N

N

Collaborative Artificial Intelligence (AI) for User-Cell
Association in Ultra-Dense Cellular Systems
Kenza Hamidouche, Ali Taleb Zadeh Kasgari, Walid Saad, Mehdi Bennis,
Merouane Debbah

» To cite this version:

Kenza Hamidouche, Ali Taleb Zadeh Kasgari, Walid Saad, Mehdi Bennis, Merouane Debbah. Collab-
orative Artificial Intelligence (AI) for User-Cell Association in Ultra-Dense Cellular Systems. IEEE
International Conference on Communications (ICC 2018), May 2018, Kansas City, United States.
10.1109/ICCW.2018.8403664 . hal-01923643

HAL Id: hal-01923643
https://hal.science/hal-01923643
Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01923643
https://hal.archives-ouvertes.fr

Collaborative Artificial Intelligence (AI) for
User-Cell Association in Ultra-Dense Cellular
Systems

Kenza Hamidouche*, Ali Taleb Zadeh KasgariT, Walid Saad’, Mehdi Bennist and Mérouane Debbah*®
* LSS, CentraleSupelec, Université Paris-Saclay, Gif-sur-Yvette, France Email: kenza.hamidouche @centralesupelec.fr.
 Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
Emails:{alitk,walids} @vt.edu.
1 CWC - Centre for Wireless Communications, Oulu, Finland, Email: bennis@ee.oulu.fi
§ Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France Email: merouane.debbah@huawei.com.

Abstract—In this paper, the problem of cell association between
small base stations (SBSs) and users in dense wireless networks is
studied using artificial intelligence (AI) techniques. The problem
is formulated as a mean-field game in which the users’ goal is to
maximize their data rate by exploiting local data and the data
available at neighboring users via an imitation process. Such a
collaborative learning process prevents the users from exchanging
their data directly via the cellular network’s limited backhaul
links and, thus, allows them to improve their cell association
policy collaboratively with minimum computing. To solve this
problem, a neural Q-learning learning algorithm is proposed
that enables the users to predict their reward function using a
neural network whose input is the SBSs selected by neighboring
users and the local data of the considered user. Simulation
results show that the proposed imitation-based mechanism for
cell association converges faster to the optimal solution, compared
with conventional cell association mechanisms without imitation.

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has given
rise to a significant amount of data, collected from sensors,
user devices, and base stations, that must be processed by
next-generation wireless systems [1]-[5]. Relying on tradi-
tional cloud-centric approaches for big data analytics may no
longer be suitable for dense cellular systems that encompass
both IoT devices and conventional mobile phones. Instead,
it has become imperative to leverage the distributed storage
and computing power available in the network infrastructure
and devices (e.g., smartphones, computers, tablets and base
stations) so as to process the data. The data that is gathered at
the devices and base stations (BSs) is primarily related to the
network operations and includes the number of connections
from a given device to a BS, the type of requested data, the
traffic load at specific time periods, the location of the users,
and the channel state information, among others. Clearly, such
type of data is private in nature and users or BSs that are owned
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by different network operators would be reculant to share their
own collected data.

Recently, machine learning-based artificial intelligence (AI)
techniques [10], [17] have emerged as promising tools that
allow a cellular network to leverage the aforementioned and
optimize its various cross-layer functions. In particular, Al
techniques provide distributed, self-organizing solutions to
complex wireless networking problems such as resource al-
location, decoding/encoding, and cell association [6], [13].
Indeed, the association of users to BSs in ultra-dense and time-
varying cellular networking environments becomes challeng-
ingf to model and solve mathematically while capturing all
the network dynamics. This motivates the need for addressing
cell association problems using distributed learning algorithms
that enable both users and BSs to exploit the data that can be
gathered by BSs in the network.

The privacy constraints in cellular networks coupled with
the traffic load induced by centralized learning frameworks
makes it necessary to develop distributed machine learning
algorithms for cell association [13]. These algorithms must
be able to exploit the training data that is stored at a large
number of devices to reduce the local training time and save
their computing and spectrum resources. The main objective
when designing a distributed learning framework is to allow
a given user to benefit from the learning and processing of
other neighboring users that have already selected their serving
BS. For instance, users that are located in the same area will
often experience the same channel condition, and the same
distance to the BS separates them. Thus, a given user can
exploit information about selected BSs by users that have
similar network conditions.

