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Feedforwarding under sampling
Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract

The paper deals with stabilization of feedforward multiple cascade dynamics under sampling. It is shown that u-average
passivity concepts and Lyapunov methods can be profitably exploited to provide a systematic sampled-data design procedure. The
proposed methodology recalls the continuous-time feedforwarding steps and can be applied under the same assumptions as those
set over the continuous-time cascade dynamics. The final sampled feedback is carried out through a three steps procedure that
involves iterative passivation and stabilization in the u-average sense. Constructive aspects are developed to compute approximate
solutions which are indeed implemented in practice. An example is worked out upon the paper with comparative simulations with
respect to usual sampled-and-hold implementations.

Index Terms

Nonlinear systems, Sampled data control, Algebraic/geometric methods, Stability of NL systems

I. INTRODUCTION

S INCE the very first work on backstepping [1], nonlinear constructive control has been providing a prolific field of
investigation for stabilizing nonlinear systems admitting suitable triangular structures ( [2]–[4]). The consequent feedback

control laws are rather easy to compute and yield robustness in closed loop as usual when relying upon Lyapunov-based
methodologies.

Forwarding based-design has been introduced as the dual of backstepping for dynamics in the so-called feedforward form
( [5]–[9]). The design exploits the cascade structure for defining a Lyapunov function via the construction of a suitable cross
term dominating all the terms with non-definite sign. Then, passivity arguments are used to achieve stabilization in closed
loop. When specified over strict-feedforward structures, such a procedure recovers the idea of recursively introducing a state
component which integrates the other ones ( [5], [10]). Intriguing connections with stabilization over invariant sets can also
be set in the framework of Immersion and Invariance [11]. This class of cascade systems embeds a lot of cases from different
scenarios so allowing a constructive design even in complex practical situations also involving observer design (e.g., [12]–[17]).

All of this concerns continuous-time dynamics while a very few works have been addressing the problem in discrete time.
In this case, things get complicated because of the loss of a geometrical framework sustaining the evolutions and, even
more important, the nonlinearities with respect to the control variables of the mappings and equations defining the solutions.
These difficulties motivate important contributions ( [18]–[21]) mostly devoted to strict-feedforward dynamics. More recently,
a solution for general feedforward structures has been proposed in discrete time in [22], [23].

In between, a challenging perspective is provided by the sampled-data scenario ( [24]–[28]); namely, when the control is
piecewise constant and measures are available at the sampling instants only. In this context, stabilization of cascade systems
at large cannot proceed along the same lines as in continuous time. As a matter of fact, in most cases (e.g., [29], [30] for
strict-feedback dynamics), the cascade structure is destroyed by sampling so hardly compromising the iterative nature of the
design. A particular case is provided by upper triangular (feedforward) dynamics that indeed preserve the cascade structure
under sampling. Though, applying the feedforwarding procedure presented in [22], [23] for purely discrete-time systems might
be quite conservative as it does not take advantage of the properties yielded by the original continuous-time plant. In addition,
further assumptions than the continuous-time ones are needed. In the digital literature, several works have been proposed when
restricting to classes of feedforward dynamics or when considering sample-and-hold solutions. In [31], the authors consider
feedforward systems that are minimum phase with respect to a given output and basically work out the design in continuous
time; implementation is then performed through usual emulation by proving its efficacy under sampling for small values of
the sampling period. Similar results are in [32], [33] where the authors also provide an explicit bound to the sampling period
preserving stability in closed loop.

At the best of the authors’ knowledge, a unifying framework for forwarding design under sampling exploiting the hybrid
nature of the overall system is still missing. Thus, the present paper aims at bridging this gap. Roughly speaking, the underlying
idea of the approach we propose goes beyond the idea of looking for control solutions (parametrized by the sampling period)
aimed at reproducing the same performances as in continuous time. As a matter of fact, the design relies upon the definition
of a feedback solution that is still parametrized by the sampling period but designed over new δ -dependent performances,
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criteria and properties inferred from the continuous-time ones. The case of u-average passivity represents a paradigm of this
new family of strategies.

Specifically, we provide a systematic procedure for stabilizing the feedforward interconnection of continuous-time dynamics
via sampled-data state feedback. We prove that a redefinition of the constructive mappings and Lyapunov functions is needed
to solve the problem under sampling with no extra assumption than the continuous-time ones. The sampled-data design we
propose is constructive and proceeds in three steps over a suitable two-block dynamics: first, a preliminary sampled-data
feedback asymptotically stabilizing the lower component is described; then, a Lyapunov function is constructed over the
closed-loop double cascade dynamics which is also shown to be stable; finally, asymptotic stabilization of the whole two-
block system is achieved via u-average passivity around a nominal feedback solution. These three steps are repeated over a
new double cascade system issued by successively interconnecting one upper dynamics. To this end, we extend the notion
of u-average passivity as introduced in [34] for purely discrete-time systems to deal with incremental-like properties that are
essential for the iterative nature of the design.

The preliminary work in [35] treats the two block cascade case when assuming, in continuous time, the first element of the
dynamics to possess a globally asymptotically stable and locally exponentially stable equilibrium in free evolution. Here, this
assumption is weakened so enabling the extension of the result to multiple cascade interconnections. Without loss of generality,
we discuss the result for single-input systems while the generalization to the multi-input case follows along the same lines.

The reminder of the paper follows. First, basics on sampled-data systems are given in Section III. Then, the continuous-
time feedforwarding procedure is recalled in Section IV where the problem is settled as well. In Section V, the sampled-data
forwarding design is detailed on an elementary two blocks cascade interconnection. Its extension to the general case is provided
in Section VI through an algorithmic procedure. Constructive aspects are developed in Section VII to work out an executive
way of computing approximate solutions for practical implementation issues. An example is carried out through the dissertation
with comparative simulations. Section VIII concludes the paper.

II. NOTATIONS AND DEFINITIONS

MU denotes the space of measurable and locally bounded functions u : R+→U, with U⊆R and MI
U the space of measurable

and locally bounded functions u : I→ U, with I ⊂ R. The set

Uδ = {u ∈MU s.t. u(t) = uk, ∀t ∈ [kδ ,(k+1)δ [ and k ≥ 0}

denotes the set of piecewise constant functions over time intervals of length δ , a finite time interval δ ∈]0,T [.
Maps are assumed smooth and vector fields complete. Given a vector field f , L f denotes the associated Lie derivative operator,
L f = ∑

n
i=1 fi(·)∇xi with ∇xi =

∂

∂xi
and ∇ = (∇x1 . . .∇xn). Given two vector fields f and g, we define the Lie bracket ad f g =

(∇g) f − (∇ f )g and iteratively adi
f g = ad f (adi−1

f g) with ad0
f g = g. Given a mapping H : Rn→ R and a constant x̄ ∈ Rn, we

denote ∇H(x̄) = ∇H(x)
∣∣
x=x̄.

eL f is the usual exponential Lie series operator, eL f = I+∑i≥1
Li

f
i! so that for any function h : Rn→Rp, one gets h(eL f Id

∣∣
x) =

eL f h(x) = h(x)+∑i≥1
1
i! Li

f h(x) where Id and I denote respectively the identity function and identity operator.

