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Abstract. A large part of the development effort of compute-intensive applications is devoted to optimization,
i.e., achieving the computation within a finite budget of time, space or energy. Given the complexity of modern
architectures, writing simulation applications is often a two-step workflow. Firstly, developers design a sequen-
tial program for algorithmic tuning and debugging purposes. Secondly, experts optimize and exploit possible
approximations of the original program to scale to the actual problem size. This second step is a tedious,
time-consuming and error-prone task. In this paper we investigate language extensions and compiler tools to
achieve that task semi-automatically in the context of approximate computing. We identified the semantic
and syntactic information necessary for a compiler to automatically handle approximation and adaptive tech-
niques for a particular class of programs. We propose a set of language extensions generic enough to provide the
compiler with the useful semantic information when approximation is beneficial. We implemented the compiler
infrastructure to exploit these extensions and to automatically generate the adaptively approximated version of
a program. We provide an experimental study of the impact and expressiveness of our language extension set on
various applications.

1 Introduction

The software development industry is constantly pushing
research in language theory, compilers and tools to improve
developer’s productivity and the efficiency of applications.
On a regular basis, new languages appear or new construc-
tions in existing languages are developed to express a par-
ticular idea in a simpler and more concise manner and are
included in new revisions of existing languages. In this
paper, we present a new set of language extensions that
allow approximation-specific knowledge to be integrated
to any programming languages. Using these extensions,
developers can express the approximate methods that they
want to use, e:g. memory access or task skipping, without
modifying their initial algorithm, and let the compiler opti-
mize the code with the requested techniques automatically.
To exploit these new extensions, we rely on state-of-the-art
polyhedral representation of programs to apply code trans-
formations on the input program and avoid unnecessary
computations while keeping guarantees on the validity of
the transformations.

With the rise of parallel processors, multiple vendors
have formed a non-profit consortium to propose a new
Application Programming Interface (API) which is known

as Open Multi-Processing [1] (OpenMP). This API greatly
reduces the time needed to implement parallel applications
compared to using a specific library directly. In this paper
we propose a similar approach for approximate computing
and adaptive methods. Our method relies entirely on
optional annotations for the compiler. Our ‘‘Adaptive Code
Refinement’’ (ACR) annotations are put on top of compute
intensive kernels that can benefit from approximate com-
puting techniques. The compiler may exploit these annota-
tions to generate multiple alternative code versions of the
kernel which will be executed depending on the program’s
current state. In a nutshell, the software developer provides
multiple ‘‘alternatives’’ of some computations and the con-
ditions when they will be active. The area where these con-
ditions are applicable can be selected among partitions of
the computation kernel and may depend on runtime data.
The developer can create its own static partitions or select
the size of a regular partition. The compiler will exploit this
information to enforce the use of the approximate alterna-
tive on the generated partitions dynamically thanks to
specific compiler techniques and a specific runtime.

Compilers can use a multitude of strategies in order to
optimize a program. However, traditional compilers are
constrained by the input program semantics, i.e., optimiz-
ing compilers can apply transformation as long as the pro-
gram generates the same output as the initial program. The
ACR extensions allow the compiler to relax the semantics* Corresponding author: max.schmitt@unistra.fr
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on chunks of the program where it is pertinent, without
modifying the original algorithm itself. This results in an
improved development workflow. The software developer
can write and test his sequential or parallel algorithm imple-
mentation first, and then in a second phase use approxima-
tion techniques with ACR on the application’s hot spots.