The problem of cell association was extensively addressed
in the literature [7]-[9] and [11]. The work in [8] addressed the
problem of cell association between unmanned aerial vehicles
(UAVs) and users using optimal transport theory to minimize
the average network delay under any arbitrary spatial distribu-
tion of the ground users as well as the optimal cell partitions of
UAVs and terrestrial base stations. The authors in [9] proposed



a distributed cell association mechanism for energy harvesting
IoT devices based on mean-field multi-armed games. In [11],
the authors formulated the problem of cell association as a
noncooperative game and proposed a distributed algorithm
based on the machine learning framework of echo state
networks (ESNs). The proposed algorithm enables the small
base stations to autonomously choose their optimal bands
allocation strategies while having only limited information on
the states of the network and its users. The work in [12] also
used machine learning to study cell association in cloud-based
networks. Altough interesting, all these works either consider
a static model or dynamic systems where all the information
are assumed to be known to the BSs and users.

The main contribution of this paper is a novel collaborative
learning mechanism in ultra-dense cellular networks that can
exploit the similarities between users in terms of network con-
ditions. To this end, we introduce a new learning mechanism
via imitation that helps a user to select its serving BS faster by
exploiting its local data and the learning outcomes of neigh-
boring users. In fact, neighboring users might be characterized
by similar characteristics such as channel conditions and their
distance to the BSs. In this mechanism, instead of exchanging
all the local data between users, only the outcome of their
learning algorithms is transmitted.

In particular, we formulate the problem of cell association as
a mean-field game (MFG) [15] with imitation in which a user
aims to maximize its own data rate while minimizing the cost
of imitating its neighboring users. Then, we reduce the MFG
into a Markov decision problem (MDP) which is essential for
exploiting the measurements available at the users. Hence,
learning which base stations the users should connect to as
well as the reward function via local data becomes possible.

To reach the desirable mean-field equilibrium outcome
for the formulated game, we propose a deep-learning based
reinforcement learning algorithm that allows the users to
predict their utility function by exploiting their local data
and mimicking similar users. Using extensive simulations, we
compare the proposed mechanism with a setting in which users
select their serving BSs without imitating other similar users.
Such a comparison allows us to see that these imitator users
can learn the optimal action in a new environment faster than
other users.

The rest of this paper is organized as follows. In Section
II, we present the system model. In Section III, the problem
is formulated as a mean-field game with imitation and then
a deep-learning based reinforcement learning algorithm is
proposed to determine the user-cell association policy. Section
IV presents the simulation results and Section V concludes the
work.

II. SYSTEM MODEL

Consider a set S of S small base stations (SBSs) deployed
to serve a set & of U users in an LTE cellular system. We
consider both downlink and uplink of the LTE system. We use
u € U and s € S to index the users and SBSs, respectively.
We introduce a binary variable ag, that is equal to 1 when
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Fig. 1. Illustration of our system model.

user u chooses SBS s and 0 when user u is connected to
another SBS. Each user u decides to select SBS s based on
the following utility function:

U
Qeu = argmax |rys — > f(,u)]asy — aer||, (1)
S
u'=1
where 7, is the throughput of user v when connected to SBS
s, and f is a function that captures the similarity between two
users u and u’. The similarity function captures the channel
conditions, the geographical position and the interests of users.
The achievable throughput of user u is given by

U
pushus

w,s — Bl ]- B o 2

T, Og2< * o+ 13, asu’)> C(u'z:la e

where ¢(.) and I(.) are increasing functions. c(zg,zl Ay’
takes into account the throughput drop when the cell is
congested. I(}",, as,) determines interference in uplink and
it is a function of the number of total users connected to the
SBS wu. hys is the channel gain between user v and BS s. An
illustration of the system model is shown in Fig. 1

In ultra-dense cellular systems, a large number of users
deployed in the same area are covered by the same SBSs and
experience the same quality-of-service (QoS) when the number
of users tends to infinity. Thus, we introduce a similarity
indicator function f(u,u’) and define it as follows:

