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The microalga Chlamydomonas Reinhardtii (CR) is used here as a model system to study the
effect of complex environments on the swimming of micro-organisms. Its motion can be modelled
by a run and tumble mechanism so that it describes a persistent random walk from which we can
extract an effective diffusion coefficient for the large-time dynamics. In our experiments, the complex
medium consists in a series of pillars that are designed in a regular lattice using soft lithography
microfabrication. The cells are then introduced in the lattice, and their trajectories within the
pillars are tracked and analyzed. The effect of the complex medium on the swimming behaviour of
microswimmers is analyzed through the measure of relevant statistical observables. In particular,
the mean correlation time of direction and the effective diffusion coefficient are shown to decrease
when increasing the density of pillars. This provides some bases of understanding for active matter
in complex environments.

I. INTRODUCTION

Self-propelled particles represent an out-of-
equilibrium system of great interest for a large
community of physicists [1]. The dynamics of most
microswimmers, natural or artificial, perform a
“run and tumble” dynamics of swimming [2]. This
terminology, initially dedicated to E-coli bacteria,
describes an alternation of directed motion at a
given velocity - the runs - and reorientation of the
direction - the tumbles. Other dynamics of swim-10

ming consist in Active Brownian particles where
the direction angle changes continuously in a dif-
fusive manner [3]. These modes of swimming have
been shown to be crucial in the search of chemi-
cals or nutrients [4]. Depending on systems, the
decorrelation of direction emerges from different
mechanisms. In bacteria, tumbles are due to the
unbundling of flagella [5], in the microalga Chlamy-
domonas Reinhardtii, tumbles have been shown to
be due to asynchronous periods of beating [6]. In20

artificially built microswimmers such as Janus par-
ticles, thermal rotational Brownian motion is usu-
ally responsi ble for the randomisation of orienta-
tion [7, 8]. Most of the time, the swimming dynam-
ics can be fairly described as a persistent random
walk.

Hence, considering large enough time scales,
microswimmers explore their environment in a
diffusive-like manner. A nonequilibrium statisti-
cal physics framework can then be built in order30

to deeper understand the behavior of active matter
[9]. To predict active matter behaviour in realistic
conditions such as crowded living tissues, suspen-
sions of cells or porous media, there is a major need
to understand the interaction of self-propelled par-
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ticles with a complex environment [10].
In this work, we quantify experimentally the

swimming dynamics of a natural microswimmer –
Chlamydomonas Reinhardtii – within a micropat-
terned environment. We show that the effective40

diffusivity of microswimmers is hindered by the
presence of obstacles, and that the distribution of
swimming directions is no longer isotropic. In ad-
dition, a theoretical modeling in terms of an ef-
fective anistropic scattering medium allows us to
relate the anisotropy of swimming directions and
the decrease of the effective diffusion coefficient.

II. MATERIALS AND METHODS

The green microalga Chlamydomonas Rein-
hardtii (CR) is a biflagellated photosynthetic cell50

of about 10 µm diameter [11]. Cells are grown un-
der a 14h/10h light/dark cycle at 22 ◦C and are
harvested in the middle of the exponential growth
phase. This microalga propels itself in a break-
stroke-type swimming using its two front flagella.

CR suspensions are used with no further prepa-
ration. Suspensions are dilute enough with a vol-
ume fraction of about 0.05%, so that hydrody-
namic interactions among the particles are neg-
ligible. The cells are then introduced within a60

complex medium composed of a square lattice
of 200 µm-diameter pillars regularly spaced by a
surface-to-surface minimal inter-pillar distance d
(figure 1). The distance d between the surfaces
of the pillars ranges from 20 µm to 50 µm with
a 10 µm increment, and from 50 µm to 370 µm
with a 40 µm increment. This represents a poros-
ity δ = 1 − πR2/(d + 2R)2 ranging from 0.35 to
0.90. Pillars are made of transparent PDMS us-
ing soft lithography processes [12]. Their diameter70

is kept constant to 200 µm. This is of the same
order as the persistence length of the swimming
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dynamics of the cells (∼ 180µm). The height of
the pillars is 70 µm, which represents about 7 cell
diameters. Our control parameter is d, which con-
trols the density of the complex medium that the
cells experience.

