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EXTREMES FOR MULTIVARIATE EXPECTILES

VÉRONIQUE MAUME-DESCHAMPS, DIDIER RULLIÈRE, AND KHALIL SAID

Abstract. Multivariate expectiles, a new family of vector-valued risk measures, were recently introduced in the
literature [23]. Here we investigate the asymptotic behavior of these measures in a multivariate regular variation
context. For models with equivalent tails, we propose an estimator of extreme multivariate expectiles in the Fréchet
domain of attraction case with asymptotic independence, or for comonotonic marginal distributions.

Introduction

In recent years, expectiles have become an important and frequently-used risk measure because they satisfy both
coherence and elicitability properties. In the one-dimensional setting, expectiles were introduced by Newey & Powell
(1987) [18]. For a random variable X with a finite second moment, the expectile of level α is defined by:

eα(X) = arg min
x∈R

E[α(X − x)2
+ + (1− α)(x−X)2

+],

where (x)+ = max(x, 0). Expectiles are the only risk measure satisfying both elicitability and coherence properties—
see Bellini & Bignozzi (2015) [4].

In higher dimensions, several extensions of expectile measures have been recently proposed. A direct extension
using multivariate versions of the elicitability property were introduced in Maume-Deschamps et al. (2017) [23].
Multivariate geometric expectiles were presented in Herrmann et al. (2018) [15], constructed as an extension of
the multivariate geometric quantiles introduced in Chaudhuri (1996) [8]. Geometric expectiles are also elicitable by
construction, and generalize univariate expectiles.

In this paper we focus onmatrix expectiles, introduced in [23]. Consider a random vector X = (X1, . . . , Xd)T ∈ Rd
whose second order moments exist, and let Σ = (πij)1≤i,j≤d be a d× d real, symmetric, and positive semi-definite
matrix such that i ∈ {1, . . . , d}, πii = πi > 0. A Σ-expectile of X is then defined as:

eΣ
α(X) ∈ arg min

x∈Rd
E[α(X− x)T+Σ(X− x)+ + (1− α)(X− x)T−Σ(X− x)−],

where (x)+ = ((x1)+, . . . , (xd)+)T and (x)− = (−x)+. We shall concentrate on the case where the above minimiza-
tion has a unique solution. In [23], conditions on Σ ensuring the uniqueness of the argmin are given; indeed, it is
sufficient that πij ≥ 0, ∀i, j ∈ {1, . . . , d}. We shall make this assumption throughout the paper. In which case the
vector expectile is unique and the solution to the following system of equations:

(0.1) α

d∑
i=1

πkiE[(Xi − xi)+11{Xk>xk}] = (1− α)
d∑
i=1

πkiE[(xi −Xi)+11{xk>Xk}], ∀k ∈ {1, . . . , d}.

In the case where πij = 1 for all (i, j) ∈ {1, . . . , d}2, the corresponding Σ-expectile is called a L1-expectile. This
coincides with the L1-norm expectile defined in [23].

In [23] it is proved that,
lim
α−→1

eΣ
α(X) = XF, and lim

α−→0
eΣ
α(X) = XI,

where XF ∈ (R ∪ {+∞})d is the right endpoint vector (x1
F , . . . , x

d
F )T , and XI ∈ (R ∪ {−∞})d the left endpoint

vector (x1
I , . . . , x

d
I)T of the support of the random vector X.

Multivariate expectiles can be estimated in the general setting using stochastic optimization algorithms. The
estimation example using the Robbins-Monro algorithm (1951) [28] presented in [23] shows that for extreme levels
(i.e., α → 1 or α → 0), the estimation obtained is not satisfactory in term of speed of convergence. This has

Date: October 16, 2018.
2010 Mathematics Subject Classification. 62H00, 62P05, 91B30 .
Key words and phrases. Risk measures, multivariate expectiles, regular variations, extreme values, tail dependence functions.

1



lead us to a theoretical analysis of the asymptotic behavior of multivariate expectiles. Since—to give a real-world
example—solvency thresholds in insurance are generally high (e.g., α = 0.995 for the Solvency II directive), the
study of the asymptotic behavior of risk measures is of natural importance. The goal of the present paper is there-
fore to establish the asymptotic behaviour of multivariate expectiles.

The study of the extreme behaviour of risk measures in a multivariate regular variation framework is the subject
of a number of works. Let us mention as examples Embrechts et al. (2009) [13], Albrecher et al. (2006) [1] in
risk aggregation contexts, and Asimit et al. (2011) [2] in risk capital allocation. Similar works has also been done
on other multivariate risk measures, as for example in Girard & Stupfler (2015) [14] for geometric quantiles, and
recently in Di Bernardino & Prieur [11] for the multivariate conditional-tail-expectation.

Here we work with the equivalent tails model. This is often used to model claim amounts in insurance and study
dependent extreme events, and is also used in ruin theory models. The equivalent tails model includes in particular
portofolios with identically distributed risks, and the case where there is a scale difference in distributions. Here we
will study the asymptotic behavior of multivariate expectiles in the multivariate regular variations framework. We
shall focus on marginal distributions belonging to the Fréchet domain of attraction, which contains heavy-tailed
distributions that represent—to give an example– the most potentially expensive claims in insurance. We remark
that the attention given to univariate expectiles is a quite recent phenomenon. In [5], for regularly varying random
variables, asymptotic equivalents of expectiles as a function of the quantile of the same level are proved. First and
second order asymptotics for the expectile of the sum in the FarlieâĂŞGumbelâĂŞMorgenstern (FGM) dependence
structure case are given in [22].

The paper is set out as follows. The first section is devoted to a presentation of the multivariate regularly varying
distribution framework. The study of the asymptotic behavior of the multivariate expectiles for the Fréchet model
with equivalent tails is the subject of Section 2. The case with an asymptotically dominant tail is analyzed in
Section 3. Section 4 is devoted to the estimation of extreme multivariate expectiles in the asymptotic independence
and comonotonicity settings, and simulation results are also provided.

1. The MRV Framework

Regularly varying distributions are well suited to study extreme phenomenons. Lots of works have been devoted
to the asymptotic behavior of usual risk measures for this class of distributions, and results are given for sums of
risks belonging to this family. It is well known that the three domains of attraction of extreme value distributions
can be defined using the concept of regular variations (see [12; 26; 9; 6]).

This section is devoted to the classical characterization of multivariate regular variations, which will be used in
the study of the asymptotic behavior of multivariate expectiles. We also recall some basic results on the univariate
setting that we shall use.

1.1. Univariate regular variations. We begin by recalling basic definitions and results on univariate regular
variations.

Definition 1.1 (Regularly varying functions). A measurable positive function f is regularly varying of index ρ at
a ∈ {0,+∞}, if for all t > 0,

lim
x→a

f(tx)
f(x) = tρ,

we denote f ∈ RVρ(a).

A slowly varying function is a regularly varying function of index ρ = 0. Remark that f ∈ RVρ(+∞) if and only
if, there exists a slowly varying function at infinity, L ∈ RV0(+∞) such that

f(x) = xρL(x).

Theorem 1.2 (Karamata’s representation, [27]). For any slowly varying function L at +∞, there exists a positive
measurable function c(·) that satisfies lim

x→+∞
c(x) = c ∈]0,+∞[, and a measurable function ε(·) with lim

x→+∞
ε(x) = 0,

such that
L(x) = c(x) exp

(∫ x

1

ε(t)
t
dt

)
.
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Lemma 1.3 (Integration of RV functions (Karamata’s Theorem)), [25]). For a positive measurable function f ,
regularly varying of index ρ at +∞, locally bounded on [x0,+∞) with x0 ≥ 0

• if ρ > −1, then

lim
x→+∞

∫ x

x0

f(t)dt

xf(x) = 1
ρ+ 1 ,

• if ρ < −1, then

lim
x→+∞

∫ +∞

x

f(t)dt

xf(x) = − 1
ρ+ 1 .

Lemma 1.4 (Potter’s bounds [6]). For f ∈ RVρ(a), with a ∈ {0,∞} and ρ ∈ R. For any 0 < ε < 1 and all x and
y sufficiently close to a, we have

(1− ε) min
((

x

y

)ρ−ε
,

(
x

y

)ρ+ε)
≤ f(x)
f(y) ≤ (1 + ε) max

((
x

y

)ρ−ε
,

(
x

y

)ρ+ε)
.

Many other properties of regularly varying functions are presented in [6]. Throughout the paper, we shall consider
generalized inverses of non-decreasing functions f : f←−(y) = inf{x ∈ R, f(x) ≥ y}.

1.2. Multivariate regular variations. The multivariate extension of regular variations is introduced in [10]. We
denote by µn

v−→ µ the vague convergence of Radon measures as presented in [19]. The following definitions are
given for non negative random variables.
Definition 1.5 (Multivariate regular variations). The distribution of a random vector X on [0,∞]d is said to
be regularly varying if there exist a non-null Radon measure µX on the Borel σ-algebra Bd on [0,∞]d\0, and a
normalization function b : R −→ R which satisfies lim

x−→+∞
b(x) = +∞, and such that

(1.1) uP
(

X
b(u) ∈ ·

)
υ−→ µX(·) as u −→ +∞.

