
HAL Id: hal-01923784
https://hal.science/hal-01923784v1

Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new Direct Connected Component Labeling and
Analysis Algorithms for GPUs

Arthur Hennequin, Lionel Lacassagne, Laurent Cabaret, Quentin Meunier

To cite this version:
Arthur Hennequin, Lionel Lacassagne, Laurent Cabaret, Quentin Meunier. A new Direct Connected
Component Labeling and Analysis Algorithms for GPUs. 2018 Conference on Design and Architectures
for Signal and Image Processing (DASIP), Oct 2018, Porto, Portugal. �10.1109/dasip.2018.8596835�.
�hal-01923784�

https://hal.science/hal-01923784v1
https://hal.archives-ouvertes.fr

A new Direct Connected Component Labeling and
Analysis Algorithms for GPUs

Arthur Hennequin1,2, Lionel Lacassagne1, Laurent Cabaret3, Quentin Meunier1

1LIP6, Sorbonne University, CNRS, France 2LPNHE, Sorbonne University, CNRS, France 3MICS, CentraleSupélec, France
email: arthur.hennequin@lip6.fr, lionel.lacassagne@lip6.fr

Abstract—Until recent years, labeling algorithms for GPUs
have been iterative. This was a major problem because the com-
putation time depended on the content of the image. The number
of iterations to reach the stability of labels propagation could
be very high. In the last years, new direct labeling algorithms
have been proposed. They add some extra tests to avoid memory
accesses and serialization due to atomic instructions.

This article presents two new algorithms, one for labeling
(CCL) and one for analysis (CCA). These algorithms use a new
data structure combined with low-level intrinsics to leverage the
architecture. The connected component analysis algorithm can
efficiently compute features like bounding rectangles or statistical
moments. A benchmark on a Jetson TX2 shows that the labeling
algorithm is from 1.8 up to 2.7 times faster than the State-of-the-
Art and can reach a processing rate of 200 fps for a resolution
of 2048×2048.

I. INTRODUCTION

Connected Component Labeling (CCL) was born with com-
puter vision [20] [21] [7]. It is a central algorithm between
low-level image processing (filtering) and high-level image
processing (recognition, decision). CCL consists in providing
a unique number to each connected components of a binary
image. There are several applications in computer vision
(Optical Character Recognition, motion detection, tracking)
but also in High Energy Physics (tracking particles by labeling
hits on detectors) or in simulated annealing.

From the beginning, CCL needed to be accelerated to run
in real-time and has been ported on a wide set of parallel
machines [1] [15]. After an era on single-core processors,
where many sequential algorithms were developed [9] and
few codes were released [2], new parallel algorithms were
developed on multi-core processors [18] [6], SIMD processors
[22] [13] and GPUs [12] [4] [19].

Considering a processing chain, CCL algorithms are usually
followed by algorithms which compute some features like the
bounding box of a component or its first moments, to compute
the center of gravity. Full labeling is required for human
visualization but the features computation is enough for the
image analysis algorithms. This evolution of CCL algorithm
is called Connected Component Analysis (CCA).

This paper deals with the evolution of CCL algorithm
for GPU and introduces new algorithms for CCL and CCA.
Section II presents the CCL algorithms for GPU, compares
them, and explain the CCA implementation issue; Section III
provides the CUDA terminology, Section IV introduces a
new CCL and a new CCA algorithm; Section V presents

Cabaret

Komura

1816

10 2 76
8 12 13 14 15

20 21 22 23
2624 28 29 30 3127

1917

2
0

0

0

1 3 0 0 87
9 0 0 13 14 15

0 2421 22 23
3225 0 28 29 30 3127

16
1
0

0

0

1 1 0 0 11
0 0

0

1
1
1

01
1 1

1
1
1

1
1
1

1
1
1

1
1
1

18
16

00 1 66

8
12 12 6 7

20
13 14 15
21 22 232618

0
12

Playne

binary image

Fig. 1. Initialization on GPU for Cabaret, Komura and Playne algorithms

the benchmarks and analyzes the results. Finally, Section VI
concludes.

II. CONNECTED COMPONENT LABELING FOR GPUS

The 4-connectivity Playne CCL algorithm [19] is currently
the State-of-the-Art of GPU-based algorithm. For the sake of
comparison, this paper uses the same notations.