A function γ(·) : [0,∞)→ [0,∞) is said to be of class K if it is zero in zero and strictly increasing; if, moreover, it
is unbounded, it is said of class K∞. A function ω(z,ξ ) is said to satisfy a linear growth property with respect to the first
variable if there exist functions γ1(·),γ2(·)∈K differentiable at ξ = 0, such that ‖ω(z,ξ )‖≤ γ1(‖ξ‖)‖z‖+γ2(‖ξ‖). A function
R(x,δ ) = O(δ p) is said of order δ p, p≥ 1 if whenever it is defined it can be written as R(x,δ ) = δ p−1R̃(x,δ ) and there exist
a function θ ∈K∞ and δ ∗ > 0 s. t. ∀δ ≤ δ ∗, |R̃(x,δ )| ≤ θ(δ ).

III. BASICS ON SAMPLED-DATA SYSTEMS

Consider an input-affine dynamics

ẋ(t) = f (x(t))+g(x(t))u(t), x ∈ Rn, u ∈MU (1)

and assume the control piecewise constant over intervals of length δ (i.e., u ∈Uδ ) and measures of the state available only at
the sampling instants t = kδ . In such a context, (1) rewrites as the interval dynamics

ẋ(t) = f (x(t))+g(x(t))uk, t ∈ [kδ ,(k+1)δ [. (2)
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A. Sampled-data equivalent models

The sampled-data equivalent model to (1) is obtained through integration of (2) over δ with initial condition xk = x(kδ ).
The associated difference equations get the form of a map Fδ (·,uk) : Rn×R→ Rn

xk+1 =Fδ (xk,uk) = eδ (L f +ukLg)x
∣∣
xk
= xk +∑

i≥1

δ i

i!
Li

f+guk
x
∣∣
xk
. (3)

As well known, Fδ (·,u) is nonlinear in the control variable u and parameterized by the sampling period δ ( [36], [37]). As
closed-form sampled-data models cannot be exactly computed in general, one makes reference to approximations by truncating
the power series (3) at any finite order in δ p with p ∈ N. As an example, when neglecting the terms in O(δ 2), one recovers
the Euler approximation of (3) xk+1 = xk + δ ( f (xk)+ g(xk)uk) commonly considered in the literature as it indeed preserves
most of the continuous-time properties [38], [39].

The (F0,G) representation has been proposed in [40] as an alternative to (3) (namely, of the mapping Fδ (·,u)). Denoting
by x+(u) any curve in Rn parameterized by u ∈ R, one defines the differential/difference form of (3) as

x+ =Fδ
0 (x), x+ = x+(0) (4a)

dx+(u)
du

=Gδ (x+(u),u) (4b)

with

Fδ
0 (x) =eδL f x; Gδ (x,u) =

∫
δ

0
e−s ad f+ug g(x)ds.

Specifically, the map Fδ
0 (x) = Fδ (x,0) describes the free evolution of the dynamics when u = 0 while the u-dependent vector

field Gδ (x,u) over Rn models the variation of the map Fδ (·,u) with respect to the control and around Fδ (·,0).

In the sampled-data context, both representations are perfectly equivalent. More in detail, given any pair (xk,uk) for k ≥ 0,
one recovers the usual difference equation (3) by integrating (4b) over u ∈ [0,uk[ with initial condition (4a); i.e., one gets the
following equality (see [40] for complete proofs and computational aspects)

Fδ (xk,uk) = Fδ
0 (xk)+

∫ uk

0
Gδ (x+(v),v)dv

and, thus, xk+1 = x+(uk) = Fδ (xk,uk).
The (F0,G) representation is useful to carry out analysis and control design over sampled dynamics in a differential geometric

framework as illustrated in the sequel in terms of passivity or passivation.

It is important to emphasize that, when the same initial condition x(0) = x0 is assumed, the trajectories of (3) (and,
equivalently, (4)) coincide for any k≥ 0 with the ones of (2) at any sampling instant t = kδ . Thus, properties of the sampled-data
system (3) (and, equivalently, (4)) are equivalent to the properties of the continuous-time dynamics (2) at any t = kδ , k ≥ 0.
In this sense, we recall the following definition about stabilization at the sampling instants.

Definition 3.1 (S-GAS and S-LES): The equilibrium of the sampled dynamics (2) is sampled-data GAS (S-GAS) (resp.
sampled-data LES, S-LES) under a suitable piecewise constant uk = u(xk) if it is GAS (resp. LES) for the closed-loop discrete-
time equivalent dynamics xk+1 = Fδ (xk,u(xk)).

B. Sampled-data average-passivity

The notion of u-average passivity has been introduced in [34] when referring to a discrete-time system. Let Σδ be a generic
sampled-data system described by the dynamics (4) with output map H(·,u) : Rn→ R (possibly depending on u). u-average
passivity specifies as follows.

Definition 3.2 (u-average passivity): Σδ is u-average passive if there exists a C1 function S(·) : Rn → R≥0 (the storage
function) such that for any pair (xk,uk)(k ≥ 0), one verifies the inequality

S(x+(uk))−S(xk)≤ Hav(xk,uk)uk (5)

where
Hav(x,u) =

1
u

∫ u

0
H(x+(v),v)dv

defines the u-average output map associated to H(x,u).
Remark 3.1: The dissipativity inequality (5) underlines that whenever Σδ is u-average passive, it is passive (in the usual

sense) with respect to the average output Hav(x,u).
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According to the (F0,G) representation, the average passivity inequality (5) rewrites in its integral form as follows

S(Fδ
0 (xk))−S(xk)+

∫ uk

0
LGδ (·,v)S(x

+(v))dv≤ Hav(xk,uk)uk (6)

because for any pair (xk,uk), the first order difference ∆kS(x) = S(xk+1)−S(xk) = S(x+(uk))−S(xk) rewrites as

∆kS = S(Fδ
0 (xk))−S(xk)+

∫ uk

0
LGδ (·,v)S(x

+(v))dv.

Exploiting (6), the extended concept of u-average passivity from some nominal control value ū is here introduced.
Definition 3.3 (u-average passivity from/around ū): Σδ is u-average passive from ū ∈ R if there exists a C1 function S(·) :

Rn→ R≥0 (the storage function) such that, for any pair (xk,uk) and k ≥ 0, one verifies the inequality

∆kS =S(x+(ū))−S(xk)+
∫ uk

ū
LGδ (·,v)S(x

+(v))dv≤
∫ uk

ū
H(x+(v),v)dv. (7a)

Remark 3.2: The notion of u-average passivity from ū is strictly reminiscent of the concept of incremental passivity [41]. It
defines incremental-like passivity of the overall system with respect to trajectories that are parametrized by different inputs u
rather than time. Current work is addressing this aspect.

Remark 3.3: u-average passivity from ū can be understood as u-average passivity of the dynamics under the preliminary
control ū; namely, one has ∫ uk

ū
H(x+(v),v)dv =

∫ uk−ū

0
H(x+(ū+ v), ū+ v)dv.

Defining

Hav
ū (xk,uk) =

1
uk− ū

∫ uk

ū
H(x+(v),v)dv

the inequality (7) rewrites as ∆kS(x) ≤ (uk− ū)Hav
ū (xk,uk) so recovering, when ū = 0, u-average passivity with the average

output Hav
0 (x,u) = Hav(x,u).

