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A NASH GAME ALGORITHM FOR THE SOLUTION OF COUPLED

CONDUCTIVITY IDENTIFICATION AND DATA COMPLETION IN CARDIAC

ELECTROPHYSIOLOGY

Rabeb Chamekh1, Abderrahmane Habbal2, Moez Kallel3 and Nejib Zemzemi4

Abstract. We consider the identification problem of the conductivity coefficient for an elliptic op-
erator using an incomplete over specified measures on the surface. Our purpose is to introduce an
original method based on a game theory approach, and design a new algorithm for the simultaneous
identification of conductivity coefficient and data completion process. We define three players with
three corresponding criteria. The two first players use Dirichlet and Neumann strategies to solve the
completion problem, while the third one uses the conductivity coefficient as strategy, and uses a cost
which basically relies on an identifiability theorem. In our work, the numerical experiments seek the
development of this algorithm for the electrocardiography imaging inverse problem, dealing with in-
homogeneities in the torso domain. Furthermore, in our approach, the conductivity coefficients are
known only by an approximate values. we conduct numerical experiments on a 2D torso case including
noisy measurements. Results illustrate the ability of our computational approach to tackle the difficult
problem of joint identification and data completion.

Mathematics Subject Classification. 35J25, 35N05, 91A80.
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Introduction

We consider an open bounded domain Ω in Rd (d = 2 or 3) with a sufficiently smooth boundary ∂Ω composed
of two connected disjoint components Γc and Γi.
Given a flux φ and a potential f on Γc, inverse problems are in general concerned by finding the corresponding
flux and potential on the remaining part of the boundary Γi and the conductivity on Ω.
Thus, the generic formulation of the problem is set as follows:
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2 CONDUCTIVITY IDENTIFICATION AND DATA COMPLETION

Find (η, τ, k) ∈ H−1/2(Γi)×H1/2(Γi)× L(Ω) such that there exist a potential u satisfying:





div (k ∇(u)) = 0 in Ω,

u = f on Γc,

k ∇(u).n = φ on Γc,

(1)

where L(Ω) = {k ∈ L∞(Ω); k ≥ kmin > 0}. The data completion problem is an ill-posed inverse problem in
the sense of Hadamard [4], whose purpose is the reconstruction of boundary conditions on the inaccessible part
of the domain’s boundary from overspecified data on a part of the boundary. This problem is already discussed
in literature by several methods and various algorithms has been proposed like optimal control method [6],
minimizing an energy-like error functional [7] and the alternating algorithm presented by Kozlov and al [13].
In [14] , the authors show how to recover the missing data from the Cauchy over specified data using iterated
Tikhonov regularization. Steklov-Poincaré formulation with a Tikhonov and a Lavrentiev regularization was
used in [20, 21] to solve the data completion problem. In articles of Habbal and Kallel [5, 18], a Nash game
approach is used to solve the data completion problem. Furthermore, the authors compare the Nash algorithm
to a control type method and prove its efficiency. In another paper [19], the Nash game approach is used to solve
the image inpainting problem as a nonlinear Cauchy problem. The identification of conductivity parameter has
also been investigated in many studies. Among them, we can mention the work of R. Brown [8] that gives a
formula for recovering the conductivity from the Dirichlet to Neumann map and the work of Nachman and al [9]
in which they use a known current density field in the interior of the domain.
In most of the studies, these variabilities of the conductivity values has have not been considered. In particular,
the torso is assumed in the literature, in most of the studies to be homogenous. Moreover, when the conductivity
heterogeneities are included, they are determined from data obtained from textbooks. The problem is that the
difference between the experiment environments and other factors related to the measurement tools make this
data to be different from a paper to another [25,26].
Only few works have evaluated the effect of conductivities variabilities in the propagation of the electrical
potential on the body surface [23, 24]. A more rigorous work to evaluate the uncertainties of the forward
problem solution as a consequence of the conductivity uncertainties has been done in [27], where the authors
use the stochastic finite elements method (SFEM) to describe the effect of lungs muscles and fat conductivities.
In [23], a principal component approach has been used to predict the effect of conductivities variation on
the body surface potential. As far as the inverse problem is concerned, authors in [22] studied the effect
of the conductivity uncertainties on the accuracy of the ECGI inverse solution using the stochastic optimal
control approach based on SFEM to solve the inverse problem. In that work there was no aim to estimate the
conductivity values. The identification of the conductivities of the torso using a single measurement has been
subject of a numerical study [1] using synthetic data, or using son in vivo data [2]. However, none of these works
coupled the conductivity optimization to the data completion problem. In this work, our main contribution
is to couple the two inverse problems: we aim at simultaneously identifying the missing boundary data on the
inaccessible part of the boundary and the values of the conductivities in the torso domain from data measured
over the accessible boundary.
One of the difficult questions is the identifiability of conductivity problem. There exist a few results that treats
this problem [10,11,15,16] that use either an infinity data on the border or a set of observations in the domain.
In the present paper, we introduce an original method based on a game theory approach to solve our coupled
inverse problem. This method has wide applications ranging from bioelectrical field to mechanical engineering.
Here, our numerical experiments target the medical applications related to the non-invasive electrocardiography
imaging.
The thorax contains several tissues like lung, bones and fat. Each one is caracterized by a conductivity whose
value varies from an organ to another and also varies from one person to another. The aim of our work is
to recontruct the potential and the flux on the surface of the heart from measurements on the surface of the
thorax, in addition improve the value of the conductivity of different tissues. In section 1, we talk about
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the identifiability problem. In section 2, we present our approach for the solution of the coupled problem of
conductivity identification and data completion. Our algorithm is provided in section 3 where we present also
an adjoint state method to compute the gradient of our costs. Finally, in section 4 we present two numerical
experiments which illustrate the efficiency of our method and its robustness with respect to noisy data. The
main conclusion of the study is finally presented in section 5.