A. Algorithms for CPUs

On CPUs, direct algorithms – like Rosenfeld [20] – process
the binary image pixel by pixel with a neighborhood mask
and an equivalence table that holds a graph structure to
represent the labels connections. All direct algorithms share
the same steps: 1) an initialization and a first labeling that
builds the equivalence table. 2) the equivalences solving that
computes the transitive closure of the graph. 3) the final
labeling that updates the labels value with the equivalence
table [9]. Conversely, iterative algorithms based on Haralick
[7] do not use an additional equivalence table to manage
the connection information. They propagate the labels step
by step across the image until stabilization. The number
of iterations can be very high as it is equal to the longest
geodesic distance (distance in a constrained geometry) of two
pixels within the shape.

B. Algorithms on GPUs

On GPUs, the first implementations were very close to
Haralick algorithm [23] [5] [10]. If those algorithms are
going faster and faster – due to the still-increasing number of
elementary-processors with a GPU (up to 5120 CUDA cores
on a TitanV) – they are still iterative and cannot match the

performance of direct algorithms on CPUs.

Designing a direct algorithm for GPU is complex due
to the irregularity of Union-Find, since it contains an
unbounded while-loop (within the findRoot function) and
massive contention and concurrency issues (requiring atomic
instructions within the Union function).

The first innovation that made direct algorithm possible
on GPUs was the creation of the label-equivalence formula.
For each pixel of coordinates (i, j), a unique label is set
with the initial value e = 1 + i × width + j for Cabaret [4],
or e = i × width + j for Komura [12] and Playne as they
use the binary image to enable label processing. This value
corresponds to the linear address in the image. Like this, the
equivalence table is the image of labels itself: L(i, j) and
T (e) refer to the same location (Fig. 1). Concerning Playne,
the label value that is written into memory is the min over
the 2×2-neighborhood (it can be viewed as an on-the-fly
homogenization between variables before the memory store).

The second innovation was the introduction of the Union-
Find functions which update the roots thanks to a recursive
update based on atomic functions.

Direct algorithms for GPUs are very close to direct parallel
algorithms for CPUs and are composed of three steps: 1)
each tile (or strip) is initialized and labeled in parallel (the
equivalences between labels are built during this step), 2) the
borders are merged and 3) the equivalences are solved (by
computing the transitive closure of the equivalence table) and
the labels are relabeled with the minimum value. These steps
are detailed in [4] [19] and in section IV.

Even if GPUs have a huge bandwidth, it takes time to
perform many memory accesses. Same problem for atomic
instructions: if many threads want to access the same memory
address, thread serialization cannot be avoided. By performing
additional tests, Playne does only the mandatory memory
accesses to update the image and the equivalence table. Doing
so, Playne is faster than Cabaret and Komura.

C. From labeling to analysis: features computation problem

Features computation (FC) consists in calculating for each
component, some geometrical (like the bounding rectangle
[xmin, xmax]× [ymin, ymax]) or statistical descriptors (like the
first raw moments: S the number of pixels, Sx the sum of the
x-value of labels and Sy the sum of the y-value of labels).

The straightforward implementation is to do it after
the relabeling. Each thread performs an atomic instruction
(atomicAdd for the moments, atomicMin and atomicMax

for the bounding rectangle) on the same memory address,
causing a catastrophic serialization leading to poor perfor-
mance.

The only efficient way is to do it during the transitive
closure to aggregate the features (belonging to the same

equivalence set) into the roots [3], [11], [16]. An efficient
implementation is presented in section IV.

III. CUDA TERMINOLOGY

Let us introduce some CUDA terms:
• kernel: The program executed by each GPU core,
• thread: A single instance of the program running on one

GPU core,
• warp: A group of 32 threads executing together,
• block: A group of threads executing the same kernel,
• grid: Abstract representation of the set of blocks.

Blocks are dispatched by the GPU scheduler following a
launch configuration provided by the user, consisting in a
size and number of blocks, in 1D, 2D or 3D. Because we
process 2D images, we choose to also express the block’s size
and number in 2D. Inside the kernel, CUDA provides special
registers containing the thread and block coordinates. We name
the following variables:
• BLOCK_W, BLOCK_H: The dimensions of a block
• bx, by: The block indexes in the grid
• tx, ty: The thread indexes in a block
• x, y: The thread indexes in the image

Each thread has its own set of registers and can access two
types of memory:
• Global memory: can be accessed by all the threads and

be used to communicate with the host CPU.
• Shared memory: is shared between the threads of a same

block. Access latency is shorter than for global memory.
Coherency in shared and global memory can be achieved by
using atomic operations provided by CUDA or by synchro-
nizing threads of the same block with the __syncthread
intrinsic. Threads of the same warp can also communicate
without memory by directly exchanging registers with the
warp-level primitive intrinsics [14].

