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Abstract—The design of communication systems typically relies
on the development of mathematical models that describe the
underlying communication channel. In many communication
systems, however, accurate channel models may not be known, or
the models may not be accurate enough or even not available for
efficient system design. In these scenarios, a completely new ap-
proach to communication system design and analysis is required.
An example of such situations arises in the emerging research
field of molecular communications, for which it is very difficult
to develop accurate analytical models for several operating
scenarios. In this context, the use of data-driven techniques based
on artificial neural networks may provide an alternative and
suitable solution towards the design and analysis of molecular
communication systems. In this paper, we explore the potential of
artificial neural networks for application to the design of robust
receiver schemes. We study a molecular communication system in
the presence of inter-symbol interference and show that a receiver
based on artificial neural networks can be trained by using only
empirical (raw) data and can provide the same performance as
a receiver that has perfect knowledge of the underlaying channel
model.
Index Terms—Molecular communications, artificial neural net-

works, receiver design and optimization.

I. INTRODUCTION

At the nano-scale, traditional electromagnetic-based trans-
mission techniques may not be suitable to enable nano-devices
to communicate [1]. An alternative option is to use an emerg-
ing paradigm that is known as Molecular Communication
(MC) [2], where the information is transmitted by using
chemical signals instead of radio-frequency signals.

Similar to radio communication systems, a MC system
is made of a transmitter, a receiver, and the transmission
channel. The information is transmitted via the release of
information particles, e.g., by encoding the data into the
number of particles that are released, the type of particles that
are released, or the release time of the particles [2]. If the
information is encoded into the number of particles that are
released, the corresponding modulation scheme is referred to
as Concentration Shift Keying (CSK) modulation.

In the context of MC systems, diffusion is the easiest option
to allow information particles propagating from the transmitter
to the receiver. Due to the intrinsic characteristics of diffusion,
the resulting transmission channel is usually affected by a non-

negligible Inter-Symbol Interference (ISI), which, if not taken
into account for system optimization, may severely degrade
the system performance [3], [4]. For this reason, we focus our
attention on optimizing MC systems in the presence of ISI.

In MC systems, a simple approach to demodulate the
transmitted binary symbols is to compare the number of
received particles, , with a fixed threshold, , [5]. If ,
the symbol is detected as , otherwise it is detected as .
The threshold, , of this threshold-based detector is relatively
simple to be optimized in the absence of ISI or if the ISI
is negligible. In general, on the other hand, needs to be
optimized by taking the ISI into account in order to min-
imize the error probability and obtain good communication
performance. In [6], the authors have proposed a scheme
that uses the number of particles received in the previous
time-slot, i.e., , as the detection threshold in a given
time-slot. An improved scheme has been proposed in [7],
where a detection scheme that combines channel estimation
and decision-feedback equalization is used. Other improved
detection schemes have recently been proposed in [8] and [9].

The aforementioned approaches rely on the knowledge of
the channel and system models. This, however, may not always
be possible either due to the complexity of modeling the
entire system in an accurate manner or due to the complexity
of optimizing the resulting system model. In order to solve
these issues, the authors of [10] have recently proposed
a sequence detection scheme based on sliding bidirectional
recurrent neural networks. With the aid of deep learning
methods, the authors have shown that the scheme is capable
of automatically learning the whole system from empirical
data and of performing data detection without using complex
channel estimation and data equalization techniques.

In the present paper, motivated by the promising results
obtained in [10], we study the potential of applying Artificial
Neural Network (ANN) methods for data detection of MC
systems in the presence of ISI. Our study shows that ANNs
without prior knowledge of the system model are capable
of providing the same performance as conventional detection
methods that rely on the perfect knowledge of the underlaying
system model.

The reminder of this paper is organized as follows. In
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Fig. 1. Block diagram of a MC system.

Section II, we introduce the system model. In Section III,
we study and optimize a threshold-based detector by relying
upon “model-based” and “data-driven” methods. In Section
IV, some simulation results are illustrated, which confirm that
similar performance is obtained by using the two methods.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

A MC system can be split in three parts: the transmitter,
the channel, and the receiver. Figure 1 depicts the main
components of a MC system. The transmitter generates or
stores the information particles, which are released into the
channel by a releaser. We assume that the transmitter is small
enough to be modeled as a point. We assume that the MC
system is deployed in a gaseous or aqueous environment,
like the human body. We assume that the information par-
ticles propagate through the channel by means of Brownian
motion. In particular, the particles diffuse randomly through
the medium and the motion of a particle is independent of
the motion of any other particles. Usually, a large number
of information particles are emitted through the channel but
not all of them reach the receiver in the considered time-slot.
Some information particles remain in the channel and reach
the receiver in subsequent time-slots: this causes the ISI. If not
appropriately taken into account, the ISI may severely degrade
the performance of MC systems. As an example, we consider
an absorbing-type receiver [11].

In the considered system model, the transmitter is modeled
as a point and the receiver is assumed not to be too close to it.
An ultra large three-dimensional aqueous propagation medium
without drift is considered. By assuming the transmitter to be
located at and the receiver at ,
the hitting rate of each information particle can be expressed
as follows [6]:

(1)

where is the distance between transmitter and
receiver, denotes the diffusion coefficient of the information
particles, and is the radius of the receiver that is assumed to
have a spherical shape.

For ease of illustration, an On-Off Keying (OOK) modula-
tion scheme is considered. At the th time-slot, the transmitter
releases information particles into the environment if the
symbol is and no information particles if the symbol is

. Under these assumptions, the hitting probability of an
absorbing receiver after seconds that an information particle
is released can be expressed as follows:

(2)

From (1) and (2), we have:

(3)

where and .

During the th time-slot, the probability that one
information particle hits the receiver is:

(4)

where is the duration of the time-slot, and we assume that
the system is well synchronized such that there is no time
offset.