1. Identifiability of the conductivity

The problem of identifiability of the conductivity amounts to seek for the conditions under which one is able
to guarantee the uniqueness of the actual conductivity parameter. Usually, an equivalent formulation is to say
that different values of the conductivity must generate different solutions of the problem. The identifiability of
the found conductivity is not always guaranteed. Therefore, this difficult problem was investigated by many
authors (see.eg [10, 11]). One of the methods to prove it is to use Dirichlet-to Neumann application defined as
follows:

Λk : H1/2(∂Ω)→ H−1/2(∂Ω)
u|∂Ω 7→ (k∇(u).n)|∂Ω

where k ∈ L(Ω) and u is a solution of a Dirichlet problem, which means the need for an infinite number of
measurements on the boundary.
Here, our numerical experiments target electrocardiography applications. The domain Ω models a thorax,
composed of many subdomains Ω =

⋃n
j=1 Ωj . The conductivity k of the domain is assumed to be piecewise

constant. The identifiability of k using a unique boundary measurement is given by the following theorem:

Figure 1. The conductivity domain

Theorem 1.1. Let Ω be a domain such that Ω =
⋃n
j=1 Ωj. Each Ωj is caracterized by a constant conductivity

kj and the value of k1 is assumed to be known in Ω1, see Figure 1.

If k(1) and k(2) are two conductivities which fulfill the Cauchy problem:





div (k(p)∇(u(p))) = 0 in Ω,

u(p) = f on Γc,

k(p)∇(u(p)).n = φ on Γc,

where p = 1, 2 and the potential f is not a constant on Γc, then k
(1)
j = k

(2)
j in Ωj ∀ j.
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Proof. In Ω1, k(1) = k(2) = k1. Let us consider u(p), p ∈ {1, 2}, the solution of the Cauchy problem in Ω1, it
satisfies the following equation





div (k1∇(u(p))) = 0 in Ω1,

u(p) = f on Γc,

k1∇(u(p)).n = φ on Γc.

Using the Holmgren’s theorem [3] and the continuity of flux on the boundary of Ω2, denoted by Γ2, we obtain
the equality of the potentials and the flux on Γ2:

{
u(1) = u(2) = f2

k1∇(u(1)).n = k1∇(u(2)).n = φ2.

In Ω2, u(p) fulfills the following direct problem:

{
div (k

(p)
2 ∇(u(p))) = 0 in Ω2,

u(p) = f2 on Γ2,

where k
(p)
2 , p ∈ {1, 2}, is a constant, so we can simplify and we get u(1) = u(2) in Ω2.

From the continuity of the flux and the transmission conditions on Γ2, we have

k
(1)
2 ∇(u(1)).n = k

(2)
2 ∇(u(2)).n = φ2

If ∇(u(p)).n 6= 0, we conclude that k
(1)
2 = k

(2)
2 in Ω2 and we prove the identifiability.

We suppose that we have ∇(u(p)).n = 0 on Γ2, so up verify:

{
div (k

(p)
2 ∇(u(p))) = 0 in Ω2

k
(p)
2 ∇(u(p)).n = 0 on Γ2

The constant potential is a solution of this direct problem in Ω2. From the continuity theorem, we conclude
that the potential u is constant in Ω, which is absurd because f is generically not constant on Γc. �

2. A game formulation of the coupled problem of conductivity
identification and data completion

We start by defining the admissible space Aad of the conductivity functions we look for.

Aad = {k piecewise real value constants, such that kmin ≤ k ≤ kmax in Ω and k = k1 in Ω1},

where the lower and upper bounds of the conductivity values kmin and kmax, respectively, are non negative
constants.

We assume that the Cauchy data f and φ belongs to H1/2(Γc)×H−1/2(Γc). For given potential τ ∈ H1/2(Γi),
flux η ∈ H−1/2(Γi) and conductivity k ∈ Aad we define u1 := u1(η, k), u2 := u2(τ, k) and u3 := u3(τ, k) as the
respective solutions to the following three boundary value sub-problems:

(SP1)





div (k∇(u1)) = 0 in Ω,

u1 = f on Γc,

k∇(u1).n = η on Γi.

(SP2)





div (k∇(u2)) = 0 in Ω,

u2 = τ on Γi,

k∇(u2).n = φ on Γc.

(SP3)





div (k∇(u3)) = 0 in Ω,

u3 = τ on Γi,

u3 = f on Γc.