IV. NEW CCL & CCA ALGORITHMS : HA4

This section presents HA4, a new Hardware Accelerated
4-connected CCL / CCA algorithm. It is based on an hybrid
pixel / segment (run length) approach and relies on CUDA
low-level intrinsics functions to be efficient. The image is
not split into tiles but into horizontal strips, each strip being
processed by a unique warp. Each image segment is itself split
into segments of max length the size of a warp. The low-level
intrinsics let each thread efficiently tests if it is the start of a
segment: only the start of segment performs memory access to
manage equivalences or the features computations: the longer
the segment the more it saves accesses.

The algorithm can be divided into three successive kernels
that are presented in the following sections:
• Strip labeling: we independently label horizontal strips of

the image.
• Border merging: we check for labels equivalences at the

borders between strips.
• CCL / CCA: we perform a transitive closure of each pixel

or compute some features for each label.

A. Strip labeling

The first step of the algorithm is to produce a partially
labeled image. The input image I is divided into horizontal
strips and each one is attributed to a block. In order to support
any image width without having to increase the block size, we
use the grid-stride loop design pattern [8]. Instead of assuming
the block is large enough to process the entire strip, the kernel
loops over the data one block size at a time. Because the
same kernel processes the pixels of one strip, we can reuse
past information about the continuity of the pixels, removing
the need for the vertical border merging kernel. The loop
also helps to amortize the threads creation and destruction by
reusing them. Here, we set the block width to the number of
threads in a warp, which is 32 on current hardware, and the
block height to 4, as we found out that this block size provides
high occupancy and good performance.

Because each warp of the block processes consecutive
pixels that are on the same line, we can use some warp-level
primitives to optimize computations and memory accesses. We
define a segment as a consecutive set of non-zero pixels. By
construction, a warp can contain up to 16 different segments.
We define the start and end of the segment as its leftmost
and rightmost pixels. We associate each thread of the warp to
one pixel of the image. Each thread can share the value of its
corresponding pixel to all the threads in the warp by using a
__ballot_sync instruction. This instruction builds a 32-bit
bitmask where the ith bit is set if some predicate for the ith

thread of the warp is true. Here, our predicate is simply the
boolean value of the thread’s pixel.

Once the bitmask is known by all the threads, each
thread can retrieve some information about its segment.
We define two distance operators: start_distance and
end_distance described in algorithm 1. These op-
erators have two properties: for the start of the seg-
ment start_distance is always equal to zero, and
end_distance is always equal to the number of pixels in
the segment. For each thread, start_distance gives the
distance to the start of the segment. Figure 2 shows an example
of both operators. The __clz (Count Leading Zeros) intrinsic
returns the number of consecutive zeros starting from the most
significant bit and going down inside a 32-bit register. The
__ffs (Find First Set) intrinsic returns the position of the
first bit set to one, starting from the least significant bit and
going up inside a 32-bit register.

Since CUDA 9, all warp level primitives take a mask pa-
rameter that determines which threads are participating to the
operation. This allows the threads to diverge and only synchro-
nize if it is needed. We assume the image width is a multiple
of the warp size, and set the mask to ALL = 0xFFFFFFFF.

For each block, the threads load their corresponding pixel
from global memory, then build the bitmask and perform a
segment start detection. The labels of the start pixels are
initialized to their linear address L[ky,x] = ky,x. The other
pixels are not initialized to reduce the amount of memory
stores. For each line, we keep track of the distance to the last

0100110 1

7654310 2

020 1

1113 2

pixels

start_distance

end_distance

Fig. 2. Distance operators on a 8-bit bitmask. Only set pixels are considered.

