broadcast a lightweight and ef-
ficient middleware for group communication in distributed
systems.

As future work, we plan to investigate on ways to retrieve
the partial order of messages out of PRC-broadcast. Appli-
cations may require more than causal order, they also may
need to identify concurrent messages [26]. PRC-broadcast
discards a lot of information by ignoring multiple receipts
altogether. Analyzing the receipt order could provide in-
sight on the partial order. The cost could depend on the ac-
tual concurrency of the system.
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