(2)
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To solve our inverse problem, we use the game theory, which studies the strategic interactions between players.
Let us present the following three costs: for any η ∈ H−1/2(Γi), τ ∈ H1/2(Γi) and k ∈ Aad

J1(η, τ, k) =
ν1

2
|| k∇(u1).n− φ ||2H−1/2(Γc) +

1

2
|| u1 − u2 ||2H1/2(Γi)

(3)

J2(η, τ, k) =
ν2

2
|| u2 − f ||2H1/2(Γc) +

1

2
|| u1 − u2 ||2H1/2(Γi)

(4)

J3(η, τ, k) =||
√
k∇(βu1 + (1− β)u2 − u3) ||2L2(Ω) (5)

where ν1 and ν2 are weights specific to each cost, and β ∈ [0, 1] is a weight in the cost J3 dedicated to take
into account a convex combination of both the solutions of (SP1) and of (SP2). In practice, we have chosen
ν1 = ν2 = 1 and tried several values for β in order to observe the impact on the computatioanl efficiency of
using both informations coming from u1 and from u2.

For the data completion, the potential τ and the flux η play a Nash game to minimize the Neumann gap
|| k∇(u1).n − φ ||H−1/2(Γc) versus the Dirichlet gap || u2 − f ||H1/2(Γc). The coupling term in common is the
difference between u1 and u2 in Γi, which represents a regularization term. For the conductivity identification,
the conductivity k is used to minimize the Kohn-Vogelius cost J3 to which we add a Tikhonov regularization
term.
We shall say that there are three players. The first player controls the strategy variable η which belongs to the
space strategy H−1/2(Γi), the second player controls the strategy variable τ which belongs to the space strategy
H1/2(Γi) and the third player controls the conductivity k which belongs to Aad.

As a solution to our inverse problem, we seek a Nash equilibrium, defined as follows:

Definition 2.1. A triplet (ηN , τN , kN ) ∈ H−1/2(Γi)×H1/2(Γi)×Aad is a Nash equilibrium for the three players
game involving the costs J1, J2 and J3 if:





J1(ηN , τN , kN ) ≤ J1(η, τN , kN ), ∀η ∈ H−1/2(Γi),

J2(ηN , τN , kN ) ≤ J2(ηN , τ, kN ), ∀τ ∈ H1/2(Γi),

J3(ηN , τN , kN ) ≤ J3(ηN , τN , k), ∀k ∈ Aad.
(6)

In [5,18], in the setting where the conductivity k is fixed and known, the authors address the existence issue
for the completion problem, and prove it by application of the Nash Theorem. They established that the partial
mapping η 7→ J1(η, τ, k) (resp. J2) is a quadratic strongly convex functional over H− 1

2 (Γi) (resp. H 1
2 (Γi)).

This partial ellipticity property of J1 holds uniformly w.r.t. τ , and conversely for J2 . It allows to restrict
the search for Nash equilibrium in data completion step (see Step 1 of algorithm 1) to bounded subsets of the
strategy spaces, which remains consistent with the classical results of conditional stability of Cauchy problem
(see e.g [29]).
The existence of a Nash triplet is in turn much less straightforward to establish, and is out of the scope of the
present paper. The identification problem (finding the conductivity k) alone is quite harsh when only a single
Cauchy data (f,Φ) is available [10,16].

3. Numerical procedure

We now present an algorithm dedicated to the computation of the Nash equilibrium solution to the coupled
problem of data completion and conductivity identification. The gradient method with a fixed step is used
to solve the problems of partial optimization of J1 and J2 and a Newton algorithm is used to minimize the
functional J3. The Nash-game algorithm is provided in Algorithm 1. We suppose that the measurements are
noisy and we denote by σ the level of noise. The relaxation parameter t in the optimization loop is used to
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accelerate the convergence (see [5] and references therein). There are two loops in the algorithm, a main loop and
a secondary one. The secondary loop denoted by (Step 1) in the Algorithm 1 is for the optimization of the data
completion problem given fixed conductivity values. It preconditions the update of the overall Nash iterates,
by alternate minimization of functionals J1 and J2. The Step 2 in the algorithm is for the optimization of the
conductivities by minimizing the functional J3 given the optimal data completion solution obtained from Step
1. The overall stopping criteria for the algorithm is || u2 − f ||L2(Γc)≤ ρ, where ρ depends on the measurement
error (noise level) σ (shortly speaking, we used a profile ρ = ρ(σ) = aσ + b where the coefficients a and b are
experimentally fitted, see [5, 28]).

Algorithm 1 Computes the Nash Equilibrium (ηN , τN , kN ) of the game coupling data completion to conductivity identification.

User parameters :
0 ≤ t < 1 : relaxation factor
α > 0 : regularization parameter
ρ > 0 and ε > 0 : stopping tolerances

Set q = 0 and kq to the initial guess.
while || u2 − f ||L2(Γc)> ρ do

Set p = 0
Set M0 = (η0, τ0).
Compute η0, which solves min

η
J1(η, τ0, kq)

Evaluate η1 = tη0 + (1− t)η0,
Compute τ0, which solves min

τ
J2(η0, τ, kq)

Evaluate τ1 = tτ0 + (1− t)τ0,
Set M (1) = (η1, τ1)

Step 1: Solve the Nash game between η and τ :
while ||Mp+1 −Mp ||> ε do.