IV. FEEDFOWARD SYSTEMS AND FORWARDING: RECALLS

Let the continuous-time feedforward dynamics

ż = f (z)+ϕ(z,ξ )+g(z,ξ )u, z ∈ Rnz (8a)

ξ̇ =a(ξ )+b(ξ )u, ξ ∈ Rnξ , u ∈ R (8b)

possess an equilibrium at the origin and assume the standard feedforwarding assumptions [2].
Assumption 4.1: The functions ϕ(z,ξ ) and g(z,ξ ) satisfy the linear growth property with respect to the state z.
Assumption 4.2: ż = f (z) is globally stable (GS), with radially unbounded and locally quadratic Lyapunov function W (z) so

that L fW (z)≤ 0 for all z. Moreover, there exist real constants c and M such that, for ‖z‖> M,

‖∇W (z)‖‖z‖ ≤ cW (z).

Assumption 4.3: ξ̇ = a(ξ ) is globally stable (GS), with radially unbounded and locally quadratic Lyapunov function U(ξ )
such that LaU(ξ )≤ 0 for any ξ .
The next Theorem is recalled from [2].

Theorem 4.1: Let the cascade dynamics (8) verify Assumptions 4.1 to 4.3 and the sub-dynamics (8b) with output y0 =LbU(ξ )
be Zero State Detectable (ZSD) 1. Let the pair (∇a(0),b(0)) be stabilizable. Then:

1) the feedback u0 =−LbU(ξ ) makes the equilibrium of (8b) globally asymptotically stable (GAS) and locally asymptoti-
cally stable (LES);

2) there exists a continuous cross term

Ψ(z,ξ ) =
∫

∞

0
Lϕ(·,ξ (s))−g(·,ξ (s))LbU(ξ (s))W (z(s))ds (9)

1Given a continuous-time dynamics ẋ = f (x)+g(x)u with output map h(·) : Rn→Rn, let Z ⊂Rn the largest positively invariant set when u = 0, contained
in {x ∈ Rn | h(x) = 0}. Then, the system is said ZSD if x = 0 is asymptotically stable conditionally to Z.
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evaluated along the solutions of the globally stable dynamics

ż = f (z)+ϕ(z,ξ )−g(z,ξ )LbU(ξ )

ξ̇ =a(ξ )−b(ξ )LbU(ξ )
(10)

making V (z,ξ ) =U(ξ )+Ψ(z,ξ )+W (z) a radially unbounded Lyapunov function for (10);
3) the dynamics (8) with output y = LḡV (z,ξ )2 is passive with storage function V (z,ξ );
4) the control law u =−LḡV (z,ξ ) achieves GAS of the equilibrium. If the Jacobian linearization of (8) is stabilizable, such

a feedback ensures LES of the equilibrium.

Under Assumptions 4.1 to 4.3, the damping feedback u0 =−LbU(ξ ) makes the equilibrium of (8) globally stable. Accordingly,
one deduces the existence of a cross term of the form (9) satisfying the partial derivative equation

Ψ̇(z,ξ ) =−Lϕ(z,ξ )−g(z,ξ )LbU(ξ )W (z) (11)

along the trajectories of (10) so that the Lyapunov function V (z,ξ ) = U(ξ ) +Ψ(z,ξ ) +W (z) is non-increasing along the
closed-loop dynamics; i.e.

V̇
∣∣
u=−LbU(ξ )

= L fW (z)+U̇(ξ )
∣∣
u=−LbU(ξ )

≤−1
2
‖LbU(ξ )‖2.

A. Feedforward dynamics under sampling

Detailing the sampled-data equivalent models in Section III-A to (8) and setting x= col(z,ξ ), f̄ (x) = col( f (z)+ϕ(z,ξ ),a(ξ )),
ḡ(x) = col(g(z,ξ ),b(ξ )), one gets the following result.

Lemma 4.1: The sampled-data equivalent model to (8) preserves the feedforward structure; i.e. in the form of a map

zk+1 = f δ (zk)+ϕ
δ (zk,ξk)+gδ (zk,ξk,uk) (12a)

ξk+1 = aδ (ξk,uk) (12b)

with

aδ (ξ ,u) =eδ (La+uLb)ξ ; f δ (z) = eδL f z

ϕ
δ (z,ξ ) =δϕ(z,ξ )+∑

i≥1

δ i+1

(i+1)!
ϕi(z,ξ )

gδ (z,ξ ,u) =δg(z,ξ )u+∑
i≥1

δ i+1

(i+1)!
gi(z,ξ ,u)

ϕi(z,ξ ) =Li
f̄ (L f +Lϕ)z−Li+1

f z

gi(z,ξ ,u) =uLḡ(Li−1
f z+ϕi−1(z,ξ )+gi−1(z,ξ ,u)).

Lemma 4.2: The (F0,G) form equivalent to (12) exhibits a feedforward structure as described below

z+ =Fδ
0 (z,ξ ) (13a)

dz+(u)
du

=Gδ (z+(u),ξ+(u),u) (13b)

ξ
+ =aδ

0 (ξ ) (13c)
dξ+(u)

du
=Bδ (ξ+(u),u) (13d)

where

Fδ
0 (z,ξ ) = f δ (z)+ϕ

δ (z,ξ ); aδ
0 (ξ ) = aδ (ξ ,0)

Gδ (z,ξ ,u) =
∫

δ

0
e−sad f̄+uḡg(z,ξ )ds

Bδ (ξ ,u) =
∫

δ

0
e−sada+ub b(ξ )ds.

When necessary, one compactly rewrites (13) as

x+ =F̄δ
0 (x);

dx+(u)
du

= Ḡδ (x+(u),u)

with F̄δ
0 (·) = col(Fδ

0 (·), aδ
0 (·)) and Ḡδ (·) = col(Gδ (·), Bδ (·)).

2ḡ(z,ξ ) = col(g(z,ξ ),b(ξ ))
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B. Problem statement
We address the problem of designing a sampled-data feedback making the closed-loop equilibrium of (8) S-GAS. In doing

so, we exploit the preservation of the feedforward structure of (8) under sampling and make extensive use of Lyapunov and
u-average passivity arguments to deduce the control law. Moreover, only the continuous-time assumptions of Theorem 4.1 are
shown to be sufficient to fulfill the goal.

V. SAMPLED-DATA STABILIZATION OF FEEDFORWARD DYNAMICS

Given (8) verifying the assumptions set in Theorem 4.1, the following three items will be proven over its sampled-data
equivalent model (12):

1) there exists a feedback u = uδ
0 (ξ ) (or simply uδ

0 when no confusion arises) ensuring GAS and LES of the equilibrium
of the ξ -dynamics (12b) (Theorem 5.1);

2) a new and explicitly δ -dependent Lyapunov function V δ (·) : Rnz ×Rnξ → R>0 can be constructed for the augmented
dynamics (12) (Proposition 5.1);

3) there exists an output mapping Y δ (z,ξ ,u) so that (12) is u-average passive from uδ
0 and ZSD with storage function

V δ (z,ξ ); accordingly, one can construct a sampled-data feedback ensuring GAS and LES of the equilibrium of the
complete cascade (12) (Theorem 5.2).

These three items will be repeated to deal with multiple cascade in Section VI so to get S-GAS of the overall (8).