There exist several equivalent definitions of multivariate regular variations which will be useful in what follows.
Definition 1.6 (MRV equivalent definitions). Let X be a random vector on Rd, the following definitions are
equivalent:

• The vector X has a regularly varying tail of index θ.
• There exist a finite measure µ on the unit sphere Sd−1, and a normalization function b : (0,∞) −→ (0,∞)

such that

(1.2) lim
t−→+∞

P
(
‖X‖> xb(t), X

‖X‖ ∈ .
)

= x−θµ(.),

for all x > 0. The measure µ depends on the chosen norm, it is called the spectral measure of X.
• There exist a finite measure µ on the unit sphere Sd−1, a slowly varying function L, and a positive real
θ > 0 such that

(1.3) lim
x−→+∞

xθ

L(x)P
(
‖X‖> x,

X
‖X‖ ∈ B

)
= µ(B),

for all B ∈ B(Sd−1) with µ(∂B) = 0.
From now on, MRV denotes the set of multivariate regularly varying distributions, and MRV(θ, µ) denotes the

set of random vectors with regularly varying tail, with index θ and spectral measure µ.
From (1.3), we may assume that µ is normalized i.e. µ(Sd−1) = 1, which implies that ‖X‖ has a regularly varying
tail of index −θ.
On the other hand,

lim
x−→+∞

P
(

X
‖X‖ ∈ B

∣∣∣∣ ‖X‖> x,

)
= lim
x−→+∞

P
(
‖X‖> x, X

‖X‖ ∈ B
)

P (‖X‖> x)

= lim
x−→+∞

xθ

L(x)µ(B)x−θL(x) = µ(B),

for all B ∈ B(Sd−1) with µ(∂B) = 0. That means that conditionally to {‖X‖> x}, X
‖X‖ converges weakly to µ.

The different possible characterizations of the MRV concept are presented in [25].
3



1.3. Characterization using tail dependence functions. Let X = (X1, . . . , Xd) be a random vector. From
now on, FXi denotes the survival function of Xi. In this paper, we use the definition of the upper tail dependence
function, as introduced in [20].

Definition 1.7 (The tail dependence function). Let X be a random vector on Rd, with continuous marginal
distributions. The tail dependence function is defined by

(1.4) λX
U (x1, . . . , xd) = lim

t−→0
t−1P(F̄X1(X1) ≤ tx1, . . . , F̄Xd(Xd) ≤ txd),

when the limit exists.

For k ≤ d, denote by X(k) a k dimensional sub-vector of X, C(k) its copula and C(k) its survival copula. The
upper tail dependence function is

(1.5) λX(k)

U (u1, . . . , uk) = lim
t−→0+

C̄(k)(tu1, . . . , tuk)
t

,

if this limit exists. The lower tail dependence function can be defined analogically by

λX(k)

L (u1, . . . , uk) = lim
t−→0+

C(k)(tu1, . . . , tuk)
t

,

when the limit exists. In this paper, our study is limited to the upper version as defined in (1.5).

We now consider the following assumption:

Assumption 1 (Equivalent tails). We assume that X has equivalent regularly varying marginal tails, which means
that both (i) and (ii) below are satisfied

(i) F̄X1 ∈ RV−θ(+∞), with θ > 0.
(ii) The tails of Xi, i = 1, . . . , d are equivalent. That is for all i ∈ {2, . . . , d}, there is a positive constant ci such

that

lim
x−→+∞

F̄Xi(x)
F̄X1(x)

= ci.

Conditions (i) and (ii) in Assumption 1 imply that all marginal tails are regularly varying of index −θ at +∞.

The following two theorems show that, under Assumption 1, the MRV character of multivariate distributions is
equivalent to the existence of the tail dependence functions.

Theorem 1.8 (Theorem 2.3 in [21]). Let X = (X1, . . . , Xd) be a random vector in Rd, with continuous marginal
distributions FXi , i = 1, . . . , d that satisfy Assumption 1. If X has a MRV distribution, the tail dependence function
exists, and it is given by

λX(k)

U (u1, . . . , uk) = lim
x−→+∞

xP

(
X1 > b(x)

(
u1

c1

)−1/θ
, . . . , Xk > b(x)

(
ud
cd

)−1/θ
)
,

for any k ∈ {1, . . . , d}.

Theorem 1.9 (Theorem 3.2 in [30]). Let X = (X1, . . . , Xd) be a random vector in Rd, with continuous marginal
distributions FXi , i = 1, . . . , d that satisfies Assumption 1. If the tail dependence function λX(k)

U exists for all
k ∈ {1, . . . , d}, then X is MRV, its normalization function is given by b(u) =

(
1

F̄X1

)←−
(u) and the spectral measure

is

µ([0,x]c) =
d∑
i=1

cix
−θ
i −

∑
1≤i<j≤d

λ
(Xi,Xj)
U (cix−θi , cjx

−θ
j ) + · · ·+ (−1)d+1λX

U (c1x−θ1 , . . . , cdx
−θ
d ).

By construction of the multivariate expectiles, only the bivariate dependence structures are taken into account.
We shall use the functions λ(Xi,Xk)

U , for all (i, k) ∈ {1, . . . , d}2. In order to simplify the notation, we denote it by λikU .
If the vector X has an MRV distribution, the pairs (Xi, Xj) have also MRV distributions, for any (i, j) ∈ {1, . . . , d}2.
So, in the MRV framework, and under Assumption 1, the existence of functions λik is insured. In addition, we
assume in all the rest of this paper that these functions are continuous.
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2. Fréchet model with equivalent tails

In this section, we assume that X satisfies Assumption 1 with θ > 1. It implies that X1 belongs to the Fréchet
extreme value domain of attraction. This domain contains distributions with infinite endpoint xF = sup{x : F (x) <
1} = +∞, so as α −→ 1 we get eiα(X) −→ +∞ ∀i. Also, from Karamata’s Theorem (Theorem 1.3), we have for
i = 1, . . . , d,

(2.1) lim
x−→+∞

E[(Xi − x)+]
xF̄Xi(x)

= 1
θ − 1 ,

for all i ∈ {1, . . . , d}.

Proposition 2.1 (Equivalent expectiles components). Let Σ = (πij)i,j=1,...,d with πij > 0 for all i, j ∈ {1, . . . , d}.
Under Assumption 1, the components of the multivariate Σ-expectiles eα(X) = (eiα(X))i=1,...,d satisfy

(i)

0 < lim
α−→1

eiα(X)
e1
α(X) ≤ lim

α−→1

eiα(X)
e1
α(X) < +∞,∀i ∈ {2, . . . , d}.

(ii)

0 < lim
α−→1

1− α
F̄Xi(eiα(X))

≤ lim
α−→1

1− α
F̄Xi(eiα(X))

< +∞,∀i ∈ {2, . . . , d}.

Proposition 2.1 (i) implies that distributions with equivalent tails have asymptotically comparable multivariate
expectile components.

Before we prove Proposition 2.1, we shall demonstrate some preliminary results. Firstly, let X = (X1, . . . , Xd)T
satisfy Assumption 1, we denote xi = eiα(X) for all i ∈ {1, . . . , d}. We define the functions lαXi,Xj for all (i, j) ∈
{1, . . . , d}2 by
(2.2) lαXi,Xj (xi, xj) = αE[(Xi − xi)+11{Xj>xj}]− (1− α)E[(Xi − xi)−11{Xj<xj}],

and lαXi(xi) = lαXi,Xi(xi, xi).
The optimality system (0.1) rewrites

(2.3) lαXk(xk) = −
d∑

i=1,i6=k

πki
πkk

lαXi,Xk(xi, xk) ∀k ∈ {1, . . . , d}.

We shall use the following sets:
J i0 = {j ∈ {1, . . . , d} \ {i} | lim

α−→1

xj
xi

= 0},

J iC = {j ∈ {1, . . . , d} \ {i} | 0 < lim
α−→1

xj
xi

< lim
α−→1

xj
xi

< +∞},

and J i∞ = {j ∈ {1, . . . , d} \ {i} | lim
α−→1

xj
xi

= +∞}.

The proof of Proposition 2.1 is written for πij = 1, for all (i, j) ∈ {1, . . . , d}2, i.e. for the L1-expectiles. The general
case can be treated in the same way, provided that πij > 0 for all (i, j) ∈ {1, . . . , d}2. The proof of Proposition 2.1 (i)
follows from Lemma 2.2 and Proposition 2.1 (ii).

Lemma 2.2. Assume that Assumption 1 is satisfied.
(1) If t = o(s) then for all (i, j) ∈ {1, . . . , d}2,

lim
t→+∞

sF̄Xi(s)
tF̄Xj (t)

= 0.

(2) If t = Θ(s),1 then for all (i, j) ∈ {1, . . . , d}2,

FXi(s)
FXj (t)

∼ ci
cj

(s
t

)−θ
as t→∞.

The proof is given in Appendix A.1. The proof of Proposition 2.1 (ii) is given in Appendix A.2. We may now
prove Proposition 2.1 (i).

1Recall that t = Θ(s) means that there exist positive constants C1 and C2 such that C1s ≤ t ≤ C2s
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Proof of Proposition 2.1 (i). We shall prove that J1
∞ = ∅, the fact that Jk∞ = ∅ for all k ∈ {1, . . . , d} may be proven

in the same way. This implies that Jk0 = Jk∞ = ∅ for all k ∈ {1, . . . , d}, hence the result.
We suppose that J1

∞ 6= ∅, let i ∈ J1
∞, taking if necessary a subsequence, we may assume that xi/x1 → +∞ as

α→ 1.
From Proposition 2.1 (ii), we have

0 < lim
α−→1

1− α
F̄Xi(eiα(X))

≤ lim
α−→1

1− α
F̄Xi(eiα(X))

< +∞,∀i ∈ {2, . . . , d},

so, taking if necessary a subsequence, we may assume that ∃` ∈ R∗\{+∞} such that

lim
α−→1

1− α
F̄X1(x1)

= `.

In this case,

lim
α−→1

lαX1
(x1)

x1F̄X1(x1)
= lim
α−→1

(
(2α− 1)E[(X1 − x1)+]

x1F̄X1(x1)
− 1− α
F̄1(x1)

(1− E[X1]
x1

)
)

= 1
θ − 1 − ` < +∞.