Compute ηp, which solves min
η
J1(η, τp, kq)

Evaluate ηp+1 = tηp + (1− t)ηp,
Compute τp, which solves min

τ
J2(ηp, τ, kq)

Evaluate τp+1 = tτp + (1− t)τp,
Set Mp+1 = (ηp+1, τp+1)

end while
Step 2: Compute kq+1, which solves

min
k
J3(ηp+1, τp+1, k) +

α

2
|| k − kq ||2L2(Ω),

end while

Let us remark that, in the Algorithm 1 above, along Step 1, the players J1 and J2 play few iterations of a
preconditioning Nash subgame, then they send their optimal strategies to the third player J3. This algorithm
actually computes a Nash equilibrium. A classical Nash algorithm would be that each of the three players
minimizes in parallel its own cost, without the preconditioning step. Indeed, while it may look as a kind of
Stackelberg game, it is not, since the third player does not use optimal response maps ηopt(k), τopt(k) from
players J1 and J2 (which would be too expensive to determine). More precisely, player J3 does not solve the
program : mink J3(ηopt(k), τopt(k), k).

In order to solve the minimization problems, we need to calculate the gradient of the costs ∇ηJ1, ∇τJ2 and
∇kJ3, as well as the second derivative of J3 . For that, we used the Lagrangian method. To simplify the calculus
of the derivatives of J3, we choose in the following the coefficient β equal to 0.
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Proposition 3.1. We have the following partial derivatives of J1 and J2 with respect to η and τ :





∂J1

∂η
.ξ = −

∫

Γi

λ1ξ dΓi, ∀ξ ∈ H−1/2(Γi)

with λ1 ∈W1 = {v ∈ H1(Ω) such that v|Γc
= 0}, solution of the adjoint problem:∫

Ω

k∇λ1∇γ = −
∫

Γc

(k∇u1.n− φ)k∇γ.n dΓc −
∫

Γi

(u1 − τ)γ dΓi, ∀γ ∈W1



∂J2

∂τ
.h =

∫

Γi

(k∇λ2.n− (u1 − τ))h dΓi, ∀h ∈ H1/2(Γi)

such that λ2 ∈ H1(Ω) solution of the adjoint problem:



div (k∇λ2) = 0 in Ω,

λ2 = 0 on Γi,

k∇λ2.n = f − u2 on Γc.

For the resolution of the minimization problem of J3 (step 2), we used the Newton algorithm. For that, we
need to evaluate the first and the second derivatives of J3 with respect to the conductivity.

Proposition 3.2. We suppose that Ω =
⋃n
j=1 Ωj and the conductivity k = kj in Ωj. We define the spaces

H1
0,Γi

(Ω) = {v ∈ H1(Ω) such that v|Γi
= 0} and H1

0(Ω) = {v ∈ H1(Ω) such that v|∂Ω = 0}. The derivatives are
the following:

i)
∂J3

∂kj
.ϕ =

∫

Ωj

| ∇(u2 − u3) |2 ϕ dΩ +

∫

Ωj

∇u2∇v2 ϕ dΩ +

∫

Ωj

∇u3∇v3 ϕ dΩ, ∀ϕ ∈ L(Ω)

such that v2 ∈ H1
0,Γi

(Ω) and v3 ∈ H1
0(Ω) are solutions of the following weak formulations adjoint

problems:





∫

Ω

k∇v2∇γ2 = −
∫

Ω

2k∇(u2 − u3)∇γ2 dΩ, ∀γ2 ∈ H1
0,Γi

(Ω),

and∫

Ω

k∇v3∇γ3 =

∫

Ω

2k∇(u2 − u3)∇γ3 dΩ, ∀γ3 ∈ H1
0(Ω).

ii)
∂2J3

∂ki∂kj
.(ϕ1, ϕ2) =

∫

Ωi

∇γ2∇v2 dΩ +

∫

Ωi

2∇(u2 − u3)∇γ2 ϕ2 dΩ−
∫

Ωi

2∇(u2 − u3)∇γ3 ϕ2 dΩ

+

∫

Ωi

∇u2∇ξ2 ϕ2 dΩ +

∫

Ωi

∇u3∇ξ3 ϕ2 dΩ, ∀(ϕ1, ϕ2) ∈ L(Ω)× L(Ω)

such that (ξ2, ξ3, γ2, γ3) ∈ H1
0,Γi

(Ω) × H1
0(Ω) × H1

0,Γi
(Ω) × H1

0(Ω) are solutions of the following weak
formulations adjoint problems:





∫

Ω

k∇ξ2∇w2 = −
∫

Ωj

2∇(u2 − u3)∇w2 ϕ1 dΩ−
∫

Ωj

∇w2∇v2 ϕ1 dΩ−
∫

Ω

2k∇w2∇γ2 dΩ

+

∫

Ω

2k∇w2∇γ3, ∀w2 ∈ H1
0,Γi

(Ω),
∫

Ω

k∇ξ3∇w3 =

∫

Ωj

2∇(u2 − u3)∇w3 ϕ1 dΩ−
∫

Ωj

∇w3∇v3 ϕ1 dΩ−
∫

Ω

2k∇w3∇γ3 dΩ

+

∫

Ω

2k∇w3∇γ2, ∀w3 ∈ H1
0(Ω),

∫

Ω

k∇γ2∇h2 = −
∫

Ωj

∇u2∇h2 ϕ1 dΩ, ∀h2 ∈ H1
0,Γi

(Ω),

and∫

Ω

k∇γ3∇h3 = −
∫

Ωj

∇u3∇h3 ϕ1 dΩ, ∀h3 ∈ H1
0(Ω).
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Remark 3.1. From our numerical experiments, we noticed that the standard Nash algorithm takes a long time
to converge to the equilibrium. To save time and speed up the convergence, we limit the number of iterations in
the data completion part (step 1), then we proceed to the conductivity identification procedure (step 2).