Algorithm 1: Distance operators for 32-bit bitmasks
1 operator start_distance(pixels, tx)
2 return __clz(∼(pixels << (32−tx)))

1 operator end_distance(pixels, tx)
2 return __ffs(∼(pixels >> (tx+1)))

segment start. If the first thread of the warp has a set pixel,
we check if it belongs to a longer segment and initialize it to
its start address. After this first line labeling, we synchronize
the threads of the block and get the bitmask of pixels from the
warp above. This allows us to merge the lines within the strip.
Each thread checks if its corresponding pixel in the current
line or the line above is a segment start and, if it is, performs
a union-find merge as described in algorithm 2. This merge
function was first described by Playne and Hawick in [19] and
is based on Komura’s reduce function [12]. It works by finding
the root of the two equivalence trees the labels are belonging
to and writing the minimum root index to the root with the
maximum index.

56

17 20

40

(a) Initialisation

(c) Updating Equivalence Tree

(d) All nodes are pointing to their direct ancestor

(b) Equivalence detection

56

17 20

distancey += 8 = 24

distancey-1 = 4

40

17 17

20 1 3 4 5 6 7

distancey = 16

distancey-1 = 0
tx

1816 17 19 20 21 22 23x

56

17 20

Fig. 3. Example of a block labeling (width = 40, BLOCK_W = 8). (a) shows
the initialization of the start pixels to their linear address. In (b) each thread
detects the equivalences between segments of the two lines. The equivalence
of node 56 to node 40 is detected because distancey 6= 0 and 56−16=40.
(c) shows the updated equivalence tree after the call of the merge function.
Finally, (d) shows the final values of the start pixels and the updated values
for the distances.

The strip labeling is done in global memory. Because of the
few memory stores performed, going to shared memory first
for the label image L, like in previous works [4] [19], would
be inefficient. Instead, shared memory is used to exchange
bitmasks between warps. As shared memory is organized in
32 banks, two threads willing to access different memory cells
inside the same bank would result in a bank conflict, causing

Algorithm 2: merge(L, label1, label2)
1 while label1 6= label2 and label1 6= L[label1] do
2 label1 ← L[label1]

3 while label1 6= label2 and label2 6= L[label2] do
4 label2 ← L[label2]

5 while label1 6= label2 do
6 if label1 < label2 then swap(label1, label2)
7 label3 ← atomicMin(L[label1], label2)
8 if label1 = label3 then label1 ← label2
9 else label1 ← label3

access serialization. We propose to exchange the bitmask
instead of the pixels. This way, only the first thread of each
warp would do a memory store, in a different bank for each
line, and in the next step, all threads from the same line would
load from the same cell inside the same bank, resulting in
a broadcast of the data. The entire strip-labeling kernel is
described in algorithm 3 and an example is provided with
figure 3.

Algorithm 3: HA4 Strip Labeling(I, L, width)
1 declare shared array shared pixels of size BLOCK_H
2 line base ← y × width + tx
3 distancey ← 0, distancey−1 ← 0
4 for i← 0 to width by warp size do
5 ky,x ← line base + i
6 py,x ← I[ky,x]
7 pixelsy ← __ballot_sync(ALL, py,x)
8 s disty ← start_distance(pixelsy , tx)
9 if py,x and s disty = 0 then

10 L[ky,x] ← ky,x (− distancey if tx = 0)

11 if tx = 0 then shared pixels[ty] ← pixelsy
12 __syncthreads()
13 pixelsy−1 ← shared pixels[ty-1] if ty > 0 else 0
14 py−1,x ← get bit tx of pixelsy−1

15 s disty−1 ← start_distance(pixelsy−1, tx)
16 if tx = 0 then
17 s disty ← distancey
18 s disty−1 ← distancey−1

19 if py,x and py−1,x and (s disty = 0 or s disty−1 = 0) then
20 label1 ← ky,x − s disty
21 label2 ← ky,x − width − s disty−1

22 merge(L, label1, label2)

23 d ← start_distance(pixelsy−1, 32)
24 distancey−1 ← d (+ distancey−1 if d = 32)
25 d ← start_distance(pixelsy , 32)
26 distancey ← d (+ distancey if d = 32)

B. Border Merging

Previous works suffered from the non-coalesced access of
the vertical border merging. Because of the strip division,
we only have to merge the horizontal border. As in the strip
labeling, we perform merge operations only on the starts of
the segments, limiting the number of expensive global memory
accesses and atomic operations.

The border merging described in algorithm 4 produces an
equivalence forest of all the segments starts inside the L array.
From this forest, we can decide to finalize the labeling as
described in subsection IV-C or to compute some features as
described in subsection IV-D.

