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Abstract— Distributed denial of service attacks (DDoS) are
becoming a big threat to the Internet. Recently, some DDoS
attacks have infected more than 100, 000 vulnerable hosts over
Internet within 10 minutes. Consequences of these attacks can
be devastating toward many companies whose security policy
against this kind of attacks relies only on reconfiguring firewalls.
It is judicious to note that no computer network is immune from
intrusions in general and distributed denial of service attacks in
particular. Intrusion detection systems should be geographically
distributed to detect distributed and cooperated attacks. In this
paper, we use a cooperative approach, which uses the Intrusion
Detection Message Exchange Format (IDMEF) defined by the
IETF, that can detect coordinated attack scenarios through
alert correlation of distributed IDSs. We present our experience
in realizing this cooperative system and the different results
obtained from its implementation in a real network.

I. INTRODUCTION

Current Computer networks are designed with function-
ality where security is not considered as a main goal. For
this reason, Internet is offering clients fast, easy and cheap
communication mechanisms, at the network level, that provide
best effort service to the different designed protocols. These
services are implemented at the end points; the sender and the
receiver. With this implementation, malicious end users can
easily violate the described policy of the different protocols
and act to damage the other party. In this case, the end-receiver
resources might be overwhelmed by the bad traffic sent by the
malicious end-sender-point.

Recent DDoS attack tools such as Trinoo, Stacheldraht, etc.
use forged addresses to flood a victim, which might be any
entity connected to Internet and providing some service to
other legitimate users, in order to decrease or disable the
service provided by this entity. Ingress and Egress filtering
are introduced to prohibit attackers from originating network
to launch attacks with forged addresses. These filtering tech-
niques cannot stop forged packets with the same prefix as that
of the network from where they are originated. However, it
enables the originator to be easily traced to its true source,
since the attacker would have to use a valid, and legitimately
reachable, source address. Filtering preventive techniques are
necessary to reduce DoS attacks using spoofed addresses but
are not sufficient enough to stop definitively DoS or DDoS
attacks.

For this reason, we propose to use intrusion detection as
another barrier to counter these distributed attacks. The idea
consists in stopping the attack during its first stage.

A cooperative intrusion detection framework collecting
alerts from many trusted points over Internet and commu-
nicating attack information between the different IDSs is of
a great interest to detect any distributed denial of service
at its early stage. Once an attack, which corresponds to the
first step of a global attack, is detected by an IDS, other
IDSs, geographically located elsewhere over Internet, may take
some advantage and launch a counter measure against the
compromised host to stop the ongoing attack. In fact, DDoS
attacks correspond exactly to this situation. As described in
Dittrich [8], the DDoS attacks require to compromise and
recruit hundreds (or thousands) of slaves over the web and
other hosts called masters which will play the relay between
the attackers and the slaves in order to launch their attacks
against a victim using this architecture.

The remainder of the paper is organized as follows. Section
II describes the standard DDoS tools. Section III presents alert
correlation in intrusion detection followed by section IV in
which we model the standard DDoS tools in LAMBDA [6].
Finally, our experimentation is described in section V and
section VI concludes the paper.

II. DESCRIPTION OF THE FLOODING DDOS TOOLS

The main architecture of classical DDoS attacks, based on
flooding, is presented in Figure 1.

The attacker starts a session with the master host. The
daemon process, launched in the master host, offers many
commands facilities to the attacker in order to launch the
desired flooding attacks.

After establishing a connection with the master, the at-
tacker may launch a flooding attack against one (or many)
victim(s) using the different commands offered by the master.
The master receives the commands through the established
connection with the attacker and sends the corresponding
commands to the slave(s) using the specified communication
with the slave. Hence, the slave floods the victim using the
specifications received from the master. We mention that the
daemon installed on the slave machine sends a message to the
master(s) to inform it (them) that it is alive. Note that due
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Fig. 1. DDoS Attack Architecture.

to space limitaion, we do not give a thorough description of
DDoS attacks, many references may be found at [8].

III. ALERT CORRELATION IN INTRUSION DETECTION

Correlating information held by multiple intrusion detection
alerts is an approach that has been discussed in several papers
([13], [7], [9], [5], [3], [10], [11]). However the goal aimed
by those approaches are different and needs to be explicited.

