
HAL Id: hal-01923729
https://hal.science/hal-01923729v2

Submitted on 15 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective diffusivity of microswimmers in a crowded
environment

Marvin Brun-Cosme-Bruny, Eric Bertin, Benoit Coasne, Philippe Peyla,
Salima Rafaï

To cite this version:
Marvin Brun-Cosme-Bruny, Eric Bertin, Benoit Coasne, Philippe Peyla, Salima Rafaï. Effective
diffusivity of microswimmers in a crowded environment. The Journal of Chemical Physics, 2019,
�10.1063/1.5081507�. �hal-01923729v2�

https://hal.science/hal-01923729v2
https://hal.archives-ouvertes.fr
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The microalga Chlamydomonas Reinhardtii (CR) is used here as a model system to study the
effect of complex environments on the swimming of micro-organisms. Its motion can be modeled
by a run and tumble mechanism so that it describes a persistent random walk from which we can
extract an effective diffusion coefficient for the large-time dynamics. In our experiments, the complex
medium consists in a series of pillars that are designed in a regular lattice using soft lithography
microfabrication. The cells are then introduced in the lattice, and their trajectories within the
pillars are tracked and analyzed. The effect of the complex medium on the swimming behavior of
microswimmers is analyzed through the measure of relevant statistical observables. In particular,
the mean correlation time of direction and the effective diffusion coefficient are shown to decrease
when increasing the density of pillars. This provides some bases of understanding for active matter
in complex environments.

I. INTRODUCTION

Self-propelled particles represent an out-of-
equilibrium system of great interest for a large
community of physicists [1]. Most microswimmers,
natural or artificial, perform a “run and tumble”
dynamics of swimming [2]. This terminology, ini-
tially dedicated to E-coli bacteria, describes an al-
ternation of directed motion at a given velocity -
the runs - and reorientation of the direction - the
tumbles. Other dynamics of swimming consist in
Active Brownian particles where the direction an-
gle changes continuously in a diffusive manner [3].
These modes of swimming have been shown to be
crucial in the search of chemicals or nutrients [4].
Depending on systems, the decorrelation of direc-
tion emerges from different mechanisms. In bac-
teria, tumbles are due to the unbundling of flag-
ella [5], in the microalga Chlamydomonas Rein-
hardtii, tumbles have been shown to be due to
asynchronous periods of beating [6]. In artificially
built microswimmers such as Janus particles, ther-
mal rotational Brownian motion is usually respon-
sible for the randomizsation of orientation [7, 8].
Most of the time, the swimming dynamics can be
fairly described as a persistent random walk.

Hence, considering large enough time scales,
microswimmers explore their environment in a
diffusive-like manner. A nonequilibrium statisti-
cal physics framework can then be built in order
to deeper understand the behavior of active matter
[9]. To predict active matter behavior in realistic
conditions such as crowded living tissues, suspen-
sions of cells or porous media, there is a major need
to understand the interaction of self-propelled par-
ticles with a complex environment [10].
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Here, we explore the effect of a complex envi-
ronment on the random walk behavior of Chlamy-
domonas Reinhardtii. Our experiments aim at pro-
viding a macroscopic and effective description of a
suspension of microswimmers in a regular lattice
of rigid pillars. Indeed, a number of theoretical
and numerical studies have been devoted to ex-
plore the effect of a random arrangement of obsta-
cles on the swimming behavior of active particles,
showing both transitions towards subdiffusive [11–
13], superdiffusive [12], localization or trapping be-
havior [11–15]. Even when the dynamics remains
diffusive, the behavior of the system is highly non-
trivial and a non-monotonicity of diffusivity as a
function of the persistence length of the active par-
ticles has also been reported [14]. One may also
wonder whether the presence of disorder in the
arrangement of obstacles is a key ingredient. In
this spirit, recent numerical and theoretical works
have investigated in detail the trajectories of active
particles in a regular lattice of pillars [15], possi-
bly with an applied flow [16]. Along this line, an
important question is whether the interaction of
microswimmers with the environment is rather of
hydrodynamic nature or purely steric [13, 15, 16].
On the experimental side, the available attempts
to address this question are (to our knowledge) still
scarce [13, 17, 18].