Algorithm 4: HA4 Strip Merge(I, L, width)
1 if y > 0 then
2 ky,x ← y × width + x
3 ky−1,x ← ky,x − width
4 py,x ← I[ky,x]
5 py−1,x ← I[ky−1,x]
6 pixelsy ← __ballot_sync(ALL, py,x)
7 pixelsy−1 ← __ballot_sync(ALL, py−1,x)
8 if py,x and py−1,x then
9 s disty ← start_distance(pixelsy , tx)

10 s disty−1 ← start_distance(pixelsy−1, tx)
11 if s disty = 0 or s disty−1 = 0 then
12 merge(L, ky,x − s disty , ky−1,x − s disty−1)

7654310 2

0 6

8 12

0261 81

42 62

23 43

40 43 47

48 54

56 62

0

1

2

3

0

1

2

3

(a) Initialization

7654310 2

0 6

8 12

0261 81

42 62

23 43

40 43 47

48 54

56 62

0

1

2

3

0

1

2

3

(b) Strip labeling
7654310 2

0 6

0 6

218 21

61 81

23 23

32 34 34

40 47

48 54

0

1

2

3

0

1

2

3

(c) Strip labeled

7654310 2

0 6

0 6

218 21

61 81

23 23

32 34 34

40 47

48 54

0

1

2

3

0

1

2

3

(d) Border merging
7654310 2

0 0

0 6

218 21

61 81

0 23

32 34 34

40 47

48 54

0

1

2

3

0

1

2

3

(e) Border merged

7654310 2

0

0

0

0

0

0

0

0

0

1

2

3

0

1

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(f) Relabeling

Fig. 4. Example of the HA4 algorithm on a 8×8 image divided into two strips
of height 4. In (a), each segment start is initialized with its linear address.
In (b), local equivalences are resolved for each strip. In (d), we merge the
equivalence trees of the two strips. Finally, in (f), each segment start finds
the root of its tree and shares it with the other threads of the segment for
relabeling.

C. CCL - Final labeling

We implement a relabeling kernel to compare the CCL
version of HA4 with previous works [4] [19].

To avoid unnecessary memory accesses, each segment del-
egates the task of finding the equivalence tree’s root to the
thread corresponding to its start. Once the start thread has
found its true label, it propagates it to the others threads of the

segment using a __shfl_sync instruction. After receiving
the label, each thread updates the label image L. Algorithm 5
describes this kernel. Like in previous kernels, we launch
blocks of width equal to the warp size. Figure 4 shows the
execution of the complete algorithm on a small image.

Algorithm 5: HA4 Relabeling(I, L, width)
1 ky,x ← y × width + x
2 py,x ← I[ky,x]
3 pixels ← __ballot_sync(ALL, py,x)
4 s dist ← start_distance(pixels, tx)
5 label ← 0
6 if py,x and s dist = 0 then
7 label ← L[ky,x]
8 while label 6= L[label] do label ← L[label]

9 label ← __shfl_sync(ALL, label, tx − s dist)
10 if py,x then L[ky,x] ← label

D. CCA & Features Computation

The CCA algorithm presented in this section uses the same
warp and segments idea as in previous kernels. Maximum
performance is reached when it is used in combination with the
strip labeling and border merging kernels presented in previous
subsections, but this kernel can be used after any algorithm
that produces a label equivalence image. As previously, the
core idea is that only the starts of the segments search for the
roots of their equivalence trees and update the features with
atomic operations. With the distance operators we defined in
subsection IV-A, the start can compute all the features for
the segment from the pixels bitmask only. In algorithm 6, we
show how to compute the most frequently used features: the
number of pixels S, the sum of x coordinates Sx, the sum of
y coordinates Sy and the bounding rectangle MINx, MINy ,
MAXx and MAXy . For a given segment starting at x0 and
ending at x1, S = x1 − x0 + 1, Sx = φ(x1) − φ(x0 − 1),
and Sy = y × S, with φ the sum of the first n integers:
φ(n) = n(n + 1)/2. This algorithm is modular as we can
remove the unwanted features. We can also notice that the
MINy feature is already encoded in the label and can be
retrieved as miny = blabel/widthc.