4. Numerical results: anatomical model

Our main code is implemented using FreeFem++ [17], a powerful language and environment that allows the
numerical solution of partial differential equations using the finite element method.
Since we target electrocardiography applications, we will present two situations, in a 2D realistic model of
the thorax. The boundary of the domain is divided into two parts. The outer boundary of the thorax is the
accessible part Γc where the Cauchy data are available and the heart boundary is the inner inaccessible Γi where
the electrical potential and the flux are missing. While the functional spaces H−1/2(Γi) × H1/2(Γi) dedicated
to the over specified data (f,Φ) are well adapted to our theoretical framework, we have led computational
experiments with much more regular given data (e.g. Φ = 0). However, to assess the stability of the algorithm,
we have considered perturbations of the electric potential f that belong only to L2(Γc).
Each part of the torso is characterized by a conductivity coefficient, such that we know only an approximate
value of it. Our goal is to find the electrical potential and the flux on the surface and enhance the conductivity
estimation in the domain.

4.1. Problem setting: computational domain and exact solution

To perform the computations, we need to distinguish the different regions in the computational domain for
which we aim to estimate the conductivity values. To do that, we segmented a tow-dimension slice of a magnetic
resonance image (MRI). The MRI measures the diffusion of water molecules in biological tissues, which is useful
to distinguish different regions in the torso domain. We segmented the image in Figure 2 (left) inorder to
construct the different regions. In our study, we will consider four organs: the heart surface, lungs, muscles
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Abstract
Electrocardiography imaging (ECGI) is a new non invasive technology used for

heart diagnosis. It allows to construct the electrical potential on the heart surface
only from measurement on the body surface and some geometrical informations of
the torso. The purpose of this work is twofold: First, we propose a new formulation
to calculate the distribution of the electric potential on the heart, from measurements
on the torso surface. Second, we study the influence of the errors and uncertainties
on the conductivity parameters, on the ECGI solution. We use an optimal control
formulation for the mathematical formulation of the problem with a stochastic dif-
fusion equation as a constraint. The descretization is done using stochastic Galerkin
method allowing to separate random and deterministic variables. The optimal con-
trol problem is solved using a conjugate gradient method where the gradient of the
cost function is computed with an adjoint technique . The efficiency of this approach
to solve the inverse problem and the usability to quantify the effect of conductivity
uncertainties in the torso are demonstrated through a number of numerical simula-
tions on a 2D geometrical model.

Main Objectives
1. Propose a new method for solving the ECGI problem.
2. Introduce the uncertainty of the conductivity in the ECGI problem
3. Evaluate the effect of uncertainties on the forward and inverse solutions.

Methods

Stochstic forward problem of electrocardiography
We denote by D the space domain and ⌦ the probability space.

8
><
>:

5.(�(x, ⇠) 5 u(x, ⇠)) = 0 in D ⇥ ⌦,
u(x, ⇠) = u0 on �int ⇥ ⌦,

�(x, ⇠)
@u(x,⇠)
@n = 0 on �ext ⇥ ⌦,

(1)

where, �int and �ext are the epicardial and torso boundaries respectively,
⇠ 2 ⌦ is the stochastic variable (it could also be a vector) and u0 is the
potential at the epicardial boundary.

Numerical descretization of the stochastic forward prob-
lem
We use the stochastic Galerkin method to solve equation (1). The stochastic
conductivity and solution are projected on the probability density functions
{ k(⇠)}p

k=1

�(x, ⇠) =

pX

i=0

�̂i(x) i(⇠, u(x, ⇠) =

pX

j=0

ûj(x) i(⇠)

The elliptic equation (1) projected in the stochastic basis could be solved

pX

i=0

pX

j=0

Tijkr.(�̂i(x)r)ûj(x)) =0 in D,

û0(x) =u0(x) on �int,

ûj(x) =0 on �int 8j = 1, ...p,

�̂i(x)
@ûj(x)

@n
=0 on �ext 8 i, j = 0, ...p,

(2)

where Tijk = E[ i(⇠), j(⇠), k(⇠)].

Anatomical data and computational mesh

Figure 1: MRI 2D slice of the torso (left), 2D computational mesh of the torso geometry
showing the different regions of the torso considered in this study: fat, lungs and torso
cavity, (right).

Forward problem results
Exact deterministic solution Mean value for conductivity ±50%

Stdev Lung conductivity ±50% Stdev Fat conductivity ±50%

Figure 2: Stochastic solution of the forward problem: Exact solution (top, left), Mean
value of the Stochastic solution for conductivity ±50% (top, right). Standard deviation
of the electrical potential for lung conductivity ±50% (bottom, left) and fat conductivity
±50% (bottom, right).

Main Remarks
1. The mean value of the stochastic solution matches with the exact forward

solution. This comes from the linearity of the forward problem.