With the rise of cooperative or distributed intrusion de-
tection framework, the problem of reasoning on information
coming from multiple sources spread across the monitored
system is very important. Correlating that information allows
to fulfil different goals. Here are some problems addressed by
alert correlation:

• Information redundancy: a set of IDSs distributed across
a network increases the intrusion detection power. But
when an event is detected, it can be detected by a subset
of this set of IDSs. Hence, we may obtain a set of alerts
for the occurence of an event. Those alerts related to the
same event must be aggregated and fused to obtain a
more synthetic alert for further processing.

• Scenario detection: the granularity of intrusion detection
alerts is low. The event associated to an alert can be non
malicious when considered alone but when a more global
vision is adopted we may conclude that this elementary
event is part of an ongoing intrusion scenario.

The notion of alert correlation as a process of aggregating
alerts related to the same event has been studied in [13], [7],
[2]. Those papers define a similarity relationship between alert
attributes and use this relationship to aggregate alerts. The
second main approach of alert correlation as a process of
detecting scenarios of alerts has been discussed in [10], [3],
[1].

In this paper we use the notion of alert correlation as the
process of finding a set of alerts into the stream of intrusion
detection alerts organized into a scenario. Our formalism
is exposed briefly in the following subsection. We recall
the definition of correlation and anti-correlation as our main
goal is to react to the DDoS scenario when we observe the
beginning of the scenario.

A. Intrusion modeling

From the intruder point of view, the intrusion process can be
seen as a planning activity ([3]). The intruder can have knowl-
edge of the system he/she wants to attack, knowing the set of
vulnerabilities or the used set of software and hardware. If
the attacker has a limited knowledge about the aimed system,
he can try to gather information by executing some actions
such as ports scans or using vulnerability detection tools.
Once the attacker has a sufficient knowledge of the system,
he/she can define a set of reachable intrusion objectives. From
the point of view of the victim, those intrusion objectives
constitute a violation of the security policy. In order to reach
those intrusion objectives, the attacker selects a set of actions
constituting one or multiple scenarios of actions.

From the detection point of view, we want to detect the
intrusion by constructing scenarios of alerts corresponding to
the scenarios of actions executed by the attacker. In order to
do so, we have to model the set of actions available for the
attacker and a set of intrusion objectives. Since we want to
react to the detection of ongoing scenarios, we have to model
the set of available counter-measures. We use the LAMBDA
language to model the actions, the intrusion objectives and the
counter-measures.

LAMBDA is an acronym for LAnguage to Model a
dataBase for Detection of Attacks. It provides a logical and
generic description of actions, but we use it to model as well
the intrusion objectives and the counter measures. Note that
the LAMBDA language is not specific to the field of intrusion
detection.

A LAMBDA description of an action is composed of the
following attributes:

• pre-condition: defines the state of the system needed in
order to achieve the action.

• post-condition: defines the state of the system after the
execution of the action.

• scenario: the combination of the different events involved
in the scenario describing the attack.

• detection: describes the expected alert upon the detection
of the action.

• verification: specifies the condition to verify the success
of the action.

The intrusion objectives are defined as a condition over
the system state. This state corresponds to a violation of the
security policy. Modeling an intrusion objective in LAMBDA
requires only one attribute: the system state condition. The
following section presents the action models expressed in the
LAMBDA language.
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IV. MODELING STANDARD DDOS TOOLS WITH LAMBDA

In this section, we present our modeling of the actions
involved in the DDoS attack executed thanks to the different
standard DDoS tools. We have determined the signatures
necessary to detect the communications between the attacker
and the master(s) and between the master(s) and the slave(s).
Those signatures allow us to detect the full set of actions
involved in the realization of a DDoS attack using the Trinoo
tool.

We model the following four actions:
• Opening a connection between the attacker with the mas-

ter: the connection used by the attacker to communicate
with the master computer represents the beginning of the
scenario.

• “show alive message” message from slave to the master:
the message sent by the slave to notice the master
computer that it is ready to receive commands. This
action may be performed in parallel with the first step.

• “dos” command sent by the attacker to the master: the
command sent by the attacker to the master computer
to start a DDoS attack using the detected slave(s) com-
puter(s).

• “dos” command sent by the master to the slave: the
command sent by the master to the slave(s) computer(s)
to start flooding the victim(s).

The action models are presented in Figure 2. Note that
the DDoS command sent by the attacker modeled as action
command dos represents one possible command, the standard
DDoS tools allow other actions.

The intrusion objective is modeled in Figure 3. In our
example, the DDoS attack makes the victim computer not
anymore available.