The observations are made by means of bright
field microscopy. The chamber is observed under
an inverted microscope (Olympus IX71) coupled to80

a CMOS camera (Imaging Source) used at a frame
rate of 15 frames per second. A low magnification
objective (×1.25) provides a wide field of view of
800 µm × 800 µm as well as a large depth of field.
The sample is enclosed in an occulting box with
two red filtered windows for visualisation. The red
filters prevent any parasite light that could trigger
phototaxis (i.e a biased swimming toward a light
source) [11, 13].

Particle tracking is performed using Trackpy90

[14], a Python library based on Crocker and Grier’s
algorithm [15]. Relevant quantities such as the
mean square displacements (MSD) and the cor-
relation functions of directions are then extracted
from an ensemble average performed over long last-
ing movies (6 min).

Figure 1 shows the typical geometry and a set
of trajectories of cells measured over 10 seconds
for a given inter-pillar distance of 50 micrometers
(d = 50 µm) at a time interval of 1/15 s.100

FIG. 1. Map of trajectories tracked over 10 seconds
within a square lattice of pillars with d = 50 µm at a
time interval of 1/15 s. The color is mapped on the
particle index.

III. RESULTS

A. Anisotropy

The first noticeable effect of the lattice of obsta-
cles onto the cells is an anisotropy of their swim-
ming directions. The squared lattice of pillars con-110

strains the trajectories of microswimmers to a set
of privileged (x, y) directions as shown from the
orientation distribution plotted in figure 2. Here,
we define the orientations as the mean orientation
of the trajectory over 1 s. While orientations of mi-
croswimmers are isotropically distributed in a free
medium (d → ∞), the distributions show peaks
around π/2(mod π/2) when cells are placed within
the complex medium. This clearly demonstrates
the privileged directions taken by microswimmers.120

This reflects that, most of the time, the pillars ori-
ent the swimming along corridors between pillars.
This effect becomes more and more pronounced as
d is decreased.

To try to better understand these results, we in-
troduce a relatively simple theoretical model con-
sisting of an active Brownian particle immersed in
an effective anisotropic scattering medium. The
active Brownian particle is characterized by its po-
sition r (in 2D) and an angle θ defining its direction
of motion. The particle moves at a constant speed
v0. In the absence of obstacles, the angle θ has a
purely diffusive dynamics:

ṙ = v0e(θ) , θ̇ = ξ(t) (1)

where ξ(t) is a white noise satisfying 〈ξ(t)〉 = 0
and

〈ξ(t)ξ(t′)〉 = 2DR δ(t− t′) . (2)

The angular diffusion coefficient is related to the
persistence time τ by τ = 1/DR. To make the full
problem tractable, the lattice of pillars is modeled
as an effective anisotropic scattering medium, with
a probability rate

λ(θ) = λ0 − λ4 cos(4θ) . (3)

The two parameters λ0 and λ4 are constrained
by |λ4| ≤ λ0. After scattering, the new angle
θ′ is randomly chosen from a uniform distribu-
tion. The model thus boils down to a combina-
tion of the active Brownian particle and the run-
and-tumble model, with here an anistropic tum-
bling rate. Technical details are reported in Ap-
pendix A. Using some standard approximation
techniques, we eventually obtain the spatially av-
eraged probability distribution P (θ) of swimming
directions θ

P (θ) =
1

2π

(
1 +

λ4

16DR + λ0
cos(4θ)

)
. (4)
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We use this form to fit the experimental data, un-
der the assumption λ0 = λ4 = λ (which means
that particles can travel freely when their direc-
tion is aligned either with the x or y axis). This
fitting procedure thus allows us to determine the
experimental values of λ.130
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FIG. 2. Orientation distributions of Chlamydomonas
runs for different interpillar distances d. To do so, the
orientation is measured over 1 s. These distributions
are fitted with Eq. (4), assuming λ0 = λ4 = λ.