2. For each organ, the uncertainty on the conductivity is reflected by a high
uncertainty of the solution at its boundary

3. The direction of the standard deviation iso-values are are modified when
they cross the the organ for which we introduce the uncertainty.

4. The magnitude of the uncertainty does not exceed ±2% of the magnitude
of the forward solution

Stochastic ECGI Inverse Problem

Mathematical formulatin
We look for the current density and the value of the potential on the epicar-
dial boundary (⌘, ⌧ ) 2 L�1

2(�int) ⇥ L
1
2(�int) by minimizing the following

cost function under a stochastic constraint on v
8
>>>>>>><
>>>>>>>:

J(⌘, ⌧ ) = 1
2E

⇣
kv(x, ⇠) � fk2

L2(�ext)
+ 1

2

����(x, ⇠)
@v(x,⇠)
@n � ⌘

���
2

L2(�int)

⌘

with v(x, ⇠) solution of :
5.(�(x, ⇠) 5 v(x, ⇠)) = 0 in D ⇥ ⌦,
v(x, ⇠) = ⌧ on �int ⇥ ⌦,

�(x, ⇠)
@v(x,⇠)
@n = 0 on �ext ⇥ ⌦.

(3)
In order to solve this minimization problem, we use a conjugate gradient
method as used in [1] where the components of the gradient of the cost
function are computed using an adjoint method. The gradient of the func-
tional J is given by:

8
>>>>>>>>><
>>>>>>>>>:

<
@J(⌘,⌧ )

@⌘ .� >= �E[
R
�int

(�@v
@n � ⌘)�d�int] 8� 2 L2(�int),

<
@J(⌘,⌧ )

@⌧ .h >= E[
R
�int

�@�
@nhd�int] 8h 2 L2(�int),

with � solution of :
r.(�(x, ⇠)r�(x, ⇠)) = 0 on D ⇥ ⌦,

�(x, ⇠) = �(x, ⇠)
@v(x,⇠)
@n � ⌘ on �int ⇥ ⌦,

�(x, ⇠)
@�(x,⇠)
@n = �(v � f ) on �ext ⇥ ⌦.

(4)

We use the conjugate gradient method to minimize the energy function J .

Inverse problem results
Exact deterministic solution Mean value, lung conductivity ±50%

Stdev Lung conductivity ±50% RE lung conductivity ±50%

Figure 3: Stochastic solution of the inverse problem: Exact solution (top, left), Mean
value of the Stochastic inverse solution for lung conductivity ±50% (top, right). Standard
deviation of the electrical potential for lung conductivity ±50% (bottom, left) and relative
error (RE) between the mean value and the exact solution (bottom, right).

Organ % uncertainties 0% ±10% ±20% ±30% ±50%

Lungs relative error 0.1245 0.1439 0.2208 0.3333 0.485
Corr coeff 0.9930 0.9899 0.9767 0.9660 0.885

Fat relative error 0.1245 0.1248 0.1248 0.1251 0.127
Corr coeff 0.9930 0.9945 0.9943 0.9980 0.991

Table 1: Relative error and correlation coefficient of the stochastic inverse solution for
different levels of uncertainty on the fat and lungs conductivities

Main Remarks
1. The relative error between the mean value of the stochastic solution and

exact forward solution reaches 50%.

2. Like for the forward problem, the direction of the standard deviation
iso-values are are modified when they cross the the organ for which we
introduce the uncertainty.

3. The magnitude of the uncertainty reaches its maximum at the edge of the
considered orrgan

Conclusions
• The main contribution of this work was to introduce a new method for

solving the ECGI inverse problem. This method is based on stochastic
Galerkin approche. And the optimal control problem that we proposed
allowed us to incorporate the uncertainties on the conductivity values as
a constraint. The conjugate gradient method allow to take into account
the conductivity uncertainties during the optimization procedure.

• The results show a low effect of conductivity uncertainties on the for-
ward problem. On the contrary, their effect on the inverse solution is
very important.

• For both inverse and forward solution the standard deviation of the
stochastic solution achieves its maximum at the boundary of the organ
for which the uncertainty was considered.
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Figure 2. MRI 2D slice of the torso (left), 2D computational mesh of the torso geometry
showing the different regions of the torso considered in this study: fat, lungs and torso cavity,
(right). The angle θ is the second polar coordinate.
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(cavity) and the fat. After the segmentation, we construct a 2D mesh of the torso cross section in which we
identify the organs as shown in Figure 2 (right). In this representation, we consider that all the cavity region
is occupied by the muscles. The 2D mesh contains 2395 vertices and 4540 elements. Each layer is caracterized
by a constant conductivity:

kex =





k1 = 1, in Ω1=fat,

k2 = 1, in Ω2=cavity,

k3 = 0.8, in Ω3=lung.

The outer boundary of the thorax plays the role of Γc, where the Cauchy data are over specified. The heart’s
boundary plays the role of Γi, where the potential and the flux are missing. We parametrize the one-dimensional
heart boundary with the θ variable, in order to be able to represent both the incomplete Dirichlet and Neumann
boundary conditions on the heart interface (see Figure 2 (right)). The Cauchy data f and φ are generated via
the solution of the following direct problem:





div (kex∇(u)) = 0, in Ω,

u = excos(y), on Γi,

kex∇(u).n = φ = 0, on Γc.