A. Responding to the scenario

Detecting the DDoS scenario is interesting but it does not
prevent the attacker from reaching her/his objective. In order
to stop the attack we have to find one appropriate counter-
measure and we have to launch it before the DOS command
is issued by the master(s).

We use the kill command that can be issued from the
master(s) to destroy one or several slaves. This command must
be issued once the master knows all the slaves’ computers. The
counter-measure model is represented in Figure 4.

Issuing this counter measure on the list of detected slave
computers prevents those computers from flooding the victim,
but we cannot guaranty that we have detected all the slaves
used to achieve the attack, namely when the compromised
hosts are not monitored. We could also kill the connection
between the master and the attacker by sending a TCP reset
but the attacker could easily open a new connection and try
again to attack. Killing the slave computers is more desirable
since it prevents from further attacks from those computers,
until the slave daemon is reinstalled. Other counter measures
may be taken by the administrators of the networks where
the compromised hosts are located. This will be discussed in
section V.

attack connection(A, H)
pre: remote access(A, H)

∧ master(H)
detection: classification(Alert,’master’)

∧ source(Alert, A) ∧ target(Alert, H)
post: connected(A, H)
verification: true

attack show alive(S, H)
pre: remote access(H, S) ∧master(H)

∧ slave(S)
detection: classification(Alert,’show alive(S, H)’)

∧ source(Alert, S) ∧ target(Alert, H)
post: knows(H, slave(S))
verification: true

attack command dos(A, H, V )
pre: connected(A, H)

∧ master(H),

∧ knows(H, slave(S))
detection: classification(Alert,’command dos’)

∧ source(Alert, A)

∧ additional data(Alert,’ddos victim’, V )

∧ target(Alert, H)
post: dos command sent(H, S, V )
verification: true

attack command dos to slave(H, S, V )
pre: knows(H, slave(S))

∧ master(H)

∧ dos command sent(H, S, V )
detection: classification(Alert,’command dos to slave’)

∧ source(Alert, H)
∧additional data(Alert,’ddos victim’, V )

post: distributed denial of service(V )
verification: unreachable(V )

Fig. 2. Modeling a DDoS scenario.

objective ddos(V )
state: distributed attack(V )

Fig. 3. Modeling the DDoS scenario objective.

B. Scenario detection

In this section we expose the way the DDoS scenario is
detected through the use of the notion of correlation as defined
in [5]. We also explain how we react to the detection of this
scenario through the use of anti-correlation as explained in
[1].

1) Action correlation: Two actions A and B are correlated
when the realization of A has a positive influence over the
realization of B (given that A occurred before B). More
formally, if post(A) is the set of post-conditions of action
A and pre(B) is the set of pre-conditions of action B, we say
that A and B are directly correlated if the following conditions
are satisfied:
∃Ea and Eb such that:
• (Ea ∈ post(A)∧Eb ∈ pre(B)) or (not(Ea) ∈ post(A)∧

not(Eb) ∈ pre(B))
• Ea and Eb are unifiable through a most general unifier
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counter measure kill slave(S)
pre: slave(S)
action: kill slave(S)
post: not(slave(S))
verification: not(slave(S))

Fig. 4. Modeling the DDoS scenario counter measure.

θ.

Similarly, we define the notion of correlation between an
action and an intrusion objective. In this case we correlate
the post-condition of an action and the state condition of an
objective.

2) Alert correlation: Once all the actions available for
the attacker have been modeled, we can generate the set of
unifiers between all the actions. This generation is done off-
line. When an alert is received, we have to bind this alert to
an action model and then check a unifier between the new
alert and the already received alerts. This set of unifiers is
also used to anticipate the possible actions we may see after
having observed the beginning of a scenario. Those hypothetic
observations are called virtual actions.

3) Action anti-correlation: Two actions A and B are anti-
correlated when the realization of A has a negative influence
over the realization of B (given that A occured before B).
More formally, if post(A) is the set of post-conditions of
action A and pre(B) is the set of pre-conditions of action
B, we say that A and B are directly anti-correlated if the
following conditions are satisfied:
∃Ea and Eb such that:

• (not(Ea) ∈ post(A)∧Eb ∈ pre(B)) or (Ea ∈ post(A)∧
not(Eb) ∈ pre(B))

• Ea and Eb are unifiable through a most general unifier
θ.

In our scenario example, once the master starts to receive the
showalive message from the slaves, we can identify the slave
computers and kill them by launching our counter-measure.