B. Mean square displacements and
correlations

From the measured trajectories, we evaluate and
plot in figure 3-a the mean square displacement
(MSD) 〈r2(t)〉 for different values of d ranging from140

20 to 370 µm. In a free medium (i.e. without
pillars), the swimming of CR has been shown to be
well characterized by a persistent random walk [6,
16, 17] in absence of tropism. Hence, the behaviour
of microswimmers can be modelled as a ballistic
motion at short timescales (below ∼ 1 s) and a
diffusive-like one at longer timescales. Here, we
assume that the MSD in the presence of obstacles
can still be described by a persistent random walk
and we fit the curves in figure 3 with the following150

semi-empirical equation:

〈r2(t)〉 = 4Defft− 2Deffteff

[
1− exp

(
−2t

teff

)]
(5)

where teff is the effective correlation time and Leff

the effective persistence length of the swimming.
In a free medium (d→∞), we denote by t0 and L0

the correlation time and persistence length respec-
tively. Experimental measurements give t0 = 2.7s
and L0 = 180µm

In addition, we characterize independently the
persistence time by measuring the correlation func-

tion of direction defined as

C(t) = 〈k(t0) ·k(t0 + t)〉,

where 〈. . . 〉 denotes an average over time t0 and
over all tracked trajectories and k a unit vector
along the trajectory (Figure 3-b). Correlations160

with infinite decay time (C(t) = 1 for all t > 0)
correspond to swimming directions preserved over
arbitrarily long times characteristic of a purely bal-
listic regime; in contrast, a zero life-time (C(t) = 0
for all t > 0) corresponds to the standard random
walk behaviour (analogous to Brownian motion).
The measured correlation functions show two char-
acteristic times: the first one corresponds to an
helical shape [18] of the trajectory and the second
one teff represents the mean time of persistence170

over which the swimming direction is preserved.
The extracted characteristic time teff allows one to
constraint the fitting procedure of equation (5) and
to evaluate Leff for different values of d.

C. Diffusive regime

The long timescales dynamics can be then de-
scribed by a diffusive-like behaviour. From the
measured MSD and the correlation function of di-
rection, we similarly obtain the effective diffusivity
Deff as a function of d/L0.180

Figure 4 shows the experimentally measured ef-
fective diffusion coefficient Deff of microswimmers
within the lattice, normalized by the bulk diffu-
sion coefficient D0. These results are compared
with the theoretical prediction (see Appendix A)

D

D0
=

1 +
λ̃2
4

4(9+λ̃0)(16+λ̃0)

(1 + λ̃0)
(

1− λ̃2
4

4(1+λ̃0)(9+λ̃0)

) (6)

where the dimensionless parameters

λ̃0 =
λ0

DR
, λ̃4 =

λ4

DR
(7)

have been defined. Here, as before we have as-
sumed that both parameters are equal, and taken
the value of λ0 = λ4 = λ obtained from the fit of
the distribution of swimming directions (fig. 2).
This assumption might break down at low inter-
pillar distances. The value of the angular diffu-
sion coefficient corresponding to 1/t0 is taken as
DR = 0.37 s−1.

IV. CONCLUSION

In this paper, we show that the diffusivity of190

puller-type microswimmers (here Chlamydomonas
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FIG. 3. a. Mean square displacements for several interpillar distances d. The inset shows the two limiting cases:
a slope of 2 in log − log representation followed by a linear regime at longer timescales. b. Correlation function
of direction as a function of time for different values of d.
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FIG. 4. Normalized effective diffusion coefficient Deff

as a function of the interpillar distance d. The
bulk diffusion, used for normalization, is D0 =
3000 µm2/s. The continuous line represents the pre-
diction of Eq. (6), with λ fitted from Eq. (4).

Reinhardtii) is strongly affected when embedded
in a complex medium (here a pillar lattice). We
show that geometrical constraints are sufficient to
provide a good understanding of the diffusivity as
a function of the pillar density. Hydrodynamic in-
teractions can be ignored, at least at low volume
fractions of microswimmers. This seems to favour
the hypothesis that only steric interactions drive
the coupling between pullers and walls [19] rather200

than the hydrodynamic hypothesis [20–22].