0, wuser u is not similar to user u’,

flu,u') = L , (3)
1, wuser u is similar to user u'.
The user distribution across SBSs at time slot ¢ is given by:
w(t) = [m(t) ms(t)] €

where 7,(t) is the fraction of users that are connected to SBS
j at time slot t. We can define transition probability Pk, (t)



as the probability that users connected to SBS s switch to
SBS m in time slot t. Hence, the users’ distribution evolves
as follows:

S
Tt +1) = Pan(t)ms(1). (5)
s=1
The reward function for each user is defined as a function of
7 (t):

U

ru(ﬂ—s(t)a 5) = 7'us(ﬂ—s(t)) - Z f(uvu/)|asu - aSu’|' (6)

u'=1

Our primary goal is to assign the users to the SBSs while
accounting for the high density of users in cellular systems
and leveraging this density. To this end, we formulate the
assignment problem as a mean-field problem in which the
users exploit the storage and computing capabilities at the
users to cooperatively decide to which SBSs they connect.

III. PROBLEM FORMULATION AND GAME ANALYSIS

In this section, we formulate the problem of user-cell associ-
ation as a mean-field game [13], [15] with imitation to account
for the high density of future cellular systems and leverage the
data available at the users with a low communication overhead.
Thus, we enable the users to collaborate and leverage both
storage and processing capabilities that are locally available
to them for an efficient cell association mechanism.

A. Mean-Field Game Formulation

Let G = (V,€) be a graph whose vertex set ) represents
the set of SBSs to which the users can connect and the edge
set £ represents the possible transition between every two
SBSs. Thus, only the neighboring SBSs are connected with
an undirected link. We define the state of a given user u € U
at time ¢ as the SBS to which this user will get connected.

For each SBS s € S, we define the two sets Vs, = {j :
(,7) € £} and V, = V, U{s}. The dynamics of the users are
generated by right stochastic matrices P(t) € S(G), where
S(G) = S1(G) % ... x Sg(G) and each row P(t) belongs to
Ss(G) = {pAS~t|supp(p) C V}, where A%~ is the simplex
in R®. Moreover, we define a value function V;(t) of state s
at time t, and a reward function rs(7(t), Ps(¢)), quantifying
the instantaneous reward of a user connected to SBS s taking
transitions with probability P (¢) when the current distribution
of the users over the SBSs is 7 (¢).

The backward Hamilton Jacobi-Bellman (HJB) equation
and the forward Fokker-Planck equation for each SBS s &€
{1,...,5} and time ¢ = 0,...,T — 1, in a discrete-time graph
state MFG are given by:

Vi= pmax (), Pa(t) + %_; PVt +1) o,
‘ (7)
m(t+1) =) Pj(t)m(t). (8)

jev

Next, we define the elements that are necessary to formulate
our problem.

o Users distribution p,(t) € AS~! for t = 0,...,T —
1. Each 7 (t) is a discrete probability distribution over
S SBSs, where 7,(t) is the fraction of users that are
connected to SBS s at time ¢.

o Transition matrix P(t) € S(G). P;(t) is the probability
that users connected to SBS s switch to SBS j at time
t. We refer to P4(t) as the action of users conneced to
SBS s. P(t) generated the forward equation

S
mi(t+1) =Y Py(t)m(t). ©)

e Reward rs(m(t), Ps(t)) =
S Paj()re(m(t), Py(t)) for s € S. This is
the reward received by the users connected to SBS s
that choose action P(t) at time ¢, when the distribution
is m(t).

e Value function V(t) € RS. Vi(t) is the expected
maximum total reward of being connected to SBS s at
time £. A terminal value V7! is needed and will be set
to zero.

e Average reward e (mw,P,V), for s € S and V € R®
and P € S(G). This is the average reward received by
users connected to SBS S when the current distribution
is 7r, action P is chosen, and the subsequent expected
total reward is V. The average reward is defined as

S
es(m, P, V)= Zpsj(Tsj(ﬂ'7P) +Vj).
j=1

(10)

Intuitvely, users want to act optimally in order to maximize
their expected total average reward.