Moreover,

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

≤ E[(Xi − xi)+]
x1F̄X1(x1)

= E[(Xi − xi)+]
xiF̄Xi(xi)

xiF̄Xi(xi)
x1F̄X1(x1)

−→ 0 using Lemma 2.2.

We get

lim
α−→1

lαXi,X1
(xi, x1)

x1F̄X1(x1)
= lim
α−→1

(
αE[(Xi − xi)+11{X1>x1}]− (1− α)E[(Xi − xi)−11{X1<x1}]

x1F̄X1(x1)

)
= lim
α−→1

(E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

− 1− α
F̄X1(x1)

xi
x1

)
= −∞, ∀i ∈ J1

∞.

Going through the limit (α −→ 1) in the first equation of the optimality System (2.3) divided by x1F̄X1(x1),
leads to

(2.4) lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

lαXk,X1
(xk, x1)

x1F̄X1(x1)
= −∞.

Now, let k ∈ J1
0

E[(Xk − xk)+11{X1>x1}]
x1F̄X1(x1)

=

∫ x1

xk

P (Xk > t,X1 > x1) dt

x1F̄X1(x1)
+

∫ +∞

x1

P (Xk > t,X1 > x1) dt

x1F̄X1(x1)

≤

∫ x1

xk

P (X1 > x1) dt

x1F̄X1(x1)
+

∫ +∞

x1

P (Xk > t) dt

x1F̄X1(x1)
,

Karamata’s Theorem (Theorem 1.3) leads to

lim
α−→1

∫ x1

xk

P (X1 > x1) dt

x1F̄X1(x1)
+

∫ +∞

x1

P (Xk > t) dt

x1F̄X1(x1)
= 1 + ck

θ − 1 ,∀k ∈ J
1
0 .

Consider k ∈ J1
C

E[(Xk − xk)+11{X1>x1}]
x1F̄X1(x1)

≤ E[(Xk − xk)+]
x1F̄X1(x1)

= E[(Xk − xk)+]
xkF̄Xk(xk)

xiF̄Xk(xk)
x1F̄X1(x1)

,

and
E[(Xk − xk)+]
xiF̄Xk(xk)

xkF̄Xk(xk)
x1F̄X1(x1)

∼
α−→1

ck
θ − 1

(
xk
x1

)−θ+1
.
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Finally, we deduce that

−
∑

k∈J1
0∪J1

C
\J1
∞

lim
α−→1

xk
x1
≤ lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

lαXk,X1
(xk, x1)

x1F̄X1(x1)

≤ lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

lαXk,X1
(xk, x1)

x1F̄X1(x1)

≤
∑
k∈J1

C

(
ck
θ − 1

(
lim
α−→1

xk
x1

)−θ+1
− ` lim

α−→1

xk
x1

)
+

∑
k∈J1

0\J1
∞

(
1 + ck

θ − 1

)
.

This is contradictory with (2.4), and consequently J1
∞ is necessarily an empty set. The result follows. �

Proposition 2.3 (Extreme multivariate expectile). Assume that Assumption 1 is satisfied and X has a regularly
varying multivariate distribution in the sense of Definition 1.5. Consider the L1-expectiles eα(X) = (eiα(X))i=1,...,d.
Then any limit vector (η, β2, . . . , βd) of

(
1−α

F̄X1 (e1
α(X)) ,

e2
α(X)

e1
α(X) , . . . ,

edα(X)
e1
α(X)

)
satisfies the following equation system

(2.5) 1
θ − 1 − η

(βk)θ

ck
= −

d∑
i=1,i6=k

(∫ +∞

βi
βk

λikU

(
ci
ck
t−θ, 1

)
dt− η

βθ−1
k

ck
βi

)
,∀k ∈ {1, . . . , d}.

By solving the system (2.5), we may obtain an equivalent of the extreme multivariate expectile, using the marginal
quantiles: we will see below that this relation allows to get the asymptotic behavior of F̄Xk(ekα(X)), which gives a
link between quantiles and expectiles.

Proof. The optimality system (2.3) can be written in the following form

(2α− 1)E[(Xk − xk)+]
xkF̄Xk(xk)

− 1− α
F̄Xk(xk)

(
1− E[Xk]

xk

)
=

d∑
i=1,i6=k

(
(1− α)

E[(Xi − xi)−11{Xk<xk}]
xkF̄Xk(xk)

)

−
d∑

i=1,i6=k
α
E[(Xi − xi)+11{Xk>xk}]

xkF̄Xk(xk)
, ∀k ∈ {1, . . . , d}.

For all k ∈ {1, . . . , d}, we have (taking if necessary a subsequence)

lim
α−→1

(2α− 1)E[(Xk − xk)+]
xkF̄Xk(xk)

− 1− α
F̄Xk(xk)

(
1− E[Xk]

xk

)
= 1
θ − 1 − η

(βk)θ

ck
,

and for all i ∈ {1, . . . , d} \ {k}

lim
α−→1

(1− α)
E[(Xi − xi)−11{Xk<xk}]

xkF̄Xk(xk)
= lim
α−→1

1− α
F̄Xk(xk)

(
xi
xk

P(Xi < xi, Xk < xk)−
E[Xi11{Xi<xi,Xk<xk}]

xk

)
= η

βθk
ck

βi
βk

= η
βθ−1
k

ck
βi.

Moreover,
E[(Xi − xi)+11{Xk>xk}]

xkF̄Xk(xk)
= 1
xkF̄Xk(xk)

∫ +∞

xi

P(Xi > t,Xk > xk)dt

=
∫ +∞

xi
xk

P(Xi > txk, Xk > xk)
F̄Xk(xk)

dt

=

∫ +∞

xi
xk

P
(
F̄Xi(Xi) < F̄Xi(txk), F̄Xk(Xk) < F̄Xk(xk)

)
F̄Xk(xk)

dt.

Firstly, we remark that∣∣∣∣∣∣∣
∫ xi

xk

βi
βk

P
(
F̄Xi(Xi) < F̄Xi(txk), F̄Xk(Xk) < F̄Xk(xk)

)
F̄Xk(xk)

dt

∣∣∣∣∣∣∣ ≤
∣∣∣∣ xixk − βi

βk

∣∣∣∣ .
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Since the functions λikU are assumed to be continuous,

(2.6) lim
α−→1

P
(
F̄Xi(Xi) < F̄Xi(txk), F̄Xk(Xk) < F̄Xk(xk)

)
F̄Xk(xk)

= λikU

(
ci
ck
t−θ, 1

)
.

In order to show that

lim
α−→1

α
E[(Xi − xi)+11{Xk>xk}]

xkF̄Xk(xk)
=
∫ +∞

βi
βk

λikU

(
ci
ck
t−θ, 1

)
dt,

we may use the Lebesgue’s Dominated Convergence Theorem with Potter’s bounds (1942) (Lemma 1.4) for regularly
varying functions.
First of all,

P
(
F̄Xi(Xi) < F̄Xi(txk), F̄Xk(Xk) < F̄Xk(xk)

)
F̄Xk(xk)

≤ min
{

1, F̄Xi(txk)
F̄Xk(xk)

}
,

since F̄Xi (txk)
F̄Xk (xk) = F̄Xi (txk)

F̄Xk (txk)
F̄Xk (txk)
F̄Xk (xk) and lim

α−→1
F̄Xi (txk)
F̄Xk (txk) = ci

ck
, using Potter’s bounds, for all ε1 > 0 and 0 < ε2 < θ− 1,

there exists x0
k(ε2, ε1) such that for min{xk, txk} ≥ x0

k(ε2, ε1)

F̄Xi(txk)
F̄Xk(xk)

≤
(
ci
ck

+ 2ε1

)
t−θ max(tε2 , t−ε2).

Lebesgue’s theorem gives

lim
α−→1

∫ +∞

xi
xk

P
(
F̄Xi(Xi) < F̄Xi(txk), F̄Xk(Xk) < F̄Xk(xk)

)
F̄Xk(xk)

dt =
∫ +∞

βi
βk

λikU

(
ci
ck
t−θ, 1

)
dt,

so, for all (i 6= k) ∈ {1, . . . , d}2

lim
α−→1

E[(Xi − xi)+11{Xk>xk}]
xkF̄Xk(xk)

=
∫ +∞

βi
βk

λikU

(
ci
ck
t−θ, 1

)
dt.

Hence the system announced in this proposition. �

In the general case of Σ-expectiles, with Σ = (πij)i,j=1,...,d, πij ≥ 0, πii = πi > 0, System (2.5) becomes

1
θ − 1 − η

(βk)θ

ck
= −

d∑
i=1,i6=k

πik
πk

(∫ +∞

βi
βk

λikU

(
ci
ck
t−θ, 1

)
dt− η

βθ−1
k

ck
βi

)
,∀k ∈ {1, . . . , d}.

Moreover, let us remark that System (2.5) is equivalent to the following system

(2.7)
d∑
i=1

∫ +∞

βi
βk

λikU
(
cit
−θ, ckβ

−θ
k

)
dt =

d∑
i=1

∫ +∞

βi

λi1U
(
cit
−θ, 1

)
dt,∀k ∈ {2, . . . , d}.

The limit points βi are thus completely determined by the asymptotic bivariate dependencies between the marginal
components of the vector X.

Furthermore, using a substitution in System (2.5) and the positive homogeneity property of the bivariate tail
dependence functions λikU (see Proposition 2.2 in [17]), we obtain the following system

(2.8) 1
θ − 1 − η

(βk)θ

ck
= −

d∑
i=1,i6=k

 ci
ck

(
βi
βk

)−θ+1
∫ +∞

1

λikU

(
t−θ,

ck
ci

(
βk
βi

)−θ)
dt− η

βθ−1
k

ck
βi

 , ∀k ∈ {1, . . . , d}.