This paves the way to future studies on be-
haviours of microswimmers hindered by complex
geometrical environments.

Appendix A: Derivation of an effective
diffusive description

In this appendix, we provide an approximate
statistical description of the effective large scale
diffusion of swimmers, under some simplifying as-
sumptions. The spatially averaged angular distri-210

bution of swimmers is also obtained.
We consider a set of active Brownian particles

moving in a crowded environment. Assuming that
particles do not interact with each other, we can
focus on the description of a single particle. The
particle is characterized by its position r (in 2D)
and an angle θ defining its direction of motion.
The particle moves at a constant speed v0. In the
absence of obstacles, the angle θ has a purely dif-
fusive dynamics, and the model is described by220

Eqs. (1) and (2). To introduce the pillars in a
simplified way so that the problem remains an-
alytically tractable, we use an effective medium
approach. As a first approximation, the effect of
pillars is to generate random changes in the direc-
tion of motion of the swimmers. To simplify the
problem, we neglect spatial correlations and simply
retain as a key ingredient the 4-fold anisotropy re-
sulting from the lattice of pillars. We then describe
the crowded environment by a stochastic probabil-230

ity λ(θ) to change direction after collision with a
pillar. As for run-and-tumble particles, we assume
that the new direction θ′ is chosen in a uniform
way. Doing so, we neglect the probable anticor-
relation between θ and θ′ (one expects that the
swimmer is more likely to go backward after a col-
lision with a pillar, but this effect is probably not
very strong).
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The anisotropy of the medium is kept in the de-
scription through the θ dependence of the ‘tum-
bling’ rate λ(θ), and we choose as the simplest de-
scription to keep only the zeroth and fourth angu-
lar mode, leading to

λ(θ) = λ0 − λ4 cos(4θ) . (A1)

The positivity of λ(θ) implies that λ0 > 0 and
|λ4| ≤ λ0. In the experiment, the arrangement of240

pillars corresponds to an effective medium that is
less crowded along the x and y axes than along
the diagonal directions. We have chosen the sign
convention in Eq. (A1) so that the experimental
situation corresponds to λ4 > 0.

Effective diffusion equation

The probability density P (r, θ) to find the swim-
mer at position r with velocity angle θ obeys the
following dynamics:

∂tP (r, θ) +∇ · [v0e(θ)P (r, θ)] = DR∂
2
θP (r, θ)

−λ(θ)P (r, θ) +
1

2π

∫
dθ′ λ(θ′)P (r, θ′) (A2)

We define the angular Fourier expansion of the dis-250

tribution P (r, θ),

P (r, θ) =
1

2π

∞∑
k=−∞

fk(r) e−ikθ (A3)

fk(r) =

∫ π

−π
dθ P (r, θ) eikθ (A4)

Note that ρ(r) ≡ f0(r) is simply the density field.
Expanding Eq. (A2) in angular Fourier modes, we
get

∂tfk +
v0

2

(
Ôfk−1 + Ô∗fk+1

)
= −DRk

2fk

−λ0fk +
λ4

2
(fk+4 + fk−4)

+δk,0

[
λ0ρ−

λ4

2
(f4 + f∗4 )

]
(A5)

where the star denotes the complex conjugate, and
δk,0 = 1 for k = 0 and 0 otherwise. The notations
Ô and Ô∗ denote the complex differential operator