Remark 5.1: As sketched in the introduction, all of the criteria and mappings involved in the passivation-based design and
Lyapunov analysis are, in general, different from the continuous-time ones although no further hypotheses are needed to ensure
their existence.

A. Stabilization of the ξ -subsystem
Given (8) with sampled-data equivalent model (12), let us first stabilize the ξ -dynamics (12b) through passivity-based design

in the u-average sense [34].

Theorem 5.1: Let (8b) satisfy Assumption 4.3 and be ZSD with respect to the output y0 = LbU(ξ ) and assume the linear
pair (∇a(0),b(0)) stabilizable. Then, the sampled-data system (12b) (equivalently, (13c)-(13d)) with output

Y δ
0 (ξ ,u) =

1
δ

LBδ (·,u)U(ξ ) (14)

is u-average passive. Moreover, the control u = uδ
0 (ξ ) solution to the equality

u =−Y δ ,av
0 (ξ ,u) (15)

makes the closed-loop equilibrium of (8b) S-GAS and S-LES.

Proof: From Assumption 4.3 one verifies that, for any ξk = ξ (kδ ), k ≥ 0 and u = 0

U(ξ+
k (0))−U(ξk) =U(aδ

0 (ξk))−U(ξk)

=
∫ (k+1)δ

kδ

LaU(ξ (s))ds≤ 0

over the free evolution ξ̇ = a(ξ ) and at any sampling instant t = kδ . Substituting this inequality into the increment

∆kU(ξ ) =U(ξ+
k (0))−U(ξk)+

∫ uk

0
LBδ (·,v)U(ξ+(v))dv

one gets u-average passivity with respect to (14); i.e.

∆kU(ξ )≤ uk

( 1
uk

∫ uk

0
LBδ (·,v)U(ξ+(v))dv

)
= δukY

δ ,av
0 (ξ ,uk).

GAS of the equilibrium under the feedback (15) follows provided (12b) with output mapping Y δ
0 (ξ ,0) is ZSD. To this end, it

is easily verified that the largest positively invariant set contained in {x ∈Rn | LBδ (·,0)U(ξ+(0)) = 0} coincides with the largest
positively invariant set contained in {x ∈ Rn | LbU(ξ ) = 0}. Furthermore, when u = 0 the sampled-data and continuous-time
trajectories coincide at any sampling instants. Thus, stability of ξk+1 = aδ

0 (ξ ), conditionally to Z, follows. Finally LES of (12b)
(equivalently, (13c)-(13d)) is implied by stabilizability in first approximation of (8b). /

Remark 5.2: The output (14) making the sampled-data system (12b) u-average passive is different from the continuous-time
one since it is explicitly dependent on the control and smoothly parametrized by the sampling period. More specifically, it
rewrites as a series expansion in powers of δ of the form

Y δ
0 (ξ ,u) =LbU(ξ )− δ

2
LadabU(ξ )+

δ 2

3!
La+ubLadabU(ξ )+O(δ 3)

so getting Y δ
0 (ξ ,u)→ LbU(ξ ) as δ → 0 (i.e., the continuous-time passivating output).
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B. A Lyapunov function for the augmented cascade

Let us now consider the closed-loop dynamics (8) under piecewise constant feedback uk = uδ
0 (ξk) defined in (15) which is

governed, for t ∈ [kδ ,(k+1)δ [, by the differential equations

ż(t) = f (z)+ϕ(z,ξ )+g(z,ξ )uδ
0 (ξk) (16a)

ξ̇ (t) =a(ξ )+b(ξ )uδ
0 (ξk). (16b)

In the sequel, we investigate on the existence of a Lyapunov function for (16) of the form

V δ (z,ξ ) =U(ξ )+Ψ
δ (z,ξ )+W (z) (17)

where the cross term Ψδ (z,ξ ) is defined so to ensure, at any sampling instant, ∆kV δ (z,ξ )≤ 0 along the trajectories of (16).

The cross term Ψδ (·) is, in general, different from the continuous-time one Ψ(·) in (9); this is motivated by the fact that
the closed-loop trajectories of (16) and (10) differ at the sampling instants. However, the existence of Ψδ (z,ξ ) can be proven
under the same Assumptions 4.1, 4.2 and 4.3 as in continuous time. As detailed in Section VII-B, its construction can be
worked out through its series expansion in powers of δ of the form

Ψ
δ (z,ξ ) = Ψ0(z,ξ )+∑

i≥1

δ i

(i+1)!
Ψi(z,ξ ) (18)

around the continuous-time solution Ψ0(z,ξ ) = Ψ(z,ξ ).
Before stating the result, let us note that, when defining V δ (·) as in (17), the inequality below is easily verified along the

trajectories of (16)

∆kV δ (z,ξ ) =∆kΨ
δ (z,ξ )+∆kW (z)+∆kU(ξ )

≤∆kΨ
δ (z,ξ )+

∫ (k+1)δ

kδ

L
ϕ+uδ

0 (ξk)g
W (z(s),ξ (s))ds

because, by Assumption 4.2, L fW (z) ≤ 0 and ∆kU(ξ ) ≤ 0 by construction of uδ
0 (ξk) in Theorem 5.1. It follows that for

guaranteeing that V δ (·) is non increasing, the cross term Ψδ (·) should satisfy the equality

∆kΨ
δ (z,ξ ) =−

∫ (k+1)δ

kδ

L
ϕ+uδ

0 (ξk)g
W (z(s),ξ (s))ds (19)

along the trajectories of (16).

Proposition 5.1: Let (8) verify Assumptions 4.1 to 4.3. Then, the solutions of (16) are bounded at any k≥ 0 and (19) admits
a solution Ψδ (·) : Rnz ×Rnξ → R of the form

Ψ
δ (z,ξ ) =

∞

∑
`=0

∫ (`+1)δ

`δ
L

ϕ+uδ
0 (ξ`)g

W (z(s),ξ (s))ds (20)

that is continuous. Furthermore, V δ (z,ξ ) : Rnz ×Rnξ → R defined as in (17) is a positive definite and radially unbounded
Lyapunov function for (16) at any sampling instant t = kδ , k ≥ 0 and, equivalently, for (12) under uk = uδ

0 (ξk) as in (15).
Proof: The proof of the existence of the sampled-data cross term follows the lines of the continuous-time case [2]. It is

achieved by showing that the z-dynamics remains bounded for k ≥ 0 and that the terms in the sum in the right hand side of
(20) are positive and bounded. As far as boundedness of z is concerned, from Assumption 4.1 one computes

∆kW (z)≤
∫ (k+1)δ

kδ

‖∇W (z(s))‖(γ0(‖ξ (s)‖)+ γ1(‖ξ (s)‖)‖z(s)‖)ds

for some K -functions γ0(·) and γ1(·). Moreover, because of LES of (16a), there exists a K -function γ(·) such that

∆kW (z)≤
∫ (k+1)δ

kδ

‖∇W (z(s))‖(γ(‖ξ (s)‖)+ γ(‖ξ (s)‖)‖z(s)‖)ds.