The main utility of writing the asymptotic optimality system in the form (2.8) is the possibility to give an explicit
form to (η, β2, . . . , βd) for some dependence structures. In order to illustrate that point, consider that the dependence
structure of X is given by an Archimedean copula with generator ψ. The survival copula is given by

C̄(x1, . . . , xd) = ψ(ψ↼(x1) + · · ·+ ψ↼(xd)),
8



where ψ↼(x) = inf{t ≥ 0|ψ(t) ≤ x} (see e.g. [24] for more details). Assume that, ψ is a regularly varying function
at +∞, with negative index: ψ ∈ RV−θψ (+∞). According to [7] (Theorem 3.1), the right tail dependence functions
exist, and one can get their explicit forms

λX(k)

U (x1, . . . , xk) =
(

k∑
i=1

x
− 1
θψ

i

)−θψ
.

Thus, the bivariate upper tail dependence functions are given by

λikU

(
t−θ,

ck
ci

(
βk
βi

)−θ)
=
(
t
θ
θψ +

(
ci
ck

) 1
θψ
(
βk
βi

) θ
θψ

)−θψ
.

In particular, if θ = θψ, we have∫ +∞

1

λikU

(
t−θ,

ck
ci

(
βk
βi

)−θ)
dt = 1

θ − 1

(
1 +

(
ci
ck

) 1
θ βk
βi

)−θ+1

,

and System (2.8) becomes

1
θ − 1 − η

(βk)θ

ck
= −

d∑
i=1,i6=k

 1
θ − 1

ci
ck

(
βi
βk

+
(
ci
ck

) 1
θ

)−θ+1

− η
βθ−1
k

ck
βi

 .

Lemma 2.4 (The comonotonic Fréchet case). Under Assumption 1, consider the L1-expectiles eα(X) = (eiα(X))i=1,...,d.
If X = (X1, . . . , Xd) is a comonotonic random vector, then the limit

(η, β2, . . . , βd) = lim
α−→1

(
1− α

F̄X1(e1
α(X))

,
e2
α(X)

e1
α(X) , . . . ,

edα(X)
e1
α(X)

)
,

satisfies

lim
α−→1

1− α
F̄Xk(ekα(X))

= 1
θ − 1 and βk = c

1/θ
k , ∀k ∈ {1, . . . , d}.

The proof is given in Appendix A.3

Lemma 2.5 (Asymptotic independence case). Under Assumption 1, consider the L1-expectiles eα(X) = (eiα(X))i=1,...,d.
If X = (X1, . . . , Xd) is such that the pairs (Xi, Xj) are asymptotically independent, then the limit vector (η, β2, . . . , βd)
of
(

1−α
F̄X1 (e1

α(X)) ,
e2
α(X)

e1
α(X) , . . . ,

edα(X)
e1
α(X)

)
satisfies

η = 1

(θ − 1)

1 +
d∑
j=2

c
1
θ−1
j

 and βk = c
1
θ−1
k ,

for all k ∈ {1, . . . , d}.

Proof. The hypothesis of asymptotic bivariate independence means:

lim
α−→1

P(Xi > xi, Xj > xj)
P(Xj > xj)

= lim
α−→1

P(Xi > txj , Xj > xj)
P(Xj > xj)

= 0,

for all (i, j) ∈ {1, . . . , d}2 and for all t > 0, then, Lebesgue’s Theorem used as in Proposition 2.3 gives

lim
α−→1

E[(Xi − xi)+11{Xj>xj}]
xjF̄Xj(xj)

= lim
α−→1

∫ +∞

xi
xj

P(Xi > txj , Xj > xj)
P(Xj > xj)

dt

= 0.

The extreme multivariate expectile verifies the following equation system

1
θ − 1 −

η

ck
βθk = +

d∑
i=1,i6=k

η

ck
βθ−1
k βi, ∀k ∈ {1, . . . , d},

9



which can be rewritten as

(2.9) ck

η(θ − 1)βθ−1
k

=
d∑
i=1

βi, ∀k ∈ {1, . . . , d},

hence βk = c
1
θ−1
k for all k ∈ {1, . . . , d}, and

η = 1

(θ − 1)

1 +
d∑
j=2

c
1
θ−1
j

 .

�

In the general case of a matrix of positive coefficients πij , i, j ∈ {1, . . . , d}, the limits βi, i = 2, . . . , d remain the
same, but the limit η will change:

lim
α−→1

ekα(X)
e1
α(X) = c

1
θ−1
k and lim

α−→1

1− α
F̄Xk(ekα(X))

=
c

1
θ−1
k

(θ − 1)

1 +
d∑
j=2

πjk
πk

c
1
θ−1
j

 ,

for all k ∈ {1, . . . , d}.
We remark that

lim
α−→1

1− α
F̄Xi(xi)

≤ c
1
θ−1
i

θ − 1 ,

which allows a comparison between the marginal quantile and the corresponding component of the multivariate
expectile, and since F−1

Xk
(1−·) is a regularly varying function at 0 for all k ∈ {1, . . . , d} with index − 1

θ (see Theorem
1.5.12 in [6]), we get

ekα(X) ∼
α−→1

VaRα(Xk) (θ − 1)−
1
θ


1 +

d∑
i=2

c
1
θ−1
i

c
1
θ−1
k


− 1
θ

,

where VaRα(Xk) denotes the Value at Risk of Xk at level α, i.e. the α-quantile F←Xk(α) of Xk. These conclusions
coincide with the results obtained in dimension 1, for distributions that belong to the Fréchet domain of attraction,
in [5]. The values of constants ci determine the position of the marginal quantile compared to the corresponding
component of the multivariate expectile for each risk.

3. Fréchet model with a dominant tail

This section is devoted to the case where X1 has a dominant tail with respect to the Xi’s.

Assumption 2 (Dominant tail). We assume that both (i) and (ii) below are satisfied
(i) F̄X1 ∈ RV−θ(+∞), with θ > 0.
(ii) The tail of X1 is dominant, i.e.

lim
x↑+∞

F̄Xi(x)
F̄X1(x)

= 0, ∀i ∈ {2, . . . , d} .

Proposition 3.1 (Dominant expectile component). Under Assumption 2, consider the L1-expectiles eα(X) =
(eiα(X))i=1,...,d. Then

(i)

βi = lim
α↑1

eiα(X)
e1
α(X) = 0, ∀i ∈ {2, . . . , d}

(ii)
lim
α↑1

1− α
F̄X1(e1

α(X))
= 1
θ − 1 and lim

α↑1

1− α
F̄Xi(eiα(X))

= 0, ∀i ∈ {2, . . . , d}

The proof of Proposition 3.1 follows from the following lemma.
10



Lemma 3.2. Under Assumption 2, consider the L1-expectiles eα(X) = (eiα(X))i=1,...,d. Then
(1)

lim
α↑1

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= 0, ∀ i ∈ {2, . . . , d},

(2) and

0 < lim
α↑1

1− α
F̄X1(x1)

≤ lim
α↑1

1− α
F̄X1(x1)

< +∞.

The proofs of (1) and (2) of Lemma 3.2 are given in Appendix A.4 and A.5 respectively.
Now, we have all necessary tools to prove Proposition 3.1.

Proof of Proposition 3.1. From Lemma 3.2, and taking if necessary a subsequence (αn)n∈N αn −→ 1, we suppose
that 1−α

F̄X1 (x1) is converging to a limit denoted 0 < η < +∞ and that the limits lim
α→1

xi
x1

= βi exist for all i = 1, . . . , d.

Going through the limit (α→ 1) in the 1st equation of System (0.1) divided by x1F̄X1(x1), leads using Lemma 3.2
to

(3.1) lim
α↑1

(
1− α
F̄X1(x1)

∑
i∈JC∪J∞

xi
x1

)
= lim

α↑1

(
η

∑
i∈JC∪J∞

xi
x1

)
= 1
θ − 1 − η,

we deduce that J∞ = ∅.
We suppose that JC 6= ∅, so there exists at least one i ∈ {2, . . . , d} such that i ∈ JC , and for all j ∈ {1, . . . , d}\{i},
we have

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= 0.

Indeed, if j ∈ JC\{i}

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= lim
α↑1

∫ +∞

βj

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt,

because
P(Xj > txj , Xi > xi)

P(X1 > x1) = P(Xj > txj |Xi > xi)
P(Xi > xi)
P(X1 > x1) ,

and lim
α↑1

P(Xi>xi)
P(X1>x1) = lim

α↑1
P(Xi>xi)
P(X1>xi)

P(X1>xi)
P(X1>x1) = lim

α↑1
P(Xi>xi)
P(X1>xi)

(
xi
x1

)−θ
= 0.

Furthermore, since
P(Xj > tx1, Xi > xi)

P(X1 > x1) ≤ min
(
P(Xj > tx1)
P(X1 > x1) ,

P(Xi > xi)
P(X1 > x1)

)
,

and using Potter’s Bounds associated to F̄X1 as regularly varying function in order to apply the dominated conver-
gence Theorem, we get

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

=
∫ +∞

βj

lim
α↑1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt = 0, ∀j ∈ JC\{i}.

Now, if j ∈ J0 then

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

=
∫ x1

xj

P(Xj > t,Xi > xi)
x1P(X1 > x1) dt+

∫ +∞

1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt

≤
(

1− xj
x1

)
P(Xi > xi)
P(X1 > x1) +

∫ +∞

1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt,

thus

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= 0, ∀j ∈ J0,
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because lim
α↑1

P(Xi>xi)
P(X1>x1) = 0 and lim

α↑1

∫ +∞

1

P(Xj>tx1,Xi>xi)
P(X1>x1) dt = 0.

Going through the limit (α→ 1) in the ith equation of System (0.1) divided by x1F̄X1(x1), leads to

−ηβi = η(1 +
∑

j∈JC\{i}

βj),

which is absurd, and consequently JC = ∅.
We have thus proved that J0 = {2, . . . , d} which means

lim
α↑1

eiα(X)
e1
α(X) = βi = 0, ∀i ∈ {2, . . . , d}.