Figure 5 represents the full correlation graph for the DDoS
scenario. Note that once we know all the slave computers, we
can launch the counter measure and it will be effective until
the command dos to slave action is launched.

V. EXPERIMENTATION

We used our campus network to test our correlation engine
to detect the different scenarios and to react against them.
We used four different subnets where signature based IDSs
are present in each subnet. We did not use anomaly detection
tools because the different elementary attacks composing the
DDoS attack cannot be detected with such tools. In fact,
the communications between the different components (at-
tacker(s), master(s) and slave(s)) correspond, in reality, to a
normal traffic as described above, so an anomaly detection
tool cannot detect the communications between the differ-
ent components as preliminary steps of the DDoS attack.
However, an anomaly detection tool, in front of a victim,
may deal with this kind of attacks. In this case, it is too

attack connection(A,H)
pre:  remote_access(A,H),
         master(H)
post: connected(A,H)

attack show_alive(S,H)
pre:  remote_access(H,S),
         master(H),slave(S)
post: knows(H,slave(S))

attack command_dos(A,H,V)
pre:   connected(A,H),
         master(H),
         knows(H,slave(S))
post: dos_command_sent(H,S,V)

attack command_dos_to_slave(H,S,V)
pre:   knows(H,slave(S)),
         master(H),
         dos_command_sent(H,S,V)
post: Distributed_denial_of_service(V)

objective ddos(V)
state:  distributed_attack(V)

counter-measure kill_slave(S)
pre:  slave(S)
post: not(slave(S))

correlation

anti-correlation

Fig. 5. DDoS Attack correlation graph.

late to react against it. Our principal goal is to stop an
ongoing denial of service attack before any victim undergoes
considerable damages. Recently, a company (see for instance
http://seclists.org/lists/isn/2004/Jul/0106.html) was downed by
a denial of service attack, during four complete hours, target-
ing its DNS servers. This attack was detected at the victim
but nothing could be done at this stage where it has lasted
many hours. It is preferable that this attack were countered
before it caused its negative effects towards the DNS servers.
The outside sources of the attack were unknown because of
IP Spoofing.

In our experiments, the attacker(s)1, the master(s), the slaves
and the victim(s) are located in different subnets as if they
were in different geographically distant networks over Internet.

DIAMS2, a platform we have developed in Java to corporate
the different intrusion detection tools, is installed in another
subnet. DIAMS framework is described in Figure 6.

In the following, we present the different modules com-
posing this platform and their corresponding functions. First,
DIAMS collects syslog alerts sent by the different sensors
that are installed in the different subnets. A translator module
receives the syslog alerts and translates them into IDMEF
(Intrusion Detection Message Exchange Format) format. These
alerts are then sent by a module called router to an alert
database (managed by PostgreSQL) and to the CRIM engine
where new functionalities [1], such as anti-correlation [1] and
weighted correlation [1], have been added to the first version
[4], [5], [2]. The new aggregation/fusion module, in opposite
to the first version [2], has been modified to use a similarity
function that calculates the similarity value (a real number
in [0, 1]) between two alerts. The first version was using a
prolog implementation which was not able to assess the level

1no IDS tool is installed in the attacker subnetwork.
2DIAMS stands for Détection d’Intrusion Au Moyen de Sondes
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of similarity between two alerts, two alerts were considered
as similar or not.

After the aggregation and the fusion procedures, CRIM
correlates the different aggregated alerts using the method
presented in section III and generates a diagnosis of the
detected intrusion scenarios. This diagnosis is transmitted to
the response mechanism that provides the concerned admin-
istrator with a set of candidate counter-measures using anti
correlation defined in section III. The administrator where
th victim is located can then select one or several counter
measures. DIAMS offers, through a module called DIAMS-
Action, the possibility to launch a response to stop an ongoing
attack by sending a TCP Reset or by sending other packets
for example to kill a slave or a master in our case. However,
this module is installed in each subnet but not in the attacker
subnet because actually we cannot react against attackers,
since we do not know where they are and we do not have
sufficient information about their network or computer system.
In addition, some counter measures are not possible because
of some filtering restrictions. For all of these reasons, DIAMS-
Action is installed in the victim side that we want to protect.

We illustrate the DDoS attack scenario described in Figure
5. As mentioned in section II, we do not take into account
the early steps of the DDoS scenario that consist in scanning
and compromising the different hosts that will later play the
role of masters and slaves. These intrusions may be detected
with some IDSs and then some corresponding scenarios may
be constructed with a semi explicit manner which may be
detected by the correlation engine. However, if the attacker
has a physical or remote access to the different machines then
these first steps cannot be detected.