From now on, let us assume that ‖z(s)‖ > 1 in the sampling interval (the result is straightforward if not). Accordingly, one
gets

∆kW (z)≤ c
∫ (k+1)δ

kδ

γ(‖ξ (s)‖)W (z(s))ds. (21)

By construction of uδ
0 (·) one has ∆kU(ξ )≤−δ‖Y δ ,av

0 (ξ )‖2 ensuring GAS and LES of the closed-loop equilibrium of (12b);
namely, when ξ is sufficiently close to the origin

‖ξk+1‖ ≤ e−αδk
γξ (‖ξ‖)
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for some K -function γξ (·), constant α > 0 and initial condition ξ0 = ξ . As a consequence, by rewriting (21) as∫ (k+1)δ

kδ

Ẇ (z(s))ds≤ c
∫ (k+1)δ

kδ

γ(‖ξ (s)‖)W (z(s))ds.

and exploiting LES of the closed-loop equilibrium of (12b), one gets

W (zk+1)≤ ecδ (e−αδ−1)γ(‖ξk‖)W (zk)

so proving ∆kW (z)≤ 0 and thus GS of the equilibrium of (12) in closed-loop.
Since W (z) is radially unbounded, one has that z and ‖∇W (z)‖ stay bounded for k ≥ 0. Thus, one deduces for a suitable

λ δ ∈ (0,1) ∫ (k+1)δ

kδ

L
ϕ+uδ

0 gW (z(s),ξ (s))ds≤ δγ1(‖(z,ξ )‖)λ kδ

so concluding that
∫ (k+1)δ

kδ
L

ϕ+uδ
0 (ξk)g

W (z(s),ξ (s))ds is summable for k≥ 0 and that (20) exists and is bounded for all bounded
(z,ξ ). The remaining part of the proof follows the lines of the discrete-time one as developed in [22], [23] in discrete time. /

Remark 5.3: The equality (19) rewrites in integral-differential form as∫ (k+1)δ

kδ

L f̄+uδ
0 (ξk)ḡ

Ψ
δ (z(s),ξ (s))ds =−

∫ (k+1)δ

kδ

L
ϕ+uδ

0 (ξk)g
W (z(s),ξ (s))ds

so extending to the sampled-data context the partial differential equation (11). In Section VII-B, it will be instrumental to
express the integral-differential equation (19) as an infinite number of partial differential equations.

Remark 5.4: The construction of the cross term might be carried out by considering the sampled-data equivalent model
(12) under uk = uδ

0 (ξk) as a purely discrete-time system [23]. Namely, one would look for a Lyapunov function Vd(z,ξ ) =
U(ξ )+W (z)+Ψd(z,ξ ) where the new cross term should be chosen to satisfy the equality

∆kΨd(z,ξ )
∣∣
u=uδ

0 (ξ )
=−W

(
f δ (z)+ϕ

δ (z,ξ )+gδ (z,ξ ,uδ
0 (ξ ))

)
+W ( f δ (z)). (22)

The above equality is in general different and more conservative than (19) and its solvability requires further assumptions than
the continuous-time ones. As a matter of fact, (22) does not take into account the continuous-time nature of the plant and the
properties of the original vector fields defining its dynamics. Specifically, the discrete-time approach tends to erase even the
terms in the right-hand side of (22) whose sign is well-defined because of Assumption 4.2 as one gets∫ (k+1)δ

kδ

L fW (z(s))ds =W ( f δ (z))−W (z)+Θ
δ (z,ξ )≤ 0

where the term

Θ
δ (z,ξ ) =

∫ (k+1)δ

kδ

∫
ξ

0
∇ν

(
esL f̄ (·,ν)L f (·)W (z)

)
dνds+

∫ (k+1)δ

kδ

∫ uδ
0 (ξ )

0
∇u
(
esL f̄ (·,ξ )+uLḡ(·,ξ )L f (·)W (z)

)
duds

is erased by (22) although the corresponding contribution in ∆kVd(z,ξ ) is negative definite.

Remark 5.5: Equalities (19) and (22) come to coincide whenever the dynamics is in strict-feedforward form (i.e., when
f (z) = Fz and the coupling vector fields do not depend on z). In that case, the construction of the cross term follows the lines
of the discrete-time case by underlying some geometric properties yielded by the design. For the sake of space, it will be
omitted (see [22], [23] for further details).

C. Sampled-data passivity-based feedforwarding

Once a Lyapunov function V δ (z,ξ ) is constructed over (16), one can verify that the sampled dynamics (12) (or, equivalently,
(13)) is u-average passive from uδ

0 (ξ ) with respect to a suitably defined output mapping. For this purpose, when u = uδ
0 (ξ ),

one considers the inequality

∆kV δ (z,ξ )≤U(ξ+(uδ
0 (ξ )))−U(ξ )+

∫ u

uδ
0 (ξ )

LḠδ (·,v)V
δ (z+(v),ξ+(v))dv (23)

with
U(ξ+(uδ

0 (ξ )))−U(ξ )≤−δ‖Y δ ,av
0 (ξ )‖2

by construction of uδ
0 (ξ ) and with

ξ
+(uδ

0 (ξ )) = aδ (ξ ,uδ
0 (ξ )).
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Accordingly, any controller u making the second part of the right hand side of (23) negative achieves GAS of the equilibrium
of the complete cascade (12). This is resumed in the main Theorem below.

Theorem 5.2: Let (8) verify Assumptions 4.1 to 4.3. Let (8b) with output y0 = LbU(ξ ) be ZSD and stabilizable in first
approximation. Then, the following holds:

1) the sampled-data equivalent dynamics (12) with output

Y δ
1 (z,ξ ,u) =

1
δ

LḠδ (·,u)V
δ (z,ξ )

is u-average passive from uδ
0 (z,ξ ) as in (15) with storage function V δ (z,ξ ) in (17);

2) the feedback law u = uδ
1 (z,ξ ) solution to the implicit equality

u =−Y δ ,av
uδ

0 (ξ )
(z,ξ ,u) (24)

makes the closed-loop equilibrium of (8) S-GAS;
3) if the dynamics (8b) is stabilizable in first approximation, u = uδ

1 (z,ξ ) makes the equilibrium of (8) S-LES.

Proof: Rewriting (23) as

∆kV δ ≤−δ‖Y δ ,av
0 (ξ ,uδ

0 (ξ ))‖2 +δuY δ ,av
uδ

0 (ξ )
(z,ξ ,u)+δY δ ,av

0 (ξ ,uδ
0 (ξ ))Y

δ ,av
uδ

0 (ξ )
(z,ξ ,u)

with by definition

Y δ ,av
uδ

0 (ξ )
(z,ξ ,u) =

1
u−uδ

0 (ξ )

∫ u

uδ
0 (ξ )

Y δ
1 (z+(v),ξ+(v),v)dv

one deduces (through the Triangle inequality3)

∆kV δ (z,ξ )≤− δ

2
‖Y δ ,av

0 (ξ ,uδ
0 (ξ ))‖2 +δuY δ ,av

uδ
0 (ξ )

(z,ξ ,u)

+
δ

2
‖Y δ ,av

uδ
0 (ξ )

(z,ξ ,u)‖2.

The feedback law (24) enables to conclude

∆kV δ (z,ξ )≤−δ

2
‖Y δ ,av

0 (ξ ,uδ
0 )‖2− δ

2
‖Y δ ,av

uδ
0 (ξ )

(z,ξ ,uδ
1 )‖2.