And from Equation (3.1) we deduce also that

η = lim
α↑1

1− α
F̄X1(e1

α(X))
= 1
θ − 1 ,

and by Lemma 2.2 that
lim
α↑1

1− α
F̄Xk(eiα(X))

= 0, ∀i ∈ {2, . . . , d}.

�

Proposition 3.1 shows that the dominant risk behaves asymptotically as in the univariate case, and its component
in the extreme multivariate expectile satisfies

e1
α(X) α↑1∼ (θ − 1)− 1

θVaRα(X1) α↑1∼ eα(X1),
the right equivalence is proved, in the univariate case, in [5], Proposition 2.3.
As an illustration, consider Pareto distributions, Xi ∼ Pa(ai, b), i = 1, . . . , d, such that ai > a1 > 0 for all
i ∈ {1, . . . , d}, and b > 0. The survival function of Xi is F̄Xi(x) = (b/x)a, x ≥ b, where b is the scale parameter,
which is the minimum possible value of Xi, and ai is the shape parameter of Xi, known as the tail index. For all
i ∈ {2, . . . , d}, the tail of X1 dominates the tail of each Xi and Proposition 3.1 applies.

4. Estimation of the extreme expectiles

In this section, we propose some estimators of the extreme multivariate expectile. We focus on the Assumption 1
of equivalent tails, and more specifically on the cases of asymptotic independence and comonotonicity, for which the
equation system is more tractable. We begin with the main ideas of our approach, then, we construct the estimators
using the extreme values statistical tools and prove its consistency. We terminate this section with a simulation
study.

Proposition 4.1 (Estimation’s idea). Using notations of previous sections, consider the L1-expectiles eα(X) =
(eiα(X))i=1,...,d. Under Assumption 1 and the assumption that the vector

(
1−α

F̄X1 (e1
α(X)) ,

e2
α(X)

e1
α(X) , . . . ,

edα(X)
e1
α(X)

)
has a

unique limit point (η, β2, . . . , βd),

eα(X) ∼
α−→1

VaRα(X1)η 1
θ (1, β2, . . . , βd)T .

Proof. Let (η, β2, . . . , βd) = limα→1

(
1−α

F̄X1 (e1
α(X)) ,

e2
α(X)

e1
α(X) , . . . ,

edα(X)
e1
α(X)

)
, we have

eα(X) ∼
α−→1

e1
α(X)(1, β2, . . . , βd)T .

Moreover, lim
α−→1

1−α
F̄X1 (e1

α(X)) = η, and Theorem 1.5.12 in [6] states that F←X1
(1 − .) is regularly varying at 0, with

index − 1
θ . This leads to

e1
α(X) ∼

α−→1
F←X1

(α)
(

1
η

)− 1
θ

,

and the result follows. �

Proposition 4.1 gives a way to estimate the extreme multivariate expectile. Let X = (X1, . . . , Xd)T be an
independent sample of size n, with Xi = (X1,i, . . . , Xd,i)T for all i ∈ {1, . . . , n}. We denote by Xi,1,n ≤ Xi,2,n ≤
· · · ≤ Xi,n,n the ordered sample corresponding to Xi.
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4.1. Estimator’s construction. We begin with the case of asymptotic independence. Proposition 4.1 and Lemma 2.5
are the key tools in the construction of the estimator. We have for all i ∈ {1, . . . , d}

βi = c
1
θ−1
i , and lim

α−→1

1− α
F̄Xi(eiα(X))

= c
1
θ−1
i

(θ − 1)

1 +
d∑
j=2

c
1
θ−1
j

 .

Proposition 4.1 gives

eα(X)T α↑1∼ VaRα(X1) (θ − 1)−
1
θ

(
1 +

d∑
i=2

c
1
θ−1
i

)− 1
θ (

1, c
1
θ−1
2 , . . . , c

1
θ−1
d

)T
.

So, in order to estimate the extreme multivariate expectile, we need an estimator of the univariate quantile of X1,
of the tail equivalence parameters. and of θ.
In the same way, and for the case of comonotonic risks, we may use Lemma 2.4

lim
α−→1

1− α
F̄Xi(eiα(X))

= 1
θ − 1 and βi = c

1/θ
i , ∀i ∈ {1, . . . , d},

and by Proposition 4.1 we obtain

eα(X)T α↑1∼ VaRα(X1) (θ − 1)−
1
θ (1, c

1
θ
2 , . . . , c

1
θ

d )T .

The Xi’s have all the same index θ of regular variation, which is also the same as the index of regular variation
of ‖X‖. We propose to estimate θ by using the Hill estimator γ̂. We shall denote θ̂ = 1

γ̂
. See [16] for details on

the Hill estimator. In order to estimate the ci’s, we shall use the GPD approximation: for u a large threshold, and
x ≥ u,

F̄ (x) ' F̄ (u)
(x
u

)−θ
.

Let k ∈ N be fixed and consider the thresholds ui:

F̄Xi(ui) = F̄X1(u1) = k

n
, ∀i ∈ {1, . . . , d}.

The ui are estimated by Xi,n−k+1,n with k →∞ and k/n→ 0 as n→∞. Using Lemma 2.2, we get

ci = lim
n→∞

(
ui
u1

)θ
.

We shall consider

(4.1) ĉi =
(
Xi,n−k+1,n

X1,n−k+1,n

) 1
γ̂(k)

,

where γ̂(k) is the Hill estimator of the extreme values index constructed using the k largest observations of ‖X‖.
Let θ̂ = 1

γ̂(k)
.

Proposition 4.2. Let k = k(n) be such that k → ∞ and k/n −→ 0 as n → ∞. Under Assumption 1, for any
i = 2, . . . , d,

ĉi
P−→ ci.

Proof. The results in [3] page 86 imply that for any i = 1, . . . , d
Xi,n−k+1,n

ui

P−→ 1.

Moreover, it is well known (see [16]) that the Hill estimator is consistent. Using (4.1), and the fact that
Xi,n−k+1,n

X1,n−k+1,n
∼ ui
u1

in probability and thus is bounded in probability,

we get the result. �
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To estimate the extreme quantile, we will use Weissman’s estimator (1978) [29]:

V̂aRα(X1) = X1,n−k(n)+1,n

(
k(n)

(1− α)n

)γ̂
.

The properties of Weissman’s estimator are presented in Embrechts et al. (1997) [12] and also in [3] page 119.
In order to prove the consistency of our estimators of extreme multivariate expectiles, we shall need the following
second order condition (see [3] Section 4.4).
Definition 4.3. A random variable X satisfying F̄X ∈ RV−θ(+∞) with θ = 1

γ > 0 will be said to verify the second
order condition SOC−β(b) with β > 0 and b ∈ RV−β(+∞) if the function U : y → F←X (1− 1

y ) satisfies for u > 0:

U(ux)
U(x) = uγ (1 + h−β(u)b(x) + o(b(x))) , as x goes to infinity.

where h−β(u) = 1−u−β
β .

Now, we can deduce some estimators of the extreme multivariate expectile, using the previous ones, in the cases
of asymptotic independence and perfect dependence.
Definition 4.4 (Multivariate expectile estimator, Asymptotic independence). Under Assumption 1, in the case
of bivariate asymptotic independence of the random vector X = (X1, . . . , Xd)T , we define the estimator of the
L1-expectile as follows

ê⊥α (X) = X1,n−k(n)+1,n

(
k(n)

(1− α)n

)γ̂ (
γ̂

1− γ̂

)γ̂ ( 1
1 +

∑d
`=2 ĉ`

γ̂
1−γ̂

)γ̂ (
1, ĉ

γ̂
1−γ̂
2 , . . . , ĉ

γ̂
1−γ̂
d

)T

= V̂aRα(X1)
(

γ̂

1− γ̂

)γ̂ ( 1
1 +

∑d
`=2 ĉ`

γ̂
1−γ̂

)γ̂ (
1, ĉ

γ̂
1−γ̂
2 , . . . , ĉ

γ̂
1−γ̂
d

)T
.

Definition 4.5 (Multivariate expectile estimator, comonotonic risks). Under the assumptions of the Fréchet model
with equivalent tails, for a comonotonic random vector X = (X1, . . . , Xd)T , we define the estimator of L1-expectile
as follows

ê+
α (X) = X1,n−k(n)+1,n

(
k(n)

(1− α)n

)γ̂ (
γ̂

1− γ̂

)γ̂ (
1, ĉγ̂2 , . . . , ĉ

γ̂
d

)T
= V̂aRα(X1)

(
γ̂

1− γ̂

)γ̂ (
1, ĉγ̂2 , . . . , ĉ

γ̂
d

)T
.

We prove below that if the second order condition SOC−β(b) is satisfied, then the term by term ratio ê⊥α (X)/eα(X)
goes to 1 in probability in the asymptotically independent case and ê+

α (X)/eα(X) goes to 1 in probability in the
comonotonic case. More work is required to get the asymptotic normality.
Theorem 4.6. Under Assumption 1, assume that furthermore X1 satisfies SOC−β(b) condition. Choose k = k(n)
and α = α(n) such that

(i) k(n)→∞, k(n)/n→ 0 and α(n)→ 1, n(1− α(n))→ c > 0 as n→∞,

(ii)
√
k(n)

(
1 + log2 k(n)

n(1−α(n))

)− 1
2 →∞ as n→∞.

Then, if each pair of the random vector X is asymptotically independent,
ê⊥α (X)/eα(X) −→ 1 in probability, as n→∞.

If the random vector X is comonotonic, then
ê+
α (X)/eα(X) −→ 1 in probability, as n→∞.