(7)

We use standard value of the different conductivities as initial guess but also we use them in the regularization.
During iterations, we choose a value of the parameters α and t, such that α worth 1.5× 10−4 in test case 1 for
noise-free and 8 × 10−4 for noisy Cauchy data. In test case 2, α worth 5 × 10−4. The parameter t is equal to
0.1 in both tests.

4.2. Test case 1:

In this test case, we would like to show how optimizing the conductivities improves the solution of the inverse
problem. The idea is to, first, solve the data completion problem where the conductivities are not exact which
is the case in the studies done in the literature. We will refer to these conductivities by measured conductivity.
Second, we will solve the coupled problem by optimizing the conductivity while solving the data completion
problem. This will show the gain that we obtain by solving the coupled problem.

The measured conductivity is taken to be k0
3 = 0.5 while the exact conductivity k3 = 0.8. We solve the data

completion problem which consists of reconstructing the potential and the flux on Γi using the Nash algorithm
(Step 1 of our algorithm). During iterations, the conductivity is kept equal to the measured conductivity:

k0 =





k1 = 1, in Ω1=fat,

k2 = 1, in Ω2=cavity,

k0
3 = 0.5, in Ω3=lung.

We start from an initial guess (η0, τ0) = (0, 0). Figure 3 presents the reconstructed potential over Γi com-

pared to the exact solution and the optimal solution uopt1 := u1(ηopt, k0). At convergence, the relative error

|| τopt − uex ||L2(Γi)

|| uex ||L2(Γi)
is equal to 0.13 and

|| uopt1 − uex ||L2(Ω)

|| uex ||L2(Ω)
is 0.04, where uex is the solution of (7).

To obtain a better reconstruction, we applied our algorithm, presented in section 4, to enhance the value of the
conductivity and therefore to improve the data completion. The value of the initial estimation is (η0, τ0, k0

3) =
(0, 0, 0.5). Figure 5 presents the reconstructed potential on Γi, compared to the exact solution. We also show the
optimal solution u1 in the thorax and the evolution of the reconstructed conductivity during the Nash iterations.

At convergence, the obtained conductivity kopt3 is equal to 0.794542 and the relative errors
|| τopt − uex ||L2(Γi)

|| uex ||L2(Γi)
,
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Figure 3. Reconstructed potential u1 (left) and reconstructed dirichlet condition (right) com-
pared to the exact solution on Γi using an approximate value of k3 = k0

3 = 0.5.

|| uopt1 − uex ||L2(Ω)

|| uex ||L2(Ω)
are equal to 0.032 and 0.0054 respectively.

We repeated the same test but using two different meshes. The first Mesh is coarser it contains 2, 206 vertices
and the seconf is finer and it contains 17,432 vertices. Figures of both meshes are depicted in Figure 4. At
convergence, for the coarse (respectively, fine) mesh, the obtained conductivity worth 0.84 (respectively, 0.752
) and the relative error on the Dirichlet part of the solution is equal to 0.026 (respectively, 0.035). In the three
different degrees of refinement of the computational geometry the relative error on the conductivity does not
exeed 6% and the relative error on the reconstructed electrical potentiel (Dirichlet condition) does not exceed
5 %.

Figure 4. Two different degrees of refinement of the torso mesh. The corser mesh (left) has
2, 206 vertices and the finer mesh (right) has 17, 432 vertices.

We show in Figure 3 the results of a recovered Dirichlet data obtained for an approximate or initial knowledge
of the conductivity parameter. Then, in Figure 5, we present the results of the recovered Dirichlet data for
an optimally identified conductivity. It can be easily observed from these two results how critical is a good
identification of the conductivities on the quality of the recovery of the data missing on the inaccessible boundary.

In Figure 6, we present the behaviour of the three functionals during the first 100 iterations. From the curves,
il seems that the values are very close to zero near the 100th iteration, but to reach the optimal solution, we
continue for more iterations. To assess the robustness of our numerical procedure, we disturb the Cauchy data
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Figure 5. Reconstructed potential u1 (left)and reconstructed dirichlet condition (middel)
compared to the exact solution on Γi for noise-free. The behaviour of the conductivity during
iterations is also plotted (right). At convergence, the reconstructed conductivity kopt3 =
0.794542.

Figure 6. The behaviour of the costs J1 (left), J2 (middel) and J3 (right) during the first 100 iterations.

by adding some noise. Figure 7 shows the reconstructed potential on Γi compared to the exact one and the
behavior of the conductivity k3 during the optimization process for different noise levels. The estimated value
of kopt3 at convergence is 0.7752, 0.8236 and 0.8733 for 1%, 3% and 5% noise levels respectively. In order to show

Figure 7. The reconstructed dirichlet condition compared to the exact solution on Γi for
different noise levels (1%, 3%, 5%) (left) . The behavior of the conductivity during iterations of
the optimization algorithm (right).

the performance of our method, we compute different error indicators. The numerical results are presented in
Table 1. We remark that the relative error on the estimated conductivity is much more sensitive to the noise
level than it is for the reconstructed solution.
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Noise level
|| τopt − uex ||L2(Γi)

|| uex ||L2(Γi)

|| uopt1 − uex ||L2(Ω)

|| uex ||L2(Ω)

|| uopt1 − uopt2 ||L2(Ω)

|| uex ||L2(Ω)

|| kex − kopt ||2
|| kex ||2

0% 0.032 0.0054 0.00015 0.006
1% 0.038 0.008 0.0011 0.0309
3% 0.066 0.017 0.0034 0.029
5% 0.11 0.028 0.0061 0.091

Table 1. The effect of Cauchy data noise level on the reconstructed solution: Relative errors
of reconstructed solution on the heart boundary and in the whole domain, and relative error of
the estimated k3 with respect of the noise level.