This implies that the largest invariant set contained into {(z,ξ ) ∈ Rnz ×Rnξ : ‖Y δ ,av
0 (ξ ,uδ

0 (ξ ))‖+‖Y
δ ,av
uδ

0 (ξ )
(z,ξ ,uδ

1 (z,ξ ))‖ ≡ 0}

coincides with the largest invariant set contained into {ξ ∈ Rnξ : ‖Y δ ,av
0 (ξ ,uδ

0 (ξ ))‖ ≡ 0}. From ZSD of (8b) with respect to
y0 = LbU(ξ ), GAS of the closed-loop equilibrium of (12) under (24) follows. /

Remark 5.6: From equality (24), it can be verified that when z≡ 0, one recovers uδ
1 (0,ξ ) = uδ

0 (ξ ).

VI. THE CASE OF MULTIPLE CASCADE INTERCONNECTION

The procedure here presented extends to multiple interconnected feedforward dynamics of the form

żi = f i(zi)+ϕ
i(zi, . . . ,z1,ξ )+gi(zi, . . . ,z1,ξ )u (25a)

ξ̇ =a(ξ )+b(ξ )u (25b)

with zi ∈ Rnzi and i = 1, . . . ,N. Accordingly, we suppose that Assumptions 4.1 to 4.3, with required extensions, hold on the
vector fields defining the dynamics (25).

Assuming that the linearization of (25) at the origin is stabilizable, then GAS and LES of the closed-loop equilibrium can
be achieved trough an iterative procedure by proving passivity (in the u-average sense), at each step i, with respect the output
Y δ

i (·) deduced from the corresponding Lyapunov function V δ
i (·). Given (25), let

zi+ = f δ
i (z

i)+ϕ
δ
i (z

i, . . . ,z1,ξ ), (26a)
dzi+(u)

du
=Gδ

i (z
i+(u), . . . ,z1+(u),ξ+(u),u) (26b)

ξ
+ =aδ

0 (ξ ) (26c)
dξ+(u)

du
=Bδ (ξ+(u),u) (26d)

3 pq≤ 1
2ε

p2 + ε

2 q2 for ε > 0
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be the (F0,G) representation of its sampled-data equivalent model. Introduce, for i = 1, . . . ,N and the sake of compactness, the
notations below

ξ
i> = (zi>,ξ i−1>)

Bδ>
i (ξ

i,u) = (Gδ>
i (z

i, . . . ,z1,ξ ,u),Bδ>
i−1(ξ

n−1))

a>i (ξ
i) = ( f>i (zi)+ϕ

>(zi, . . . ,z1,ξ ),a>i−1(ξ
i−1))

b>i (ξ
i) = (g>i (z

i, . . . ,z1,ξ ),b>i−1(ξ
i−1))

with ξ 0 = ξ , Bδ
0 (ξ

0,u) = Bδ (ξ ,u), a0(ξ
0) = a(ξ ) and b0(ξ

0) = b(ξ ).

Step 0: The dynamics (26c)-(26d) is u-average passive (at the sampling instants) with output Y δ
0 (ξ ,u) = 1

δ
LBδ (·,u)U(ξ+(u))

and the feedback u = uδ
0 (ξ ) the solution of the implicit algebraic equality

u =−1
u

∫ u

0
Y δ

0 (ξ+(v),v)dv

ensures S-GAS and S-LES of the ξ -dynamics in closed-loop.
Step 1: Denoting V δ

0 (ξ ) =U(ξ ), then for any t ∈ [kδ ,(k+1)δ [ the dynamics

ż1(t) = f1(z1(t))+ϕ1(z1(t),ξ (t))+g1(z1(t),ξ (t))uk (27a)

ξ̇ (t) =a(ξ (t))+b(ξ (t))uk (27b)

is S-GS and its sampled-data equivalent is u-average passive from uδ
0 (ξk) with storage function

V δ
1 (ξ 1) =V δ

1 (z1,ξ ) =W1(z1)+Ψ
δ
1 (z

1,ξ )+V δ
0 (ξ )

with

Ψ
δ
1 (z

1,ξ ) =
∞

∑
`=0

∫ (`+1)δ

`δ
L

ϕ1+uδ
0 (ξ`)g

1W1(z1(s),ξ (s))ds

and output Y δ
1 (ξ 1,u) = 1

δ
LBδ

1 (·,u)
V δ

1 (ξ 1). The feedback u = uδ
1 (ξ

1) solution of the implicit algebraic equality

u =− 1
u−uδ

0 (ξ
0)

∫ u

uδ
0 (ξ

0)
Y δ

1 (ξ 1+(v),v)dv

ensures S-GAS and S-LES of the equilibrium of (27).
At this point, one adds the z2-dynamics to (27) in closed-loop under u = uδ

1 (ξ
1) and returns to Step 0. This is iteratively

performed until recovering the zN-dynamics. For i≥ 2, one iterates the following steps.
Step i-1: The dynamics

ξ̇
i−1(t) =ai−1(ξ

i−1(t))+bi−1(ξ
i−1(t))uk (28)

is S-GAS and S-LES under feedback uδ
i−1(ξ

i−1).
Step i: The dynamics

żi(t) = f i(zi(t))+ϕ
i(zi(t),ξ i−1(t))+gi(zi(t),ξ i−1(t))uk

ξ̇
i−1(t) =ai−1(ξ

i−1(t))+bi−1(ξ
i−1(t))uk (29)

in closed loop with uδ
i−1(ξ

i−1) verifies Assumptions 4.1 to 4.3 and is S-GS. Furthermore, it is u average passive around uδ
i−1(ξ

i)

with output Y δ
i (ξ i,u) = 1

δ
LBδ

i (·,u)
V δ

i (ξ i) and storage function

V δ
i (ξ i) =V δ

i (zi,ξ i−1) =Wi(zi)+Ψ
δ
i (z

i,ξ i−1)+V δ
i−1(ξ

i−1)

with

Ψ
δ
i (z

i,ξ i−1) =
∞

∑
`=0

∫ (`+1)δ

`δ
Lϕ̃ i(·,ξ i−1(s))Wi(zi(s))ds

ϕ̃
i(zi,ξ i−1) = ϕ

i(zi,ξ i−1)+gi(zi,ξ i−1)uδ
i−1(ξ

i−1
` ).

The feedback u = uδ
i (ξ

i) solution to

u =− 1
u−uδ

i−1(ξ
i−1)

∫ u

uδ
i−1(ξ

i−1)
Y δ

i (ξ i+(v),v)dv
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makes (29) S-GAS and S-LES in closed loop.
Theorem 6.1: Let the continuous-time dynamics (25) be stabilizable in first approximation and suppose that, for any i =

1, . . . ,N, (25a) verifies Assumptions 4.1 and 4.2. Moreover, let (25b) verify Assumption 4.3 and be ZSD with output y0 =
LbU(ξ ). Then, the following holds:

1) the sampled-data equivalent model (26) is u-average passive from uδ
N−1(ξ

N−1) with output

Y δ
N (ξ N ,u) =

1
δ

LBδ
N(·,u)

V δ
N (ξ N)

and storage function

V δ
N (ξ N) =U(ξ )+

N

∑
i=1

(
Wi(zi)+Ψ

δ
i (z

i, . . . ,z1,ξ )
)
;

2) the control law u = uδ
N(ξ

N) solution to the implicit equality

u =− 1
u−uδ

N−1(ξ
N−1)

∫ u

uδ
N−1(ξ

N−1)
Y δ

N (ξ N+(v),v)dv

makes the equilibrium of (25) S-GAS and S-LES.