Proof. Following [3] p. 120, we use the SOC−β(b) hypothesis and Asumption (i). We write k for k(n) and α for
α(n) and we get:

√
k

(
1 + log2 k

n(1− α)

)− 1
2
(
V̂aRα(X1)
VaRα(X1) − 1

)
L−→ N (0, γ2) as n→∞.

Now, the choice (ii) of k(n), leads to

V̂aRα(X1)
VaRα(X1) −→ 1 in probability as n→∞.

14



Then the announced results follow from Proposition 4.2 and Lemma 2.5. �

4.2. Numerical illustration. The Fréchet domain of attraction contains the usual distributions of Pareto, Stu-
dent, Burr and Cauchy. In order to illustrate the convergence of the proposed estimators, we study numerically,
the cases of Pareto, Burr and Student distributions.

In the independence case which is a special case of asymptotic independence, the functions lαXi,Xj defined in (2.2)
have the following expression

lαXi,Xj (xi, xj) = α
(
F̄Xj (xj)E

[
(Xi − xi)+

])
− (1− α)

(
FXj (xj)E

[
(Xi − xi)−

])
.

In the comonotonic case we have

lαXi,Xj (xi, xj) = α
(
F̄Xj (xj)(µi,j − xi)+ + E

[
(Xi −max(xi, µi,j))+

])
− (1− α)

(
FXj (xj)(xi − µi,j)+ + E

[
(Xi −min(xi, µi,j))−

])
,

where µi,j = F←−Xi (FXj (xj)).
From these expressions, the exact value of the extreme multivariate expectile is obtained using numerical optimiza-
tion, and we can confront it to the estimated values. The choice of k(n) is function of the distributions parameters,
and it is done in our simulations using graphical illustrations. We present the estimators for different values of k(n)
that belong to the common convergence range of the estimators of tail equivalence coefficients, in order to verify
the stability of the expectile estimator’s convergence.

4.2.1. Pareto distributions. We consider a bivariate Pareto model Xi ∼ Pa(a, bi), i ∈ {1, 2}. Both distributions
have the same shape parameter a, so they have equivalent tails with equivalence parameter

c2 = lim
x→+∞

F̄X2(x)
F̄X1(x)

= lim
x→+∞

(
b2
x

)a(
b1
x

)a =
(
b2
b1

)a
.

In what follows, we consider two models for which the exact values of the L1-expectiles are computable. In the
first model, the Xi’s are independent. In the second one, the Xi’s are comonotonic and Pareto distributed. In
that case, µi,j = bi

bj
xj . In the simulations below, we have taken the same k = k(n) to get γ̂ and êα(X). For

Xi ∼ Pa(2, 5 · (i+ 1))i=1,2, and n = 100, 000, Figure 1 illustrates the convergence of estimator ĉ2. On the left, the
shaded area indicates suitable values of k(n) for n = 100, 000. The boxplots are obtained for different values of n
and a fixed k ∈ k(n).

Figure 1. Convergence of ĉ2. Xi ∼ Pa(2, 5 · (i+ 1))i=1,2.
15



Figure 2 presents the obtained results for different k(n) values in the independence case where n = 100, 000. A
multivariate illustration in dimension 4 is given in Figure 3. The comonotonic case is illustrated in Figure 4. The
simulations parameters are a = 2, b1 = 10 and b2 = 15.

Figure 2. Convergence of ê⊥α (X) (asymptotic independence case). On the left, the first coordinate
of eα(X) and ê⊥α (X) for various values of k = k(n) are plotted. The right figure concerns the
second coordinate.

16



Figure 3. Convergence of ê⊥α (X) (asymptotic independence case). The coordinates of eα(X) and
ê⊥α (X) in dimension d = 4, n = 100, 000 and k(n) = 100.
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Figure 4. Convergence of ê+
α (X) (comonotonic case). On the left, the first coordinate of eα(X)

and ê⊥α (X) for various values of k = k(n) are plotted. The right figure concerns the second
coordinate.

4.2.2. Burr distributions. We consider a multivariate Burr model Xi ∼ Burr(a, bi, τ), i ∈ {1, . . . , d}. In this case,
the tails are equivalents with equivalence parameter

ci = lim
x→+∞

F̄Xi(x)
F̄X1(x)

= lim
x→+∞

(
bi

bi+xτ

)a
(

b1
b1+xτ

)a =
(
bi
b1

)a
,∀i ∈ {2, . . . , d},

and F̄Xi ∈ RVaτ (+∞) for all i in {1, . . . , d}. In the Burr comonotonic case µi,j =
(
bi
bj

) 1
τ

xj . The model is
asymptotically equivalent to the Pareto one, but the margins are different, which helps to test the pertinence of the
estimation processes compared to the theoretical results. Figures 5 and 6 present the obtained results for different
k(n) values in the independence and the comonotonic cases respectively. The simulations parameters are a = 4,
b1 = 10, b2 = 15, τ = 0.75 and n = 10, 000.

18



Figure 5. Convergence of ê⊥α (X) (asymptotic independence case). On the left, the first coordinate
of eα(X) and ê⊥α (X) for various values of k = k(n) are plotted. The right figure concerns the
second coordinate.

Figure 6. Convergence of ê+
α (X) (comonotonic case). On the left, the first coordinate of eα(X)

and ê⊥α (X) for various values of k = k(n) are plotted. The right figure concerns the second
coordinate.

4.2.3. Student distributions. In order to illustrate the convergence of the two estimators for other distributions
nature, we close this subsection by a Student model. We consider a risk vector (X1, . . . , Xd) such that Xi = aiTi
for all i ∈ {1, . . . , d} and (Ti)i are identically distributed following a t-distribution with z degrees of freedom. Each
Ti has density fTi(t) = 1√

zπ
Γ((z+1)/2)

Γ(z/2)
(
1 + t2/z

)−(z+1)/2, where Γ is the Euler Gamma function. (ai)i=1,...,d are
positive constants. Using L’HÃťpital’s rule, the tails are equivalent since

lim
x→+∞

F̄Xi(x)
F̄X1(x)

= lim
x→+∞

F̄T1(x/ai)
F̄X1(x)

= lim
x→+∞

a1fT1(x/ai)
aifT1(x/a1) =

(
ai
a1

)z
= ci,∀i ∈ {2, . . . , d}.
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The marginal tails are all RV−(z+1)(+∞). For the Student comonotonic model µi,j = ai
aj
xj .

For the numerical illustration the parameters are ai = 2i−1 for i = 1, . . . , d and z = 2. In the case of the independence
(Ti)i are supposed independent, and they are comonotonic in the comonotonic case.
Figures 7 and 8 present an illustration of the obtained results in the two cases.

Figure 7. Convergence of ê⊥α (X) (asymptotic independence case). On the left, the first coordinate
of eα(X) and ê⊥α (X) for various values of k = k(n) are plotted. The right figure concerns the
second coordinate.

Figure 8. Convergence of ê+
α (X) (comonotonic case). On the left, the first coordinate of eα(X)

and ê⊥α (X) for various values of k = k(n) are plotted. The right figure concerns the second
coordinate.

For the three Fréchet models, Pareto, Burr, and Student, the different illustrations show that the convergence
is better for values of α close to 1. This is natural since we are approaching the extreme level and therefore the
estimate value converges towards the theoretical value. The convergence seems to be stable for values of k(n) in the
convergence zone. When α moves away from 1, the difference with the theoretical value is apparently a function of
the marginal risk level represented by the coefficients of tails’ equivalence ci.
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Conclusion

We have studied properties of extreme multivariate expectiles in a regular variations framework. We have seen
that the asymptotic behavior of expectile vectors strongly depends on the marginal tail behavior and on the nature
of the asymptotic dependence. The main conclusion of our analysis is that the equivalence of marginal tails leads
to the equivalence of extreme expectile components.

A statistical estimation of the integrals of the tail dependence functions would allow estimators of the extreme
expectile vectors to be constructed. This paper’s estimations are limited to the asymptotic independence and
comonotonicity cases, which do not require estimation of the tail dependence functions.

The asymptotic normality of the estimators proposed in the last section of this paper would require a careful
technical analysis which is not considered in this paper.

A natural follow-up to this work would be to study the asymptotic behavior of Σ-expectiles in the case of
marginal distributions with equivalent tails in the Weibull and Gumbel domains of attraction. The Fréchet domain
we have considered here contains heavy-tailed distributions, which is interesting for modeling large risks. The
Gumbel’s domain contains many other distributions (Exponential, Weibull, Gamma, Normal, Lognormal, etc.), so
that extensions to this family would be of practical importance.
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Appendix A. Proofs

A.1. Lemma 2.2.

Proof. We give some details on the proof for the first item, the second one may be obtained in the same way.
Under Assumption 1, for all i ∈ {1, . . . , d}

F̄Xi ∈ RV−θ(+∞),
there exists for all i a positive measurable function Li ∈ RV0(+∞) such that

F̄Xi(x) = x−θLi(x),∀x > 0,
then for all (i, j) ∈ {1, . . . , d}2 and all t, s > 0

(A.1) sF̄Xi(s)
tF̄Xj (t)

=
(s
t

)−θ+1 Li(s)
Lj(t)

=
(s
t

)−θ+1 Li(s)
Li(t)

Li(t)
Lj(t)

,

and under H2

(A.2) lim
x↑+∞

Li(x)
Lj(x) = ci

cj
.

Using Karamata’s representation for slowly varying functions (Theorem 1.2), there exist a constant c > 0, a positive
measurable function c(·) with lim

x↑+∞
c(x) = c > 0, such that ∀ε > 0, ∃ t0 such that ∀ t > t0

Li(s)
Li(t)

≤
(s
t

)ε c(s)
c(t) .

Taking 0 < ε < θ − 1, we conclude

lim
t↑+∞

sF̄Xi(s)
tF̄Xj (t)

= 0, ∀(i, j) ∈ {1, . . . , d}2.