Figure 8. The conductivity error ||k
ex−kopt||2
||kex||2 and Dirichlet error

||τopt−uex||L2(Γi)

||uex||L2(Γi)
are presented

with respect to different values of α for noise free (left) and for 3% of noise (right).

For the sake of proving the choise of α, we present in figure 8 the error of conductivity ||kex−kopt||2
||kex||2 and

the error of dirichlet
||τopt−uex||L2(Γi)

||uex||L2(Γi)
with respect to different values of α. We notice from the curves that the

optimal parameter is between 10−4 and 3 10−3 for noise free (Identically in the case of 3% of noise).

4.3. Test case 2:

In this test case, we consider the same thorax, but we suppose that the patient has a pathological condition
affecting the conductivities in the lung so that the right and left parts of the lung have different constant
conductivity values. We split the thorax into four layers: fat, cavity, the right and the left part of the lung. The
conductivity in the domain follows the same decomposition, being constant in each of the four subdomains.

kex =





k1 = 1 in Ω1=fat,

k2 = 1 in Ω2=cavity,

k3 = 0.8 in Ω3=right lung,

k4 = 0.4 in Ω4=left lung.

The Cauchy data are numerically simulated, as in the first test case, by solving the following direct problem:





div (kex∇(u)) = 0 in Ω,

u = excos(y) on Γi,

kex∇(u).n = φ = 0 on Γc.



CONDUCTIVITY IDENTIFICATION AND DATA COMPLETION 13

We suppose that we have an approximate value of the conductivities k3 and k4. Our goal is to enhance those
measurements and find the potential and flux on the surface. We start from an initial guess (η0, τ0, k0

3, k
0
4) =

(0, 0, 0.6, 0.6). We show in Figure 9 the reconstructed dirichlet condition on Γi compared to the exact one, the
reconstructed potential u1 in the domain and the behavior of the conductivities during Nash iterations for noise
free data.

(a) (b)

(c) (d)

Figure 9. (a) Reconstructed potential u1 in the domain, (b) reconstructed dirichlet condition
on Γi. (c) The behaviour of the conductivities k3 and (d) k4 during iterations for noise free.

At convergence, the conductivities are equal to kopt3 = 0.821142 and kopt4 = 0.441652.

At convergence, the reconstructed conductivities are equal to kopt3 = 0.821142 and kopt4 = 0.441652. In Figure
10, we present the same reconstructions illustraiting the stability of our method with respect to noisy data.
The reconstructed kopt3 was 0.71969, 0.831021 and 0.912696 for 1%, 3% and 5% of noise levels respectively and

Figure 10. Reconstructed dirichlet condition on Γi (left) and the behaviour of the conductiv-
ities k3 (middel) and k4 (right) during iterations for different noise levels (1%, 3%, 5%).

kopt4 was 0.5079, 0.510126 and 0.506341 respectively for the same noise levels. Table 2 shows different errors for
different noise levels.



14 CONDUCTIVITY IDENTIFICATION AND DATA COMPLETION

Noise level
|| τopt − uex ||L2(Γi)

|| uex ||L2(Γi)

|| uopt1 − uex ||L2(Ω)

|| uex ||L2(Ω)

|| uopt1 − uopt2 ||L2(Ω)

|| uex ||L2(Ω)

|| kex − kopt ||2
|| kex ||2

0% 0.027 0.0054 0.00017 0.05
1% 0.051 0.012 0.0011 0.15
3% 0.07 0.018 0.0035 0.12
5% 0.09 0.026 0.0059 0.17

Table 2. The effect of Cauchy data noise level on the reconstructed solution: Relative errors
of reconstructed solution on the heart boundary and in the whole domain, and relative error of
the estimated couple (k3, k4) with respect of the noise level.

5. Conclusion

The electrocardiography imaging technique is widely used to detect cardiac pathologies. The mathematical
problem behind this technology is to solve the data completion problem of the diffusion equation where the
measurement of the electrical potential on the torso surface and the null flux boundary conditions are considered
as the Cauchy data. Beside the ill-posedness of the mathematical problem this technology is still not fully
accurate, mainly because of the fact that many aspects of the electrophysiology of the underlying problem are
not accurately described. In particular, the heterogeneity of the torso conductivities is usually neglected. In this
paper, we presented an approach to solve the coupled problem by solving the data completion and optimizing
the conductivities of the organs in the torso using an original Nash game strategy. Three players are defined
which play non-cooperatively a Nash game : the two first players dedicate their costs to the completion problem,
while the third one cost is related to the conductivity identification problem. We setup the game framework,
and present the algorithm which is implemented using Freefem++. We conducted two numerical experiments,
assessing the case where the measured data are disturbed by random noise as well. The obtained results prove
that our algorithm is efficient in performing the coupled completion/identification tasks, and is stable with
respect to noisy data.
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