In this work, we study experimentally the large-
scale swimming dynamics of a natural microswim-
mer —Chlamydomonas Reinhardtii— within a reg-
ular lattice of micropillars. We show that the ef-
fective diffusivity of microswimmers is hindered by
the presence of obstacles, and that the distribution
of swimming directions is no longer isotropic. In
addition, a theoretical modeling in terms of an ef-
fective anisotropic scattering medium allows us to
relate the measured angular distribution of swim-
ming directions to the decrease of the effective dif-
fusion coefficient.
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II. MATERIALS AND METHODS

The green microalga Chlamydomonas Rein-
hardtii (CR) is a biflagellated photosynthetic cell
of about 10 µm diameter [19]. Cells are grown
under a 14h/10h light/dark cycle at 22 ◦C and
are harvested in the middle of the exponential
growth phase. This microalga propels itself in
a breaststroke-type swimming using its two front
flagella.

CR suspensions are used with no further prepa-
ration. Suspensions are dilute enough with a vol-
ume fraction of about 0.05%, so that hydrody-
namic interactions among the particles are neg-
ligible. The cells are then introduced within a
complex medium composed of a square lattice
of 200 µm-diameter pillars regularly spaced by a
surface-to-surface minimal inter-pillar distance d
(figure 1). The distance d between the surfaces
of the pillars ranges from 20 µm to 50 µm with
a 10 µm increment, and from 50 µm to 370 µm
with a 40 µm increment. This represents a poros-
ity δ = 1 − πR2/(d + 2R)2 ranging from 0.35 to
0.90. Pillars are made of transparent PDMS us-
ing soft lithography processes [20]. Their diameter
is kept constant to 200 µm. This is of the same
order as the persistence length of the swimming
dynamics of the cells (∼ 180µm). The height of
the pillars is 70 µm, which represents about 7 cell
diameters. Our control parameter is d, which con-
trols the density of the complex medium that the
cells experience.

The observations are made by means of bright
field microscopy. The chamber is observed under
an inverted microscope (Olympus IX71) coupled to
a CMOS camera (Imaging Source) used at a frame
rate of 15 frames per second. A low magnification
objective (×1.25) provides a wide field of view of
800 µm × 800 µm as well as a large depth of field.
The sample is enclosed in an occulting box with
two red filtered windows for visualisation. The red
filters prevent any parasite light that could trigger
phototaxis (i.e a biased swimming toward a light
source) [19, 21].

Particle tracking is performed using Trackpy
[22], a Python library based on Crocker and Grier’s
algorithm [23]. Relevant quantities such as the
mean square displacements (MSD) and the cor-
relation functions of directions are then extracted
from an ensemble average performed over long last-
ing movies (6 min).

Figure 1 shows the typical geometry and a set
of trajectories of cells measured over 10 seconds
for a given inter-pillar distance of 50 micrometers
(d = 50 µm) at a time interval of 1/15 s.

FIG. 1. Map of trajectories tracked over 10 seconds
within a square lattice of pillars with d = 50 µm at a
time interval of 1/15 s. The color is mapped on the
particle index.

III. RESULTS

A. Anisotropy

The first noticeable effect of the lattice of obsta-
cles onto the cells is an anisotropy of their swim-
ming directions. The squared lattice of pillars con-
strains the trajectories of microswimmers to a set
of privileged (x, y) directions as shown from the
orientation distribution plotted in figure 2.a. Here,
we define the orientations as the mean orientation
of the trajectory over 1 s. While orientations of mi-
croswimmers are isotropically distributed in a free
medium (d → ∞), the distributions show peaks
around π/2(mod π/2) when cells are placed within
the complex medium. This clearly demonstrates
the privileged directions taken by microswimmers.
This reflects that, most of the time, the pillars ori-
ent the swimming along corridors between pillars.
This effect becomes more and more pronounced as
d is decreased.

To try to better understand these results, we in-
troduce a relatively simple theoretical model con-
sisting of an active Brownian particle immersed in
an effective anisotropic scattering medium. The
active Brownian particle is characterised by its po-
sition r (in 2D) and an angle θ defining its direction
of motion. The particle moves at a constant speed
v0. In the absence of obstacles, the angle θ has a
purely diffusive dynamics:

ṙ = v0e(θ) , θ̇ = ξ(t) (1)

where ξ(t) is a white noise satisfying 〈ξ(t)〉 = 0
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and

〈ξ(t)ξ(t′)〉 = 2DR δ(t− t′) . (2)

The angular diffusion coefficient is related to the
persistence time t0 by t0 = 1/DR. To make the full
problem tractable, the lattice of pillars is modeled
as an effective anisotropic scattering medium, with
a probability rate

λ(θ) = λ0 − λ4 cos(4θ) . (3)