�

A.2. Proposition 2.1 (ii).

Proof. We start by proving that
lim
α−→1

1− α
F̄Xi(eiα(X))

< +∞,∀i ∈ {2, . . . , d}.

Using H2, it is sufficient to show that
lim
α−→1

1− α
F̄X1(e1

α(X))
< +∞.

Assume that lim
α−→1

1−α
F̄X1 (e1

α(X)) = +∞, we shall prove that, in that case, (2.3) cannot be satisfied. Taking if necessary
a subsequence (αn → 1), we may assume that lim

α−→1
1−α

F̄X1 (e1
α(X)) = +∞.

We have
lαX1

(x1)
(1− α)x1

=
(
αE[(X1 − x1)+]− (1− α)E[(X1 − x1)−]

(1− α)x1

)
=
(

(2α− 1)E[(X1 − x1)+]
(1− α)x1

− (1− α)(x1 − E[X1])
(1− α)x1

)
=
(

(2α− 1)E[(X1 − x1)+]
x1F̄X1(x1)

F̄X1(x1)
1− α − 1 + E[X1]

x1

)
α↑1−→ −1 recall (2.1) .

Furthermore, for all i ∈ {2, . . . , d}
lαXi,X1

(xi, x1)
(1− α)x1

=
(
αE[(Xi − xi)+11{X1>x1}]− (1− α)E[(Xi − xi)−11{X1<x1}]

(1− α)x1

)
=
(
αE[(Xi − xi)+11{X1>x1}]

(1− α)x1
−

E[(Xi − xi)+11{X1<x1}]
x1

− xiP(X1 < x1)
x1

+
E[Xi11{X1<x1}]

x1

)
.

On one side,
E[(Xi − xi)+11{X1>x1}]

(1− α)x1
≤ E[(Xi − xi)+]

(1− α)x1
= F̄X1(x1)

1− α
E[(Xi − xi)+]
xiF̄Xi(xi)

xiF̄Xi(xi)
x1F̄X1(x1)

,∀i ∈ {2, . . . , d}.
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So that, Lemma 2.2 implies

(A.3) lim
α−→1

E[(Xi − xi)+11{X1>x1}]
(1− α)x1

= 0,∀k ∈ J1
C ∪ J1

∞.

Let i ∈ J1
0 , taking if necessary a subsequence, we may assume that xi

x1
→ 0.

(A.4)
E[(Xi − xi)+11{X1>x1}]

(1− α)x1
=

∫ x1

xi

P (Xi > t,X1 > x1) dt

(1− α)x1
+

∫ +∞

x1

P (Xi > t,X1 > x1) dt

(1− α)x1
.

Now, ∫ x1

xi

P (Xi > t,X1 > x1) dt

(1− α)x1
≤

∫ x1

xi

P (X1 > x1) dt

(1− α)x1
= F̄X1(x1)

1− α

(
1− xi

x1

)
.

Thus,

(A.5) lim
α−→1

∫ x1

xi

P (Xi > t,X1 > x1) dt

(1− α)x1
= 0.

Consider the second term of (A.4)∫ +∞

x1

P (Xi > t,X1 > x1) dt

(1− α)x1
≤

∫ +∞

x1

P (Xi > t) dt

(1− α)x1
,

Karamata’s Theorem (Theorem 1.3) gives∫ +∞

x1

P (Xk > t) dt

(1− α)x1

α↑1∼ 1
θ − 1

F̄Xk(x1)
1− α ,

which leads to

(A.6) lim
α−→1

∫ +∞

x1

P (Xi > t,X1 > x1) dt

(1− α)x1
= 0.

Finally, we get

(A.7) lim
α−→1

E[(Xi − xi)+11{X1>x1}]
(1− α)x1

= 0,∀i ∈ J1
0 .

We have shown that

lim
α−→1

E[(Xk − xk)+11{X1>x1}]
(1− α)x1

= 0,∀k ∈ {2, . . . , d},

so, the first equation of optimality system (2.3) implies that

− lim
α→1

 ∑
k∈J1

0\J1
∞

lαXk,X1
(xk, x1)

(1− α)x1
+
∑
k∈J1

C

lαXk,X1
(xk, x1)

(1− α)x1
+
∑
k∈J1

∞

lαXk,X1
(xk, x1)

(1− α)x1

 = lim
α−→1

d∑
k=2

xk
x1

= −1,

this is absurd since the xk’s are non negative, and consequently

lim
α−→1

1− α
F̄X1(x1)

< +∞.

Now, we prove that the components of the extreme multivariate expectile satisfy also

0 < lim
α−→1

1− α
F̄Xi(eiα(X))

,∀i ∈ {2, . . . , d}.

Using H2, it is sufficient to show that

0 < lim
α−→1

1− α
F̄X1(e1

α(X))
.
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Let us assume that lim
α−→1

1−α
F̄X1 (e1

α(X)) = 0, we shall see that in that case, (2.3) cannot be satisfied. Taking if necessary

a convergent subsequence, we may assume that lim
α−→1

1−α
F̄X1 (e1

α(X)) = 0. In this case,

lαX1
(x1)

x1F̄X1(x1)
=
(

(2α− 1)E[(X1 − x1)+]
x1F̄X1(x1)

− 1− α
F̄1(x1)

(1− E[X1]
x1

)
)

α↑1−→ 1
θ − 1 > 0.

On another side, let i ∈ J1
∞, taking if necessary a subsequence, we may assume that x1 = o(xi). Lemma 2.2 and

Proposition 2.1 (ii) give:
1− α
F̄1(x1)

xi
x1

= 1− α
FXi(xi)

· xiFXi(xi)
x1FX1(x1)

−→ 0 as α→ 1.

Moreover,
E[(Xi − xi)+11{X1>x1}]

x1F̄X1(x1)
≤ E[(Xi − xi)+]

x1F̄X1(x1)
= E[(Xi − xi)+]

xiF̄Xi(xi)
xiF̄Xi(xi)
x1F̄X1(x1)

,

We deduce
lαXi,X1

(xi, x1)
x1F̄X1(x1)

=
(
αE[(Xi − xi)+11{X1>x1}]− (1− α)E[(Xi − xi)−11{X1<x1}]

x1F̄X1(x1)

)
−→ 0, ∀i ∈ J1

∞.

Going through the limit (α −→ 1) in the first equation of the optimality system (2.3) divided by x1F̄X1(x1),
leads to

lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

lαXk,X1
(xk, x1)

x1F̄X1(x1)
= − 1

θ − 1 ,

which is absurd because

lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

lαXk,X1
(xk, x1)

x1F̄X1(x1)
= lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

(
αE[(Xk − xk)+11{X1>x1}]− (1− α)E[(Xk − xk)−11{X1<x1}]

x1F̄X1(x1)

)

= lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

(E[(Xk − xk)+11{X1>x1}]
x1F̄X1(x1)

− 1− α
F̄X1(x1)

xk
x1

)

= lim
α−→1

∑
k∈J1

0∪J1
C
\J1
∞

(E[(Xk − xk)+11{X1>x1}]
x1F̄X1(x1)

)
≥ 0.

We can finally conclude that
lim
α−→1

1− α
F̄X1(x1)

> 0.

�

A.3. Lemma 2.4.

Proof. Since the random vector X is comonotonic, its survival copula is
CX(u1, . . . , ud) = min(u1, . . . , ud), ∀(u1, . . . , ud) ∈ [0, 1]d.

We deduce the expression of the functions λijU
λijU (xi, xj) = min(xi, xj), ∀(xi, xj) ∈ R2

+,∀i, j ∈ {1, . . . , d}.
So, ∫ +∞

1
λikU

(
t−θ,

ck
ci

(βk
βi

)−θ
)
dt =

∫ +∞

1

min
(
t−θ,

ck
ci

(
βk
βi

)−θ)
dt

=
(
βk
βi

(
ck
ci

)− 1
θ

− 1
)

+

ck
ci

(
βk
βi

)−θ

+ 1
θ − 1

(
1 +

(
βk
βi

(
ck
ci

)− 1
θ

− 1
)

+

)−θ+1

.
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Under Assumption 1, and by Proposition 2.3, let (η, β2, . . . , βd) be a solution of the following equation system.

η

d∑
i=1

βi −
1

θ − 1

d∑
i=1

ciβ
−θ+1
i =

d∑
i=1,i6=k

ckβ
−θ
k βi

(
βk
βi

(
ck
ci

)− 1
θ

− 1
)

+

+ 1
θ − 1

d∑
i=1,i6=k

ciβ
−θ+1
i

(1 +
(
βk
βi

(
ck
ci

)− 1
θ

− 1
)

+

)−θ+1

− 1

 ,
∀k ∈ {1, . . . , d}. η = 1

θ−1 and βk = c
1
θ

k is the only solution to this system. �

A.4. Lemma 3.2 (1).

Proof. Taking if necessary a convergent subsequence (αn)n∈N αn −→ 1, we consider that the limits lim
α→1

xi
x1

= βi

exist.
Using the notation JC = {i ∈ {2, . . . , d}|0 < βi < +∞}, for all i ∈ JC

lim
α↑1

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= lim
α↑1

∫ +∞

βi

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt,

because
P(Xi > tx1, X1 > x1)

P(X1 > x1) = P(Xi > tx1|X1 > x1) ≤ 1.

On another hand,
P(Xi > tx1, X1 > x1)

P(X1 > x1) ≤ min{1, P(Xi > tx1)
P(X1 > x1) },

and
P(Xi > tx1)
P(X1 > x1) = F̄Xi(tx1)

F̄X1(tx1)
F̄X1(tx1)
F̄X1(x1)

,

then, using lim
α↑1

F̄Xi (tx1)
F̄X1 (tx1) = 0 and the Potter’s bounds (1.4) associated to F̄X1 , we deduce that for all ε1 > 0 and

0 < ε2 < 1, there exists x0
1(ε1, ε2) such that for x1 ≥ x0

1(ε1,ε2)
min{1,βi}

P(Xi > tx1)
P(X1 > x1) ≤ ε1(1 + ε2) max

(
t−θ+ε2 , t−θ−ε2

)
.