Ô = ∂x + i∂y , Ô∗ = ∂x − i∂y , (A6)

with i2 = −1. For k = 0, Eq. (A5) simply yields a
continuity equation

∂tρ+
v0

2
Re(Ô∗f1) = 0 (A7)

which is equivalent to the standard continuity
equation

∂tρ+∇ · (ρv) = 0 , (A8)

where v is the hydrodynamic velocity field, with
ρv = v0(Ref1, Imf1). The goal of the following
study is to obtain a closed expression of the field
f1 in terms of the density field ρ and its deriva-
tives, thus turning Eq. (A7) into a closed differ-
ential equation on the field ρ. To express f1 as a260

function of ρ and its derivatives, we need to rely
on Eq. (A5), which corresponds to an infinite hier-
archy of coupled equations. To make the problem
tractable, we need to truncate this hierarchy. Be-
cause of the 4-fold symmetry of the problem, we
need to keep angular modes at least up to f4. In
what follows, we neglect all modes fk with |k| > 4.
For k 6= 0, the dynamics of fk involves a relaxation
term −(DRk

2 +λ0)fk, while the density field does
not have such a relaxation dynamics. Hence the270

density field ρ is a ‘slow’ variable, while the fields
fk 6=0 are ‘fast’ variables. As a result, on time scales
larger than 1/DR, the time derivatives ∂tfk can be
neglected for k 6= 0. We end up with the following
set of equations

f1 = −a1

(
Ôρ+ Ô∗f2

)
+ b1f

∗
3 (A9)

f2 = −a2

(
Ôf1 + Ô∗f3

)
+ b2f

∗
2 (A10)

f3 = −a3

(
Ôf2 + Ô∗f4

)
+ b3f

∗
1 (A11)

f4 = −a4Ôf3 + b4ρ (A12)

where the coefficients are given by

ak =
v0

2(k2DR + λ0)
, bk =

λ4

2(k2DR + λ0)
.

(A13)
We wish to determine an effective diffusion equa-
tion from Eq. (A7), and thus we need to express f1

as a function of ρ up to gradient order. Eq. (A9)
provides an expression for f1 in terms of the fields
ρ, f2 and f3. We need to determine f2 to zeroth
order in gradient, and f3 to first order in gradient.
Eq. (A10) shows that at zeroth order in gradient,
f2 = 0. Then combining Eqs. (A9), (A11) and
(A12), we get at first order in gradient

f3 = −a3b4 + b3a1

1− b1b3
Ô∗ρ (A14)

and thus from Eq. (A9),

f1 = −a1 + a3b1b4
1− b1b3

Ôρ (A15)

(again to first order in gradients). We thus finally
obtain, using Eq. (A7), the diffusion equation

∂tρ = D∆ρ (A16)

with a diffusion coefficient

D =
v0(a1 + a3b1b4)

1− b1b3
(A17)
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In the absence of obstacles, D reduces to the well-
known diffusion coefficient of active Brownian par-
ticles,

D0 =
v2

0

2DR
(A18)

It is convenient to define the dimensionless param-
eters

λ̃0 =
λ0

DR
, λ̃4 =

λ4

DR
(A19)

With these notations, the ratio D/D0 can be ex-
plicitly expressed as

D

D0
=

1 +
λ̃2
4

4(9+λ̃0)(16+λ̃0)

(1 + λ̃0)
(

1− λ̃2
4

4(1+λ̃0)(9+λ̃0)

) (A20)

Finally, the mean square displacement is given by

〈r2(t)〉 = 4Dt (A21)

Spatially averaged angular distribution

To see if the dynamics of the active Brown-
ian particle keeps track, on large scale, of the

anisotropy of the medium, we compute the spa-
tially integrated angular distribution

P (θ) =

∫
drP (r, θ) (A22)

Keeping as above only angular Fourier modes up
to |k| = 4, we have

P (θ) =
1

2π

4∑
k=−4

fk(r) e−ikθ . (A23)

Given that the integral over space of space deriva-
tive terms is equal to zero, we get from Eqs. (A9),
(A10) and (A11),

f1 = b1f
∗
3 , f2 = b2f

∗
2 , f3 = b3f

∗
1 (A24)

from which it is easy to show that f1 = f2 =
f3 = 0. In addition, we have from Eq. (A12) that
f4 = b4ρ = b4, because

∫
dr ρ(r) = 1 since we have

considered a single particle. We eventually get

P (θ) =
1

2π

(
1 +

λ4

16DR + λ0
cos(4θ)

)
. (A25)
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