Remark 6.1: Whenever zi ≡ 0, one gets uδ
i (ξ

i)
∣∣
zi=0 = uδ

i−1(ξ
i−1). This implies that, for ` = 1, . . . ,N and z` ≡ 0, then

uδ
N(ξ

N)
∣∣
z`=0 = uδ

0 (ξ ).

Remark 6.2: When specifying this procedure to strict-feedforward structures, at each step, the design yields the definition
of a control that makes a certain stable manifold controlled invariant. We refer to [22], [23] for further details as in that case
it follows the lines of the discrete-time case.

VII. APPROXIMATE SOLUTIONS AND CONSTRUCTIVE ASPECTS

Some computational aspects regarding the three steps of the design procedure are discussed below.

A. The u-average passivity based stabilizing controller uδ
0 (ξ )

By definition of Bδ (ξ ,u) and Remark 5.2, the u-average of the output Y δ
0 (ξ ,u) in (14) can be described as a series expansion

in powers of δ around the continuous-time output y0 = LbU(ξ );namely, one gets

Y δ ,av
0 (ξ ,u) =LbU(ξ )+

δ

2

(
(La +uLb)LbU(ξ )

+LbLaU(ξ )
)
+O(δ 2).

By invoking the Implicit Function Theorem, a unique solution uδ
0 (ξ ) to (15) exists in the form of the following series expansion

in powers of δ

uδ
0 (ξ ) = u0

0(ξ )+∑
i≥1

δ i

(i+1)!
ui

0(ξ ).

Moreover, uδ
0 (ξ ) can be computed as an inverse series around the continuous-time feedback solution (i.e., u0

0(ξk) = u0(ξk)).
Exploiting the dependency in δ of the exact solution, an executive algorithm can be worked out to compute the successive
additional terms ui

0(ξ ) (see [24] for details). For the first terms, one gets

u0
0(ξk) =−LbU(ξk) = u0(ξk) (30a)

u1
0(ξk) =−La+u0

0bLbU(ξk)−LbLaU(ξk) (30b)

= La+u0
0bu0(ξk)−LbLaU(ξk)

u2
0(ξk) = L2

a+u0
0bu0(ξk)+

3
2

u1
0Lbu0(ξk)

+
(

La+u0
0bLb +LbLa

)
LaU(ξk). (30c)

Whenever no confusion arises, for i ≥ 0, ui
0 will be denoting the constant value ui

0(ξk) for t ∈ [kδ ,(k+1)δ [ (so implying
u̇i

0(ξk)≡ 0 and all the higher order time derivatives).
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B. Construction of the sampled-data cross term Ψδ (z,ξ )

Some insights about the construction of the sampled-data pair (Ψδ ,uδ
0 ) in terms of the continuous-time one (Ψ,u0) are

given below.
Proposition 7.1: Let (8) verify Assumptions 4.1 to 4.3, then (19) admits a solution Ψδ : Rnz ×Rnξ → R of the form (18)

around the continuous-time one defined in (9), with

∑
i≥1

δ i

(i+1)!
Ψi(z,ξ ) =

∞

∑
`=0

∫ (`+1)δ

`δ
(u0(ξ (s))−uδ

0 (ξ`))Lḡ(Ψ+W )(s)ds (31)

where uδ
0 (ξ`) is described in (15) and (z,ξ ) = (z0,ξ0).

Proof: At first, we rewrite the continuous-time equality (11) as the equality between functions of the state (z,ξ ); i.e.

L f̄ Ψ(z,ξ )+LϕW (z,ξ ) =−u0(ξ )Lḡ(Ψ+W )(z,ξ ).

Thus, for any uδ
0 (ξk),k ≥ 0 one obtains the equality

L f̄+uδ
0 (ξk)ḡ

Ψ(z,ξ )+L
ϕ+uδ

0 (ξk)g
W (z,ξ ) =−

(
u0(ξ )−uδ

0 (ξk)
)

Lḡ(Ψ+W )(z,ξ ) (32)

which proves that

L f̄+u0
0(ξk)ḡ

Ψ(zk,ξk)+L
ϕ+u0

0(ξk)g
W (zk,ξk) = 0

in O(δ ). This first argument shows that the solution Ψδ (·) to (19) can be described through its series expansion around the
continuous-time solution Ψ(·) as in (18). On the other hand, by integrating (32) over [kδ ,(k+ 1)δ [ along the sampled-data
dynamics (16), one gets for any k ≥ 0

∆kΨ(z,ξ )−∆kΨ
δ (z,ξ ) =−

∫ (k+1)δ

kδ

(
u0(ξ (s))−uδ

0 (ξk)
)

Lḡ(Ψ+W )(z(s),ξ (s))ds

which gives, by definition of Ψ(·) and Ψδ (·) in (9)-(20)

Ψ
δ (z,ξ )−Ψ(z,ξ ) =−

∞

∑
`=0

∫ (`+1)δ

`δ

(
u0(ξ (s))−uδ

0 (ξ`)
)

Lḡ(Ψ+W )(z(s),ξ (s))ds

and thus (31). /
Equality (31) clearly emphasizes the impact of the piecewise constant nature of the feedback uk = uδ

0 (ξk) over the redefinition
of the cross term for the sampled-data dynamics with respect to the continuous-time couple (u0,Ψ). Expanding (31) and
comparing the terms of the same power in δ , one gets any Ψi(z,ξ ) is solution to a partial differential equation; for the first
ones, one gets

L f̄0(k)Ψ1 =−
(

u1
0(ξk)−L f̄0(k)u0

∣∣
kδ

)
Lḡ(W +Ψ) (33a)

L f̄0(k)Ψ2 =−
(

u2
0(ξk)−

3
2

u1
0(ξk)Lḡu0

∣∣
kδ

(33b)

−L2
f̄0(k)

u0
∣∣
kδ

)
Lḡ(W +Ψ)

−
(3

2
u1

0(ξk)−L f̄0(k)u0
∣∣
kδ

)
L f̄0(k)Lḡ(W +Ψ)

− 3
2

u1
0(ξk)LḡΨ1−

3
2

L2
f̄0(k)

Ψ1

where, for the sake of compactness, f̄0(k) = f̄ + u0
0(ξk)ḡ denotes the closed-loop dynamics under the piecewise constant

feedback u0
0(ξk).