The two parameters λ0 and λ4 are constrained by
|λ4| ≤ λ0. After scattering, the new angle θ′ is ran-
domly chosen from a uniform distribution. The
model thus boils down to a combination of the
active Brownian particle and the run-and-tumble
model, with here an anisotropic tumbling rate.
Technical details are reported in Appendix A. Us-
ing some standard approximation techniques, we
eventually obtain the spatially averaged probabil-
ity distribution P (θ) of swimming directions θ

P (θ) =
1

2π

(
1 +

λ4

16DR + λ0
cos(4θ)

)
. (4)

We use this form to fit the experimental data, un-
der the assumption λ0 = λ4 = λ . The value of the
angular diffusion coefficient corresponding to 1/t0
is taken as DR = 0.37 s−1. This fitting procedure
thus allows us to determine the experimental val-
ues of λ for each pillar spacing as shown in figure
2.b.

This assumption has been observed to fit sat-
isfactorily the data when compared to a two-
parameter fitting procedure. This assumption is
strong and means that particles are mainly chan-
neled along the direction x or y where they travel
freely without collisions, trajectories running along
a line joining two centres of pillars are less likely.
This might be an effective way to take into account
hydrodynamic coupling between cells and pillars.

B. Mean square displacements and
correlations

From the measured trajectories, we evaluate and
plot in figure 3-a the mean square displacement
(MSD) 〈r2(t)〉 for different values of d ranging from
20 to 370 µm. In a free medium (i.e. without
pillars), the swimming of CR has been shown to be
well characterized by a persistent random walk [6,
24, 25] in absence of tropism. Hence, the behavior
of microswimmers can be modeled as a ballistic
motion at short timescales (below ∼ 1 s) and a
diffusive-like one at longer timescales. Here, we
assume that the MSD in the presence of obstacles

a

b

FIG. 2. a.Orientation distributions of Chlamydomonas
runs for different interpillar distances d. To do so,
the orientation is measured over 1 s. These distribu-
tions are fitted with Eq. (4), assuming λ0 = λ4 = λ.
b.Obtained values of anisotropy factor λ rescaled with
t0 as a function of the inverse interpillar d rescaled
with L0. The values were fitted from the orientation
distributions for each d.

can still be described by a persistent random walk
and we fit the curves in figure 3 with the following
semi-empirical equation:

〈r2(t)〉 = 4Defft− 2Deffteff

[
1− exp

(
−2t

teff

)]
(5)

where teff is the effective correlation time and Leff

the effective persistence length of the swimming.
In a free medium (d→∞), we denote by t0 and L0

the correlation time and persistence length respec-
tively. Experimental measurements give t0 = 2.7s
and L0 = 180µm.

In addition, we characterize independently the
persistence time by measuring the correlation func-
tion of direction defined as

C(t) = 〈k(τ) ·k(τ + t)〉,

where 〈. . . 〉 denotes an average over time τ and
over all tracked trajectories and k a unit vector
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a b

FIG. 3. a. Mean square displacements for several interpillar distances d. The inset shows the two limiting cases:
a slope of 2 in log − log representation followed by a linear regime at longer timescales. b. Correlation function
of direction as a function of time for different values of d.

along the trajectory (Figure 3-b). Correlations
with infinite decay time (C(t) = 1 for all t > 0)
correspond to swimming directions preserved over
arbitrarily long times characteristic of a purely bal-
listic regime; in contrast, a zero life-time (C(t) = 0
for all t > 0) corresponds to the standard ran-
dom walk behavior (analogous to Brownian mo-
tion). The measured correlation functions show
two characteristic times: the first one corresponds
to an helical shape [26] of the trajectory and the
second one represents the mean time of persistence
over which the swimming direction is preserved.
We extract the effective persistence time as follows
:

teff ≡
∫∞

0
t C (t) dt∫∞

0
C (t) dt

.

The extracted values of teff allows one to con-
strain the fitting procedure of equation (5) and
to evaluate Deff for different values of d as shown
in fig.4. Note that evaluating Deff directly from
the expression 1/2

∫∞
0

C (t) dt gives very similar
results (data not shown).

C. Diffusive regime

The long timescales dynamics can be then de-
scribed by a diffusive-like behavior. From the mea-
sured MSD and the correlation function of direc-
tion, we similarly obtain the effective diffusivity
Deff as a function of d/L0.

Figure 4 shows the experimentally measured ef-
fective diffusion coefficient Deff of microswimmers

within the lattice, normalized by the bulk diffu-
sion coefficient D0. These results are compared
with the theoretical prediction (see Appendix A)

D

D0
=

1 +
λ̃2
4

4(9+λ̃0)(16+λ̃0)

(1 + λ̃0)
(

1− λ̃2
4

4(1+λ̃0)(9+λ̃0)

) (6)

where the dimensionless parameters

λ̃0 =
λ0

DR
, λ̃4 =

λ4

DR
(7)

have been defined. Here, as before we have as-
sumed that both parameters are equal, and taken
the value of λ0 = λ4 = λ obtained from the fit of
the distribution of swimming directions (fig. 2).
This assumption might break down at low inter-
pillar distances.