For P € S(G) and a vector ¢ € S5(G), we let P(P,s,q)
be the matrix equal to P, where row s is replaced by ¢. Then,
we define the desirable outcome of the problem as follows.

Definition 1: A right stochastic matrix P € S(G), is a Nash
maximizer of e(w, P, V), if given a fixed 7w and a fixed V €
RS, for any s € S and any q € S,(G), there is

63(71',P, V) > es(Tr,P(P, s,q),V). (11)

The rows of P form a Nash equilibrium set of actions, since
for any SBS s, the users connected to SBS s cannot increase
their reward by unilaterally switching their action from P to
any ¢g. Under Definition 1, the value function of each SBS s
at each time ¢ satisfies the optimality criteria:

S
Z qj [rs; (w (@), P(P(t),5,9)) + Vi(t +1)]

Vs(t) = max
() 4€5.(9)

(12)
A solution of the MFG 1is a sequence of pairs
{(m(t),V(t))}1=0,...,7 satisfying the optimality criteria

(12) and the forward equation (9).



Now, we reduce the formulated MFG into a single user
deterministic Markov decision process (MDP) within a finite
time duration. This shows that solving the optimization prob-
lem of a single user MDP is equivalent to solving the MFG
and allowing every user to select the SBS that maximizes its
value function. This connection will allow us to apply efficient
deep reinforcement learning (RL) methods that use data about
the dynamics of the users in the network, to learn the best
strategies of the users as well as their reward function.

B. Mean-Field Game Analysis

Here we formulate the problem as a Markov decision
process for each user. Each user’s action is defined as choosing
an SBS to connect to. Its reward is defined in (6). Also the state
of the system x? is defined as the number of users connected
to each SBS:

(t) = [2:1(2) s(t)]

First, we need to find number of states for the MDP as follows.

Proposition 1: Let the number of SBSs that each user u
can use be b, < S. Also, let the total number of users that
can connect to SBS s be N,. The total number of states for
user u is S,, and is bounded as follows:

S Ny — by +1 U—b,+1
< 5= <
K“—( by — 1 =\ b1 19

13)

Proof: The total number of states for a given user w is
given by the non-negative integral solutions of the following
equation:

15)

by by
Ku = E nNg = E NS7
s=1 s=1

where n is actual number of users connected to SBS s. Hence,
we can find the upper limit for K, as,

b,
“  Ng—b,+1
K, < 2t ). (16)
by, — 1
Furthermore, since
29
D N.<U, (17)
s=1
we know that
bu _ i
Doty No—by, +1 < U—-b,+1 . (18)
b, —1 by — 1
| |

As we can see from Proposition 1, the size of the state space
grows with the number of users in the order of O(U%+) in the
worst case. Since each agent uses Q-learning for learning the
optimal action, it has to store the Q-function. However, as
we can see from Proposition 1, it is not feasible to create a
table for the Q-function. The only assumption we make on the
system is that each user knows its reward after connecting to

each SBS. A user can estimate 25,:1 sy based only on its
own reward. We know

U
- )
u'=1

K
pijhi I’ (3= asur)

(02 + Iy asw)) (0% + 1(Cy—y asur) + pz-jhz-jgl’g)

Oru,s

K
0 ey Gsu

and we know that %(I) > (0 and dCT(m) > (. Hence, using the

bisection method with the knowledge of r, ; each user can
find total number of users connected to the BS.

Since each user cannot observe the full state of the system
and it only observes it partially, we propose a method to solve
partially observable Markov decision processes (POMDPs). In
this method, each user estimates the full state using its limited
observations and a neural Q-network. We use multilayer neural
networks as Q-function estimator. At each time slot ¢, all the
users make decision using reinforcement learning and estimate
their Q-function using multilayer neural network.

C. Value function approximation

As we showed, the value function cannot be stored in a
table. Therefore, a function approximation method should be
used to approximate the value function. Neural networks are
powerful tools for value function approximation [16].