From (1) and (4), we obtain:

(5)

Let denote the average number of received
information particles at the th time-slot, where for
ease of notation. The number of received information particles
at the th time-slot follows a Poisson distribution [8]:

where is the sum of ISI and noise
power, where is the background noise power per unit
time. More precisely, the probability of having information
particles is:

(6)

For ease of tractability, we assume that for is
small enough to be included into the background noise. In
this case, denotes the length of the Poisson channel. The
Signal-to-Noise Ratio (SNR) is defined as follows:

(7)

where it is assumed that the information bits are equiprobable.
Accordingly, given the SNR, the number of released parti-

cles, , is as follows:

(8)

For reference, the system parameters are listed in Table I.
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TABLE I
SYSTEM PARAMETERS

Parameters Value

Receiver radius (r) 45 nm
Distance (d) 500 nm
Diffusion coefficient (D)
Discrete time length 9 us
Time-slot duration (T) ,
Channel length (L) 6

III. THRESHOLD-BASED DEMODULATION

We study a threshold-based demodulator and denote by
the demodulation threshold. Let be the estimate of symbol

at time-slot , a threshold-based demodulator operates as:

(9)

In the following two sections, we optimize the detection
threshold by relaying on a model-based and a data-driven
approach, respectively.

A. Model-Based Analysis and Optimization

Let us consider the th time-slot and let
be the vector of bits received in the

previous time-slots. The error probability can be written
as follows:

(10)

where

(11)

where is the incomplete Gamma func-

tion and . Similarly, we have:

(12)
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Fig. 2. Error probability in (14) as a function of (the SNR is 30dB).

From (11) and (12), we obtain:

(13)

Finally, the error probability can be obtained by averaging
(13) with respect to the vector ,
as follows:

(14)

In order to obtain appropriate performance and, thus, reduce
the error probability in (14), the detection threshold, , needs
to be appropriately chosen and optimized. In Fig. 2, we depict
(14) as a function of . We observe that an optimal value of

exists that minimizes the error probability and that depends
on the time slot duration , i.e., the amount of ISI.

In mathematical terms, the optimal threshold that minimizes
the error probability can be formulated as follows:

(15)

Due to the analytical complexity of (14), it is not possible
to compute explicitly.

B. Data-Driven Optimization

In this section, we consider a data-driven approach where an
ANN is trained based on raw data. The objective of the ANN
is to demodulate the transmitted data by minimizing the error
probability. More precisely, an ANN-based demodulator is a
system whose input is the received information particles, at
the th time-slot, and the outputs are the probabilities that the
transmitted bit is 0 or 1, i.e., and ,
respectively. Since, , only
one of the two probabilities is needed. In the sequel, we use



TABLE II
PARAMETERS OF THE ANN

Parameters Value
Number of layers 1,10
Learning rate 0.01
Training epoch 200
Replication times 50
Number of training bits 1000
Number of validation bits 100000
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Fig. 3. Demodulation thresholds of model-based and data-driven (ANN)
scheme with 10 layers.

the notation . Based on the outputs, the
ANN demodulate the received bits as follows:

(16)

where the threshold 0.5 accounts for the fact that the bits are
equiprobable.

In order to train the ANN, we consider a supervised
learning approach, i.e., we compute the parameters (e.g.,
the bias factors and the weights) of the ANN by using a
known sequence of transmitted bits. In particular, we use the
Bayesian regularization back propagation technique (trainbr),
which updates the weights and biases by using the Levenberg-
Marquardt optimization algorithm. The set of parameters to
train and operate the ANN are summarized in Table II. The
training is performed in a batch mode, and, in particular, the
replication time denotes the number of batches each of which
is 1000-bit long.

IV. NUMERICAL RESULTS

In Fig. 3, we compare the optimal threshold computed
numerically from (15) as a function of the SNR, and the
demodulation threshold that is learned by the ANN-based
demodulator. In the latter case, the threshold is obtained,
after completing the training of the ANN, and identifying the
input, i.e., the number of information particles, for which the
output probability is equal to 0.5. We observe that the ANN-
based implementation is capable of learning the demodulation
threshold in a very accurate manner.

Fig. 4. Bit error probability of the ANN-based demodulator (10 layers) vs.
the analytical framework in (14) - .

Fig. 5. Bit error probability of the ANN-based demodulator (10 layers) vs.
the analytical framework in (14) - .

Fig. 6. Bit error probability of the ANN-based demodulator (1 layer) vs. the
analytical framework in (14) - .

In Fig. 4 and Fig. 5, we compare the bit error probability
of the ANN-based demodulator with 10 layers against (14)
by considering a short symbol time (small ISI) and a long
symbol time (large ISI), respectively. As for the analytical
model, the optimal threshold is estimated from (15) for each
value of SNR. We note a very good agreement even with only
10 layers.

In Fig. 6 and Fig. 7, we conduct a similar study as for Fig. 4
and Fig. 5, but the ANN-based demodulator employs a single
layer. In this case, the ANN-based demodulator is not capable



Fig. 7. Bit error probability of the ANN-based demodulator (1 layer) vs. the
analytical framework in (14) - .

of perfectly following the analytical framework if the ISI is
not negligible (as in Fig. 6).

V. CONCLUSION

In this paper, we have analyzed the potential of ANNs in
order to obtain robust receiver schemes for application to MC
systems. We have developed an exact analytical framework
for the MC system that relies on the perfect knowledge of the
channel model. Based on it, we have optimized the demod-
ulation threshold in order to minimize the error probability.
By using known learning methods and by training an ANN
by using only raw data, we have shown that receivers that
perform as well as those optimized by exploiting the exact
knowledge of the system model can be obtained.
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