IV. CONCLUSION

In this paper, we show that the diffusivity of
puller-type microswimmers (here Chlamydomonas
Reinhardtii) is strongly affected when embedded
in a complex medium (here a pillar lattice). We
show that geometrical constraints are sufficient to
provide a good understanding of the diffusivity as
a function of the pillar density. However, the ob-
servation of the anisotropy of angle orientations
that motivated the angle-dependent rate of tum-
bling suggests that geometrical scattering is not
sufficient to offer a full understanding of the effec-
tive diffusivity. Are hydrodynamic interactions re-
sponsible for this angle-dependent rate of tumbling
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FIG. 4. Normalized effective diffusion coefficient Deff

as a function of the interpillar distance d. The
bulk diffusion, used for normalization, is D0 =
3000 µm2/s. The continuous line represents the pre-
diction of Eq. (6), with λ fitted from Eq. (4).

? This is suggested by several recent studies[27–
29], which emphasize the key role of hydrodynamic
interactions over pure steric interactions with the
wall [30].
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Appendix A: Derivation of an effective
diffusive description

In this appendix, we provide an approximate
statistical description of the effective large scale
diffusion of swimmers, under some simplifying as-
sumptions. The spatially averaged angular distri-
bution of swimmers is also obtained.

We consider a set of active Brownian particles
moving in a crowded environment. Assuming that
particles do not interact with each other, we can
focus on the description of a single particle. The
particle is characterized by its position r (in 2D)
and an angle θ defining its direction of motion.
The particle moves at a constant speed v0. In the
absence of obstacles, the angle θ has a purely dif-
fusive dynamics, and the model is described by
Eqs. (1) and (2). To introduce the pillars in a
simplified way so that the problem remains an-
alytically tractable, we use an effective medium
approach. As a first approximation, the effect of
pillars is to generate random changes in the direc-

tion of motion of the swimmers. To simplify the
problem, we neglect spatial correlations and simply
retain as a key ingredient the 4-fold anisotropy re-
sulting from the lattice of pillars. We then describe
the crowded environment by a stochastic probabil-
ity λ(θ) to change direction after collision with a
pillar. As for run-and-tumble particles, we assume
that the new direction θ′ is chosen in a uniform
way. Doing so, we neglect the probable anticor-
relation between θ and θ′ (one expects that the
swimmer is more likely to go backward after a col-
lision with a pillar, but this effect is probably not
very strong).

The anisotropy of the medium is kept in the de-
scription through the θ dependence of the ‘tum-
bling’ rate λ(θ), and we choose as the simplest de-
scription to keep only the zeroth and fourth angu-
lar mode, leading to

λ(θ) = λ0 − λ4 cos(4θ) . (A1)

The positivity of λ(θ) implies that λ0 > 0 and
|λ4| ≤ λ0. In the experiment, the arrangement of
pillars corresponds to an effective medium that is
less crowded along the x and y axes than along
the diagonal directions. We have chosen the sign
convention in Eq. (A1) so that the experimental
situation corresponds to λ4 > 0.

Effective diffusion equation

The probability density P (r, θ) to find the swim-
mer at position r with velocity angle θ obeys the
following dynamics:

∂tP (r, θ) +∇ · [v0e(θ)P (r, θ)] = DR∂
2
θP (r, θ)

−λ(θ)P (r, θ) +
1

2π

∫
dθ′ λ(θ′)P (r, θ′) (A2)

We define the angular Fourier expansion of the dis-
tribution P (r, θ),

P (r, θ) =
1

2π

∞∑
k=−∞

fk(r) e−ikθ (A3)

fk(r) =

∫ π

−π
dθ P (r, θ) eikθ (A4)

Note that ρ(r) ≡ f0(r) is simply the density field.
Expanding Eq. (A2) in angular Fourier modes, we
get

∂tfk +
v0

2

(
Ôfk−1 + Ô∗fk+1

)
= −DRk

2fk

−λ0fk +
λ4

2
(fk+4 + fk−4)

+δk,0

[
λ0ρ−

λ4

2
(f4 + f∗4 )

]
(A5)
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where the star denotes the complex conjugate, and
δk,0 = 1 for k = 0 and 0 otherwise. The notations
Ô and Ô∗ denote the complex differential operator