Algorithm 6: HA4 Features(I, L, features, width)
1 ky,x ← y × width + x
2 py,x ← I[ky,x]
3 pixels ← __ballot_sync(ALL, py,x)
4 s dist ← start_distance(pixels, tx)
5 count ← end_distance(pixels, tx)
6 sumx ← ((2 × x + count − 1) × count) / 2
7 sumy ← y × count
8 maxx ← x + count − 1
9 if py,x and s dist = 0 then

10 label ← L[ky,x]
11 while label 6= L[label] do label ← L[label]
12 atomicAdd(S[label], count)
13 atomicAdd(Sx[label], sumx), atomicAdd(Sy[label], sumy)
14 atomicMin(MINx[label], x), atomicMin(MINy[label], y)
15 atomicMax(MAXx[label], maxx), atomicMax(MAXy[label], y)

E. Processing two pixels per thread

At this point we successfully reduced the work done by the
threads. In fact, for the worst case scenario when for every
two pixel there is one white and one black pixel, only half of
the threads are working. This means that in every situation,
there could not be two consecutive threads in the same warp
doing useful work at a time. Therefore, we can modify our
kernels to process two pixels per thread.

In this new version, each warp of 32 threads is processing
64 pixels, so we need to update the horizontal thread index
tx ← tx × 2 and BLOCK_W ← BLOCK_W × 2 inside the
kernels. We use the uint64_t type to store bitmasks and
almost all the primitives we used for 32-bit bitmasks have
a 64-bit equivalent. Each thread loads the py,x and py,x+32

pixel. As the __ballot_sync instruction can only create
32-bit bitmasks, we have to recombine the two bitmasks into
one 64-bit bitmask after the transfer.

We also have to slightly change the distance operators and
the features computation to take into account which pixel of
the two pixels processed by the current thread is the real root
of the segment. Algorithm 7 describes the modified operators
for 64-bit bitmasks.

Algorithm 7: Distance operators for 64-bit bitmasks
1 operator start_distance64(pixels, tx)
2 b ← get bit tx of ∼pixels
3 txb ← tx + b
4 return __clzll(∼(pixels << (64−txb)))

1 operator end_distance64(pixels, tx)
2 b ← get bit tx of ∼pixels
3 txb ← tx + b
4 return __ffsll(∼(pixels >> (txb+1)))

V. EXPERIMENTAL EVALUATION

The State-of-the-Art Playne [19] and Cabaret [4] were
implemented from their respective papers and compared to
CCL / CCA HA4 on a embedded Jetson TX2 card. The
GPU has 256 Pascal CUDA cores set to 1.3 GHz using the
MAX N performance setting. All codes are compiled with
the CUDA 9.0. For reproducible results, MT19937 [17] was
used to generate images of varying density (d ∈ [0%−100%])
and granularity (g ∈ {1− 16}) like in [4].

Figure 5 shows the execution time of the three steps of
Playne, Cabaret and (the two versions of) HA4. We labeled
each step as in the original articles. Steps with the same color
perform a similar function.

Thanks to the 64-bit version of HA4, each of the three
steps is faster than those of other algorithms. HA4 is - in
average - 2.4× faster than Playne or Cabaret for g = 4. When
the granularity varies from g = 1 (worst case for segment
processing) up to g = 16, the speedup ratios varies from 1.8
up to 2.7.

Figure 6 shows execution time of CCA algorithms. The
two first steps are identical to CCL algorithm. The third step

(a) Playne (b) Cabaret

(c) HA432(ccl) (d) HA464(ccl)

Fig. 5. Labeling execution time of 2048×2048 images, g = 4

(a) HA432 (b) HA464

Fig. 6. Analysis execution time for 2048×2048 images, g = 4

(relabeling) is replaced by the analysis kernel that performs
features computation (FC). The average time of FC is 1.75
ms, which is 6.4 times faster than a naive post-FC kernel
(11.2 ms). Note that the bump around d = 64% corresponds
to the percolation threshold in 4-connectivity.

VI. CONCLUSION

This article introduced two new direct algorithms for GPUs:
one for connected components labeling and one for connected
component analysis. Both are based on segment/run-length
processing and rely on low-level CUDA intrinsics to accelerate
all steps. Thanks to these new algorithmic and hardware
optimizations, our new hybrid and hardware accelerated al-
gorithms are from 1.8 up to 2.7 times faster than the State-of-
the-Art on embedded Jetson TX2 GPU.