Since each user does not know the transition model of the
MDP, they need to approximate the Q-function instead of
the value function. Considering the fact that training adaptive
linear neurons using the backpropagation algorithm is com-
putationally inexpensive, we can use a unique neural network
n for approximating Q(e,ay,). e is the partial state observed
by the user in the system and a,, is the action, i.e., the SBS
selected by the user. In this neural network, the state of the
system is the input to the neural network. This is due to the
fact that the number of actions for each user is limited in
contrast to the large number of states.

The output of each adaptive linear neuron can be written as

Qule,an) =wrlx +b,. (20)

The approximating process is to choose a random action at
each stage and then trying to update the weights. To do so,

we update the weights based on the following rule:
wi(t+ 1) = w,(t) + Myw — Qule, an)), 2n

where ) is the learning rate, and y is the current target which
is an exponential moving average and can be written as

Yu = (1=0)Qu(e, an)+a(r(e, an)+ymaxw, z+b,), (22)

where « is a factor between 0 and 1. We use these adaptive
linear neurons in a multilayer structure to estimate the Q-
function, using which we find the optimal action as follows:

au(e) = Hlfl%X Qule; an). (23)
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Fig. 2. Wireless network with 10 SBS and 700 users.

That is, each user u finds its best action a,(e) in state e
using the maximum output of its neural networks. Each neural
network estimates the value of an action in the current partially
observed state.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulation, we consider a network with 700 users
uniformly distributed in the range of 10 SBSs.

We assume that the path loss exponent is 2, the carrier fre-
quency is 900 MHz, and the noise variance is —173.9 dbm/Hz.
Each user acts based on an e-greedy reinforcement learning,
meaning that it chooses a random action with probability € and
approximates the value function using adaptive linear neuron
(ADALINE) neural networks. The user, then, trains its network
using the Widrow-Hoff algorithm (exploration) and chooses
the best BS with probability 1 — € using [23] (exploitation).

There are two different types of users in the learning
algorithm:

1) Non-imitator users: users that maximize a reward func-
tion affected only by the throughput and congestion
functions.

2) Imitator users: users that maximize the reward function
of non-imitator users in addition to imitating the action
of the users close to them.

The simulation consists of two phases. In the first phase, 500
non-imitator users start to approximate and maximize their
value function using the aforementioned methods. After they
converge to an equilibrium, in the second phase, 100 non-
imitator and 100 imitator users enter the system. As we can
see in Fig. 3, non-imitator users start to learn the environment
in 500 time-slots and their average reward increases with time.
This is due to the fact that, as they learn to coordinate with
each other and manage interference, their average reward will
increase. Fig. 4 shows the second phase of the simulation

Average reward

A . . . . . . . . .
100 150 200 250 300 350 400 450

Time-slot

Fig. 3. Average reward for 500 users in the first phase.

where 100 imitator users and 100 non-imitator users enter the
system and start to approximate a value function and maximize
it. The locations of the users, imitator users, non-imitator users
and SBSs in the system are depicted in Fig. 2.

As we can see, the imitator users adapt faster to the
environment. This is due to the fact that, in addition to learning
the environment, the imitator users also use the existing
users’ experience. This experience will help them to learn
the environment and behavior of other users faster. Since
non-imitator users will also gain experience over time, the
average reward of non-imitator users will eventually approach
that of imitator users. However, non-imitator users gain the
experience of the existing users with a delay which is in a
direct relationship with the experience of their adjacent users.
The average number of users per base station in two different
cases is shown in Fig. 5. After 500 iterations, in case 1, 200
imitator users enter the system, and in case 2, 200 non-imitator
users enter the system. Then, we find the average number of
users per base station for 100 time-slots. Since the imitator
users use the existing knowledge of 500 users in the system,
they can learn to adapt with the system faster, and as a result,
the load is more evenly balanced in this case.

V. CONCLUSION

In this paper, we have addressed the problem of cell
association in ultra-dense networks while leveraging the data
available at the users and their processing power. First, we
have formulated the problem as a mean-field game with
imitation, where users not only learn from their own local
data, but also from the models learned by their neighboring
users with the same characteristics, captured by a similarity
function. We have showed via simulations that the proposed
collaborative learning mechanism outperforms the learning

500
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mechanism without imitation in terms of learning time and
load balance.
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