C. The complete sampled-data stabilizing controller uδ
1 (z,ξ )

As already commented, a unique solution to the nonlinear equality (24) exists by direct application of the Implicit Function
Theorem. The solution is provided as a formal series in powers of δ . Exact solutions can be hardly computed so that only
approximation of (34) can be implemented in practice. By rewriting V δ (z,ξ ) =V (z,ξ )+∑i≥1

δ i

(i+1)! Ψi(z,ξ ), one gets for the
first terms

uδ
1 (z,ξ ) = u0

1(z,ξ )+∑
i≥1

δ i

(i+1)!
ui

1(z,ξ ) (34)
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with (when discarding the state dependency)

u0
1 =−LḡV (35a)

u1
1 =−L f̄+u0

1ḡLḡV −LḡΨ1−LḡL f̄V −u0
0L2

ḡV (35b)

=−LḡΨ1 +L f̄+u0
1ḡu0

1−LḡL f̄+u0
0ḡV

u2
1 =−LḡΨ2 +L2

f̄+u0
1ḡu0− 1

2
(u1

1 +3u1
0)L

2
ḡV − 3

2
L f̄+u0

0ḡLḡΨ1

− 3
2

LḡL f̄+u0
1ḡΨ1−L f̄+u0

0ḡLḡL f̄+u0
1ḡV −LḡL2

f̄+u0
0ḡV

− (u0
1−u0

0)Lḡ

(
LḡL f̄+u0

1ḡ +L f̄+u0
0ḡLḡ

)
V. (35c)

Remark 7.1: These approximate solutions coincide, under suitable modifications of the indices, to any other issued from any
step of the general procedure sketched in Section VI.

The stabilizing properties of approximate solutions of this form have been discussed in [29] and [30]. Specifically, pth-order
approximate feedback are defined as truncations at any finite order p ∈ N of the series expansion (34); namely,

uδ [p]
1 (z,ξ ) = u0

1(z,ξ )+
p

∑
i=1

δ i

(i+1)!
ui

1(z,ξ ). (36)

Moreover, we refer to any ui
1(z,ξ ) in (36) for i≥ 1 as corrector terms. Summarizing, it was proven that those feedbacks ensure

practical asymptotic stability in closed-loop so that trajectories will converge onto a neighborhood of the origin whose size
is determined by the length of δ p. Thus, the order of approximation needs to be chosen as a trade-off among computational
effort and required performances in closed loop.

D. Example

Consider the simple cascade dynamics

ż = ξ z; ξ̇ = u. (37)

According to Section III-A, (37) admits an exactly computable sampled-data equivalent model

zk+1 = eδ (ξk+
δ
2 uk)zk; ξk+1 = ξk +δuk (38)

which clearly preserves the feedforward structure with nonlinear dependency in uk. The equivalent (F0,G) representation takes
the form

z+ = eδξ z;
dz+(u)

du
=

δ 2

2
e−δ (ξ+(u)− δ

2 u)z+(u)

ξ
+ = ξ ;

dξ+(u)
du

= δ .

Finally, one verifies that the continuous-time dynamics (37) satisfies Assumptions 4.1 and 4.2 with W (z) = 1
2 z2 and

Assumption 4.3 with y0 = ξ , U(ξ ) = 1
2 ξ 2.

On the basis of Section V-A, one computes the average output Y δ ,av
0 (ξk,uk) = ξk +

δ

2 uk and the control solution uδ
0 = − 2ξk

2+δ

that is always well defined since δ ≥ 0 and recovers the continuous-time solution when δ = 0. The increment of the Lyapunov
function along the ξ -trajectories gives U(ξk+1)−U(ξk) =−

4δξ 2
k

(δ+2)2 . It can be immediately verified that the right-hand side of
(19) specifies as ∫

δ

0
z2(t)ξ (t)dt =

∫
δ

0

(
1− 2t

δ +2

)
e2t(1− 2t

δ+2 )ξk dtz2
kξ

2
k

=
(

e2δ (1− δ

δ+2 )ξk −1
)

z2
k .

Exploiting that

zk =e(1−(−
δ−2
δ+2 )

k)ξ z; ξk =
(
− δ −2

δ +2

)k
ξ

(20) reduces to

Ψ
δ (z,ξ ) =

1
2
(e2ξ −1)z2. (39)
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The final Lyapunov function V (z,ξ ) = 1
2 ξ 2 + 1

2 e2ξ z2 verifies

∆kV (z,ξ )≤U(ξk+1)−U(ξk) =−
4δ

(δ +2)2 ξ
2
k .

Note that, in this case, the cross term Ψδ (z,ξ ) in (39) verifies Ψ1 ≡Ψ2 ≡ 0. Although it might seem restricting, approximations
of the δ -dependent cross term are unavoidable in order to compute and implement control solutions.
Finally, the overall control is computed by solving (24) in O(δ 2) as detailed in the previous sections. The output and the
control approximated at the first order get the form

Y δ (z,ξ ) = (1+
δ

2
)e2ξ z2 +ξ +O(δ 2)

uδ
1 (z,ξ ) =−e2ξ z2−ξ +

δ

2
(e4ξ z4−2ξ e2ξ z2 +ξ )+O(δ 2).

From the above expressions it is easy to verify that for δ → 0 the continuous-time solution is recovered.

Simulations: The proposed control strategy is compared through simulations to the continuous-time one and the so-called
emulated control (i.e., when implementing the continuous feedback by means of sample-and-hold devices). We implement
approximate solutions of sampled-data feedback as in (36) for p = 1 and p = 2. The results are depicted in Figures 1(a), 1(b)
and 1(c) for initial condition (z0,ξ0) = (0.5,0.5). They clearly show that, as the sampling period increases, the proposed control
strategy achieves very good performances (with smooth trajectories and even with only one corrector term) especially when
the emulated one degrades or even fails (Figures 1(c)). This empirically proves the efficiency of the sampled-data direct design
(even with only one corrector term) when compared to mere sample-and-hold implementation [32], [33] of the continuous-time
feedback. Moreover, contrarily to the emulated feedback, the evolutions of the Lyapunov function along the trajectories under
the proposed sampled-data feedback are decreasing even when δ significantly increases. More in detail, the continuous-time
V (z,ξ ) is no longer a Lyapunov function for the closed-loop system under emulated feedback. Finally, the simulated results
underline the nested nature of the feedback in the sense of Remark 5.6; namely, first one drives z to zero so recovering the
integrator ξ -dynamics ξk+1 = ξk + δuk evolving according to the feedback computed at the first step of the design. In this
sense, when the emulated feedback is implemented (i.e., u0(ξk) = −ξk) and z ≡ 0 the reduced linear ξ -dynamics is clearly
unstable for higher values of δ as Figure 1(c) clearly underlines; in this same scenario, the dynamics under the proposed
feedback uδ

1 (z,ξ ) still shows good stabilizing performances.

VIII. CONCLUSIONS

This paper presents an iterative procedure for stabilizing general feedforward dynamics under sampling exploiting the
preserved triangular structure. By suitably shaping the mappings and functions involved in the design, one shows how to
construct a sampled-data stabilizing feedback under the same assumptions as in continuous time. The notion of u-average
passivity around a nominal feedback is here introduced and is crucial for making the proposed design iterative. This study
extends and concludes some previous works concerned with strict-feedforward systems [20] or more general classes under
some stronger assumptions [21], [35]. The proposed methodology is in between the continuous and purely discrete-time cases
as it requires less demanding assumptions for ensuring the existence of a stabilizing feedback by exploiting the properties of
the continuous-time dynamics. The design is based on the definition of a cross term for the construction of a suitable control
Lyapunov function and thus requires the explicit computation of the trajectories of the system over any sampling interval (as
even in continuous time). Current work is toward the definition of modified Lyapunov functions to weaken this demand [42].
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