REFERENCES

[1] D. A. Bader and J. Jaja. Parallel algorithms for image histogramming
and connected components with an experimental study. Parallel and
Distributed Computing, 35,2:173–190, 1995.

[2] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana. Toward reliable
experiments on the performance of connected components labeling
algorithms. Journal of Real-Time Image Processing (JRTIP), pages 1–
16, 2018.

[3] L. Cabaret, L. Lacassagne, and D. Etiemble. Parallel Light Speed
Labeling for connected component analysis on multi-core processors.
Journal of Real Time Image Processing, pages 1–24, 2016.

[4] L. Cabaret, L. Lacassagne, and D. Etiemble. Distanceless label propa-
gation: an efficient direct connected component labeling algorithm for
GPUs. In IEEE International Conference on Image Processing Theory,
Tools and Applications (IPTA), pages 1–8, 2017.

[5] M. Ceska. Computing strongly connected components in parallel on
cuda. In Nvidia, editor, GPU Technology Conference, 2010.

[6] S. Gupta, D. Palsetia, M. A. Patwary, A. Agrawal, and A. Choudhary.
A new parallel algorithm for two-pass connected component labeling.
In Parallel & Distributed Processing Symposium Workshops (IPDPSW),
pages 1355–1362. IEEE, 2014.

[7] R. Haralick. Some neighborhood operations. In Real-Time Parallel
Computing Image Analysis, pages 11–35. Plenum Press, 1981.

[8] M. Harris. https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-
kernels-grid-stride-loops/, 2013.

[9] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao. The connected-
component labeling problem: a review of state-of-the-art algorithms.
Pattern Recognition, 70:25–43, 2017.

[10] W. W. Hwu, editor. GPU Computing Gems, chapter 35: Connected
Component Labeling in CUDA. Morgan Kaufman, 2001.

[11] M. Klaiber, D. Bailey, and S. Simon. A single cycle parallel multi-
slice connected components analysis hardware architecture. Journal of
Real-Time Image Processing, 2016.

[12] Y. Komura. Gpu-based cluster-labeling algorithm without the use of
conventional iteration: application to swendsen-wang multi-cluster spin
flip algorithm. Computer Physics Communications, pages 54–58, 2015.

[13] L. Lacassagne, L. Cabaret, D. Etiemble, F. Hebache, and A. Petreto. A
new SIMD iterative connected component labeling algorithm. In Pro-
ceedings of the 3rd Workshop on Programming Models for SIMD/Vector
Processing, WPMVP ’16, pages 1:1–1:8, New York, NY, USA, 2016.
ACM.

[14] Y. Lin and V. Grover. https://devblogs.nvidia.com/using-cuda-warp-
level-primitives/, 2018.

[15] A. Lindner, A. Bieniek, and H. Burkhardt. Pisa?parallel image segmen-
tation algorithms. pages 1–10. Springer, 1999.

[16] N. Ma, D. Bailey, and C. Johnston. Optimised single pass con-
nected component analysis. In International Conference on Field
Programmable Technology (FPT), pages 185–192. IEEE, 2008.

[17] M. Matsumoto and T. Nishimura. Mersenne twister web page: http:
//www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html.

[18] M. Niknam, P. Thulasiraman, and S. Camorlinga. A parallel algorithm
for connected component labeling of gray-scale images on homogeneous
multicore architectures. Journal of Physics - High Performance Com-
puting Symposium (HPCS), 2010.

[19] D. P. Playne and K. Hawick. A new algorithm for parallel connected-
component labelling on GPUs. IEEE Transactions on Parallel and
Distributed Systems, 2018.

[20] A. Rosenfeld and J. Platz. Sequential operator in digital pictures
processing. Journal of ACM, 13,4:471–494, 1966.

[21] F. Veillon. One pass computation of morphological and geometrical
properties of objects in digital pictures. Signal Processing, 1,3:175–
179, 1979.

[22] F. Wende and T. Steinke. Swendsen-wang multi-cluster algorithm for the
2d/3d Ising Model on Xeon Phi and GPU. In ACM, editor, International
Conference on High Performance Computing (SuperComputing), pages
1–12, 2013.

[23] G. Ziegler and A. Rasmusson. Efficient volume segmentation on the
GPU. In Nvidia, editor, GPU Technology Conference, pages 1–44, 2010.