For example Figure 1 presents a visualization of a mag-
netic field during an ongoing simulation. The magnetic field
is computed using the electric field. By observing the simu-
lation data plot, we can notice that parts of the space have
a uniform magnetic field, here represented as dark grey.
This means that the electric field is constant and uniform
in these areas. Software developers exploit this knowledge
to accelerate their simulations manually by suppressing cor-
responding parts of the computation. Therefore, in this par-
ticular case, the electric field will not be updated inside
these zones. Without ACR, the software developer will
model his solver according to this knowledge and therefore,
there will be a strong entanglement between the solver and
its optimization strategy. With ACR, developers focus on
the solver rather than architecture specific optimizations.
Once the solver is finished and truthfully tested, developers
can input the optimization information through specific
ACR extensions. The original algorithm/program is not
modified. In this example, the ‘‘alternative’’ will disable
some targeted computations. The domain is partitioned
with a regular grid and the alternative is active where the
magnetic field is constant. The grid overlay in the figure
corresponds to the ACR cell granularity. A cell is the data
partition always sharing the same alternative. The code
generated by the compiler controls the values of the mag-
netic field inside these cells to choose whenever the compu-
tation should be disabled or not. We show in Section 4 that
implementing this dynamic optimization strategy may sim-
ply be a matter of specifying few ACR extensions.

Contributions: This paper introduces the ACR language
extension set to enable approximate computing techniques
by annotating compute-intensive parts of an application.
We introduce these extensions in detail, and their effects
to the application. We present the mathematical model
on which we build our solution along with the code transfor-
mations and algorithms used to exploit our extensions. We
introduce compile-time and run-time methods to achieve

adaptive precision selection on explicitly targeted portions
of a computation space. These methods are evaluated
against a range of representative applications that sup-
port approximation, and are shown to allow for good
performance improvement at the price of limited code
modifications.

Outline: The remaining of the paper is organized as
follows. Section 2 introduces the technical background
and the theory used to construct our approximation model.
Section 3 focuses on the language, the grammar and syntac-
tic aspects of ACR. Section 4 provides an overview of the
various categories of code that can be generated along with
their construction algorithm. Section 5 demonstrates the
expressiveness of our extension set and their effects on
various example applications. Section 7 concludes and dis-
cusses ongoing work.

2 Background

In this paper we present a new set of extensions to use
approximate computing in new or existing software. Exten-
sions complement existing languages to provide additional
information to compilers. Section 2.1 presents the use of
libraries, extensions or constructions directly embedded into
the languages to add semantic information to programs.

Approximate computing is a computation which may
yield an inaccurate result rather than a guaranteed accurate
one. Approximate computations can be used in cases where
a possibly inaccurate result is sufficient for the application’s
purpose. Obtaining an approximate result may require less
computation power than the accurate one. Therefore,
approximate computing is used in constrained environ-
ments where reduced resource usage is required or valuable.
Section 2.2 introduces approximate computing applicable
environments, the available techniques to reduce the com-
putation power of applications and methods to measure
the accuracy of approximated versions.

In our work, we use the polyhedral representation of
programs, a mathematical representation of programs
that is used to apply transformations to the original code
version and to generate the approximate code versions.
Section 2.3 introduces the details of this representation

Fig. 1. Finite-difference time-domain magnetic field. Illustration of a 2D finite difference time domain simulation at two different time
steps, 700 top and 1300 bottom. The magnetic field H is represented with a red and blue scale for the positive and the negative field
values respectively, the white being neutral. An impermeable, square shaped, black object is present to reflect the waves. The grid
overlay corresponds to the ACR cell decomposition. Each cell is composed of several points of the simulation domain and is transparent
for the software developer. A grey cell is in an inactive state, i.e. the electric field computation in that cell is not done. The cell grid is
dynamically updated at each simulation step and only the cells that have a constant magnetic field are disabled. The ACR compiler
directives were used to express the cell size, how to identify a grey cell and what approximation to use when we are in a grey cell.
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and demonstrates its advantages for program transforma-
tion and code generation.

2.1 Language extensions and specialized libraries

Programming languages are the main tools to create pro-
grams. The languages syntax and external libraries provide
convenient abstractions to build or optimize programs. In
this section, we review three ways to extend an existing
language to support adaptive approximation: integrated
language extensions, libraries and optional language exten-
sions. We provide the advantages and drawbacks between
the three approaches and motivate our choice for the
optional language extension.

Integrated language extensions add new keywords or
constructions inside the language grammar. The software
developer may use these new constructions to provide addi-
tional semantics to variables or code blocks. The following
table shows examples of additional constructions added to
programming languages.