And the application of the Dominated Convergence Theorem leads to

lim
α↑1

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

=
∫ +∞

βi

lim
α↑1

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt = 0, ∀ i ∈ JC .

We denote by J∞ the set J∞ = {i ∈ {2, . . . , d}|βi = +∞}. So, for all i ∈ J∞, x1 = o(xi) and

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

=
∫ +∞

xi

P(Xi > t,X1 > x1)
x1P(X1 > x1) dt

≤

∫ +∞

x1

P(Xi > t,X1 > x1)
x1P(X1 > x1) dt =

∫ +∞

1

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt.

In the same way as in the previous case, and using the Potter’s bounds, we show that

lim
α↑1

∫ +∞

1

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt =

∫ +∞

1
lim
α↑1

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt = 0,

from which we deduce that
lim
α↑1

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= 0, ∀ i ∈ J∞.

Let J0 be the set J0 = {i ∈ {2, . . . , d}|βi = 0}. For all i ∈ J0 we have xi = o(x1), then

lim
α↑1

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= lim
α↑1

∫ +∞

xi

P(Xi > t,X1 > x1)
x1P(X1 > x1) dt = lim

α↑1

∫ +∞

0

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt,
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because lim
α↑1

xi
x1

= 0 and P(Xi>tx1,X1>x1)
P(X1>x1) ≤ 1.

In addition, for all ε > 0, we have

lim
α↑1

∫ +∞

ε

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt = 0,

because the Dominated Convergence Theorem is applicable using the Potter’s bounds, and lim
α↑1

P(Xi>tx1,X1>x1)
P(X1>x1) = 0

for all t > 0 since ci = 0.
Let κ > 0, ∀ε > 0 ∃α0 such that ∀α > α0∫ +∞

ε

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt < κ,

then ∫ +∞

0

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt =

∫ ε

0

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt+

∫ +∞

ε

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt < ε+ κ,

we deduce that

lim
α↑1

∫ +∞

0

P(Xi > tx1, X1 > x1)
P(X1 > x1) dt = 0,

so,

lim
α↑1

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= 0, ∀i ∈ J0.

We have therefore shown that

lim
α↑1

E[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= 0, ∀i ∈ {2, . . . , d}.

�

A.5. Lemma 3.2 (2).

Proof. We suppose that lim
α↑1

1−α
F̄X1 (e1

α(X)) = +∞. Taking if necessary a convergent subsequence (αn)n∈N with αn −→ 1,

we consider that the limits lim
α→1

xi
x1

= βi exist and that lim
α↑1

1−α
F̄X1 (x1) = +∞.

We use the notations JC = {i ∈ {2, . . . , d}| 0 < βi < +∞}, J0 = {i ∈ {2, . . . , d}| βi = 0}, and J∞ = {i ∈
{2, . . . , d}| βi = +∞}.
The first equation of the optimality system (0.1) divided by x1F̄X1(x1) can be written

(2α− 1)E[(X1 − x1)+]
x1F̄X1(x1)

+
d∑
i=2

αE[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= 1− α
F̄X1(x1)

(
x1 − E[X1]

x1

)

+ 1− α
F̄X1(x1)

(
d∑
i=2

E[(Xi − xi)−11{X1<x1}]
x1

)
.

By (2.1)

lim
α↑1

(2α− 1)E[(X1 − x1)+]
x1F̄X1(x1)

= 1
θ − 1 ,

and by Lemma 3.2

lim
α↑1

d∑
i=2

αE[(Xi − xi)+11{X1>x1}]
x1F̄X1(x1)

= 0,

so, going through the limit (α→ 1) in the previous equation leads to

lim
α↑1

1− α
F̄X1(x1)

(
x1 − E[X1]

x1
+

d∑
i=2

E[(Xi − xi)−11{X1<x1}]
x1

)
= 1
θ − 1 ,

nevertheless,

lim
α↑1

1− α
F̄X1(x1)

(
x1 − E[X1]

x1
+

d∑
i=2

E[(Xi − xi)−11{X1<x1}]
x1

)
= lim

α↑1

1− α
F̄X1(x1)

(
1 +

d∑
i=2

xi
x1

)
= +∞.
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From this contradiction, we deduce that the case lim
α↑1

1−α
F̄X1 (x1) = +∞ is absurd.

Now, we suppose that lim
α↑1

1−α
F̄X1 (e1

α(X)) = 0. Taking if necessary a subsequence (αn)n∈N with αn −→ 1, we consider

that the limits lim
α→1

xi
x1

= βi exist and that lim
α↑1

1−α
F̄X1 (x1) = 0.

We denote JC = {i ∈ {2, . . . , d}| 0 < βi < +∞}, J0 = {i ∈ {2, . . . , d}| βi = 0}, and J∞ = {i ∈ {2, . . . , d}| βi = +∞}.
Going through the limit (α → 1) in the first equation of System 0.1 divided by x1F̄X1(x1), and using Lemma 3.2
and Equation 2.1, leads to

(A.8) lim
α↑1

(
1− α
F̄X1(x1)

∑
i∈J∞

xi
x1

)
= 1
θ − 1 .

If J∞ 6= ∅, so, there exists i ∈ {2, . . . , d} such that i ∈ J∞. In this case,

lim
α↑1

E[(Xi − xi)+]
x1F̄X1(x1)

= lim
α↑1

F̄Xi(xi)
F̄X1(xi)

xiF̄X1(xi)
x1F̄X1(x1)

E[(Xi − xi)+]
xiF̄Xi(xi)

= 0,

because lim
α↑1

E[(Xi−xi)+]
xiF̄Xi (xi)

= 1
θ−1 , lim

α↑1

F̄Xi (xi)
F̄X1 (xi)

= 0, and by Lemma 2.2 (Xi = Xj = X1) lim
α↑1

xiF̄X1 (xi)
x1F̄X1 (x1) = 0.

On another hand, for all j ∈ {1, . . . , d}\{i},

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

=
∫ +∞

xj

P(Xj > t,Xi > xi)
x1P(X1 > x1) dt,

so if j ∈ JC , then

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= lim
α↑1

∫ +∞

xj
x1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt = lim

α↑1

∫ +∞

βj

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt,

because P(Xj>tx1,Xi>xi)
P(X1>x1) ≤ P(Xj>tx1)

P(X1>x1) and lim
α↑1

P(Xj>tx1)
P(X1>x1) = 0 for all t > 0. We apply the dominated convergence

Theorem, using Potter’s bounds associated to F̄X1 , to get

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

=
∫ +∞

βj

lim
α↑1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt,

and since
P(Xj > tx1, Xi > xi)

P(X1 > x1) ≤ P(Xi > xi)
P(X1 > x1) = x1

xi

xiF̄X1(xi)
x1F̄X1(x1)

F̄Xi(xi)
F̄X1(xi)

,

so, by Lemma 2.2

lim
α↑1

P(Xj > tx1, Xi > xi)
P(X1 > x1) = lim

α↑1

P(Xi > xi)
P(X1 > x1) = 0,

we deduce finally that

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= 0, ∀j ∈ JC .

If j ∈ J∞\{i}, then

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

=
∫ +∞

xj

P(Xj > t,Xi > xi)
x1P(X1 > x1) dt

≤

∫ +∞

x1

P(Xj > t,Xi > xi)
x1P(X1 > x1) dt =

∫ +∞

1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt,

we show in the same way as in the previous case that

lim
α↑1

∫ +∞

1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt =

∫ +∞

1
lim
α↑1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt = 0,

then
lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= 0, ∀j ∈ J∞\{i}.

28



If j ∈ J0, then

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

=
∫ x1

xj

P(Xj > tx1, Xi > xi)
x1P(X1 > x1) dt+

∫ ∞
x1

P(Xj > tx1, Xi > xi)
x1P(X1 > x1) dt

≤ x1 − xj
x1

F̄Xi(xi)
F̄X1(x1)

+
∫ +∞

1

P(Xj > tx1, Xi > xi)
P(X1 > x1) dt,

since lim
α↑1

∫ +∞

1

P(Xj>tx1,Xi>xi)
P(X1>x1) dt = 0, so, by Lemma 2.2, we get

lim
α↑1

x1 − xj
x1

F̄Xi(xi)
F̄X1(x1)

= lim
α↑1

x1 − xj
x1

F̄Xi(xi)
F̄X1(xi)

xiF̄X1(xi)
x1F̄X1(x1)

x1

xi
= 0,

we obtain from that
lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= 0, ∀j ∈ J0,

and consequently

lim
α↑1

E[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

= 0, ∀j ∈ {1, . . . , d}\{i}.

The ith equation of System 0.1 divided by x1F̄X1(x1) can be written in the form

(2α− 1)E[(Xi − xi)+]
x1F̄X1(x1)

− 1− α
F̄X1(x1)

xi − E[Xi]
x1

=
d∑
j=1
j 6=i

(1− α)E[(Xj − xj)−11{Xi<xi}]
x1F̄X1(x1)

−
d∑
j=1
j 6=i

αE[(Xj − xj)+11{Xi>xi}]
x1F̄X1(x1)

,

going through the limit (α→ 1) in this equation leads to

−lim
α↑1

1− α
F̄X1(x1)

xi
x1

= lim
α↑1

1− α
F̄X1(x1)

d∑
j=1
j 6=i

xj
x1
,

which is possible only if lim
α↑1

1−α
F̄X1 (x1)

xi
x1

= 0, and that is contradictory with Equation A.8. �
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