The first step consists in opening a connection between the
attacker with the master. The IDS installed in the masters’

subnet will generate an alert and sends it to the DIAMS
platform. The pre-condition of the first attack of the scenario
mentions that the H host is a master host compromised by
the attacker A. Its post-condition specifies that the master has
opened a connection with the attacker.

When the attacker launches (automatically or not) the dae-
mon(s) in the different compromised slaves hosts, these slaves
hosts will send a “show alive” message to the masters that
control them in order to inform their readiness to flood. Hence,
the IDS situated in the subnetwork containing the master(s)
host(s) will send an alert (or alerts) to DIAMS which in turn
translates them into IDMEF format and sends them to the
CRIM engine that constructs the first two steps of the scenario.
We should mention here that this second step of the global
scenario is detected in both the master and slave subnetworks.
In this case, the IDS installed in the slave subnetwork will
also send the same alert to DIAMS. These two alerts will be
easily merged into one single alert by the CRIM engine (for
more details on merging, see for instance [2]).

With the same manner, the last two attacks of the scenario
will be detected successively by the master subnetwork IDS
and the slave subnetwork IDS. The last scenario attack may
also be detected by the master subnetwork. It will be aggre-
gated to one alert as the second step.

Once the CRIM engine has recognized the global scenario
using the approach explained in the previous sections, the
response module launches automatically a counter measure
which consists in killing the different slaves processes running
in the different hosts located in the slaves subnetwork. In
fact, DIAMS sends a message to the DIAMS-Action, which
is situated in the subnetwork where the slaves are detected
(the slaves subnetwork in our case), to kill the slave daemons.
After receiving this message, DIAMS-Action will launch the
appropriate response which consists in killing the slave dae-
mon processes in the hosts specified by the DIAMS platform.
In addition to this, the administrator where the daemon is
located is warned, by the DIAMS platform, about the host
where the daemon is installed. He should find the vulnerability
that permitted the installation of the daemon on that host
and disinfect and patch the system. Without doing this, other
daemons may be launched automatically from the same host.
This is what is called counter counter-measure.

The attacker believes the success of her/his attack. However,
our framework has already killed all the slaves she/he has re-
cruited. We mention that other counter-measures that consist in
aborting a TCP connection between the attacker and the master
and killing the client program on the master host are also
implemented. This last response should be launched but the
warned administrator by other informative responses sent by
the DIAMS platform should take new security considerations
on her/his vulnerable network.

The communications between the different IDSs, the DI-
AMS platform and DIAMS-Action should be encrypted to
not allow any alteration of the exchanged messages by any
attacker that can do so. A Public Key Infrastructure (PKI)
is implemented in our architecture to solve this problem in
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particular when this infrastructure is deployed over Internet.

VI. CONCLUSION AND FUTURE WORK

We have presented in this paper a cooperation technique
based on many IDSs tools geographically distant to coordinate
their alerts in order to detect a coordinated attack using the
CRIM engine. CRIM offers many features such as aggregation,
fusion, correlation and anti-correlation to recognize new attack
scenarios and launch appropriate counter-measures to stop any
ongoing attack that may affect a targeted victim.

The different DDoS tools such as Stacheldraht, TFN,
TFN2K, etc. we have investigated are detected by our cor-
relation module with the same manner as the one discussed to
detect Trinoo. However, since some communications between
the different components in these tools are encrypted, the
detection signatures of the encrypted messages are more
complex to specify. For this reason, we use a new idea that
assigns a confidence ratio to alerts and then a confidence ratio
is derived for the ongoing scenario from the confidence ratios
of the different alerts composing the scenario. This will be
discussed in a forthcoming paper.

Some of counter measures, such as killing the daemons
of slaves and masters, are launched automatically to prevent
the occurrence of a DDoS attack. However, in all cases, the
administrator is provided with a support to take a final decision
in order to reconfigure the security policy to prevent a new
occurrence of a given intrusion in particular compromising
the different hosts which played the role of slaves and masters.
However, as suggested in [12], dynamic changes of the secu-
rity policy may cause failure of some software components.
This is why [12] suggests the notion of security agility, a
strategy to provide software components with adaptability
to security policy changes. Security agility might be nicely
included into the intrusion detection and response framework
suggested in this paper. This represents a possible extension
of the response mechanism in our framework.
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