Ô = ∂x + i∂y , Ô∗ = ∂x − i∂y , (A6)

with i2 = −1. For k = 0, Eq. (A5) simply yields a
continuity equation

∂tρ+
v0

2
Re(Ô∗f1) = 0 (A7)

which is equivalent to the standard continuity
equation

∂tρ+∇ · (ρv) = 0 , (A8)

where v is the hydrodynamic velocity field, with
ρv = v0(Ref1, Imf1). The goal of the following
study is to obtain a closed expression of the field
f1 in terms of the density field ρ and its deriva-
tives, thus turning Eq. (A7) into a closed differ-
ential equation on the field ρ. To express f1 as a
function of ρ and its derivatives, we need to rely
on Eq. (A5), which corresponds to an infinite hier-
archy of coupled equations. To make the problem
tractable, we need to truncate this hierarchy. Be-
cause of the 4-fold symmetry of the problem, we
need to keep angular modes at least up to f4. In
what follows, we neglect all modes fk with |k| > 4.
For k 6= 0, the dynamics of fk involves a relaxation
term −(DRk

2 +λ0)fk, while the density field does
not have such a relaxation dynamics. Hence the
density field ρ is a ‘slow’ variable, while the fields
fk 6=0 are ‘fast’ variables. As a result, on time scales
larger than 1/DR, the time derivatives ∂tfk can be
neglected for k 6= 0. We end up with the following
set of equations

f1 = −a1

(
Ôρ+ Ô∗f2

)
+ b1f

∗
3 (A9)

f2 = −a2

(
Ôf1 + Ô∗f3

)
+ b2f

∗
2 (A10)

f3 = −a3

(
Ôf2 + Ô∗f4

)
+ b3f

∗
1 (A11)

f4 = −a4Ôf3 + b4ρ (A12)

where the coefficients are given by

ak =
v0

2(k2DR + λ0)
, bk =

λ4

2(k2DR + λ0)
.

(A13)
We wish to determine an effective diffusion equa-
tion from Eq. (A7), and thus we need to express f1

as a function of ρ up to gradient order. Eq. (A9)
provides an expression for f1 in terms of the fields
ρ, f2 and f3. We need to determine f2 to zeroth
order in gradient, and f3 to first order in gradient.
Eq. (A10) shows that at zeroth order in gradient,
f2 = 0. Then combining Eqs. (A9), (A11) and
(A12), we get at first order in gradient

f3 = −a3b4 + b3a1

1− b1b3
Ô∗ρ (A14)

and thus from Eq. (A9),

f1 = −a1 + a3b1b4
1− b1b3

Ôρ (A15)

(again to first order in gradients). We thus finally
obtain, using Eq. (A7), the diffusion equation

∂tρ = D∆ρ (A16)

with a diffusion coefficient

D =
v0(a1 + a3b1b4)

1− b1b3
(A17)

In the absence of obstacles, D reduces to the well-
known diffusion coefficient of active Brownian par-
ticles,

D0 =
v2

0

2DR
(A18)

It is convenient to define the dimensionless param-
eters

λ̃0 =
λ0

DR
, λ̃4 =

λ4

DR
(A19)

With these notations, the ratio D/D0 can be ex-
plicitly expressed as

D

D0
=

1 +
λ̃2
4

4(9+λ̃0)(16+λ̃0)

(1 + λ̃0)
(

1− λ̃2
4

4(1+λ̃0)(9+λ̃0)

) (A20)

Finally, the mean square displacement is given by

〈r2(t)〉 = 4Dt (A21)

Spatially averaged angular distribution

To see if the dynamics of the active Brown-
ian particle keeps track, on large scale, of the
anisotropy of the medium, we compute the spa-
tially integrated angular distribution

P (θ) =

∫
drP (r, θ) (A22)

Keeping as above only angular Fourier modes up
to |k| = 4, we have

P (θ) =
1

2π

4∑
k=−4

fk(r) e−ikθ . (A23)

Given that the integral over space of space deriva-
tive terms is equal to zero, we get from Eqs. (A9),
(A10) and (A11),

f1 = b1f
∗
3 , f2 = b2f

∗
2 , f3 = b3f

∗
1 (A24)
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from which it is easy to show that f1 = f2 =
f3 = 0. In addition, we have from Eq. (A12) that
f4 = b4ρ = b4, because

∫
dr ρ(r) = 1 since we have

considered a single particle. We eventually get

P (θ) =
1

2π

(
1 +

λ4

16DR + λ0
cos(4θ)

)
. (A25)
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