In the first example, the type system was enhanced with
new keywords. A defined variable can be approximated [2]
or accessing the variable be atomic with respect to the C11
extensions, i.e. accesses are safe between concurrent
threads. The second example specifies a function reliability
metric which states that the output precision for the func-
tion f must be at least as precise at 90% of its input param-
eter [3]. The last example provides additional control flow
constructions where the number of iterations and stride of
a for loop are determined by the compiler, at runtime, from
an accuracy metric using information from a training data-
set [4].

Specialized libraries are available in multiple domains
and help developers by reuse of an existing code base. A
library’s interface consists in prototypes of functions that
the developer may call. For specialized libraries, functions
usually require an additional state parameter. This state
contains the library internal problem representation, which
is not accessible to the developer, and is carried between
library function calls. To use this kind of library, the devel-
oper initializes the state, modifies the state using the library
functions and recovers the information from the state using
provided accessors. For example, in physics, there exists
adaptive mesh refinement libraries [5] as well as specialized
finite element libraries [6]. More generic libraries, e:g., the
Standard Template Library in C++, provide containers,
algorithms, functions and iterators [7].

Optional language extensions are additions to the lan-
guage that do not modify the language grammar. They
can be expressed as annotations inside the comment section
or with special constructions which will be ignored by the
compiler when not recognized. These constructions use a
dedicated syntax and can refer to information available
inside the program source code, e:g., identifier names and
values. For example, OpenMP is a language extension for
the C/C++/Fortran languages that provides paralleliza-
tion and task generation extensions. e:g., the following code
does a parallel addition of all the values returned by a func-
tion and stores the result in the variable a. The first version

in Figure 2 uses a thread spawning library to add every ele-
ment of an array.

The second equivalent version in Figure 3 uses OpenMP
directives instead of a library.

The OpenMP version is less verbose and allows for fast
analysis of the main purpose of the algorithm while the ver-
sion using the library contains more implementation details
due to the library function interface. The parallel reduction
algorithm is implicit for the OpenMP version. Internally,
they may transparently use different optimized reduction
strategies. Re-usability of existing libraries is not a problem
when annotations are used as the compiler can issue a code
targeting them. Hence, the code in Figure 3 may compile to
the same code as in Figure 2.

Optional language extensions give flexibility to the devel-
oper. They can be ignored by compilers that do not imple-
ment the extensions or disabled at compile time, e:g. using
a compilation flag. On the other hand, a missing library or
unknown type/construct will throw a compilation error.
Specialized libraries can reduce the maintainability, debug-
ging and optimizations possibilities of complex programs,
e:g., interprocedural and code inlining optimizations are
not possible for dynamic libraries. Language extensions are
less invasive because code transformation is done automati-
cally by the compiler. Optional extensions may be more ver-
bose than integrated ones, but they share a common
interface between many programming languages. Therefore,
optional language extensions is the most suited abstraction
for our adaptive approximation API based on the language
agnostic polyhedral representation of programs.

2.2 Approximate computing techniques

The demand for computational power and storage capacity
required to process data in multiple fields, e:g., scientific
computing, multimedia, social media, finance and health

Fig. 2. Parallel reduction of an array using a thread spawning
library (right). Each thread is given an equal chunk of the initial
array to reduce via the reduceChunk function (left). The master
thread waits for each spawned threads to finish and finally adds
the intermediary results together.

Fig. 3. Parallel reduction of an array using the OpenMP
directives. ‘‘omp parallel’’ states that the following loop can
safely be parallelized and the ‘‘reduction(+:a)’’ indicates that we
want to do a reduction using the addition operator on the
variable ‘‘a’’. The final result will be stored in the said variable.
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care tends to grow faster than the resources that can be
allocated to process them. The ratio of data traffic increase
to computing power increase has been observed to be in the
order of 3 in the early 2000’s [8]. Therefore, approximate
computing as well as approximate data storage becomes a
particularly attractive solution to this ongoing phenomenon
where the demand in data processing exceeds the capacity
to process it. Gains proportional to the level of approxima-
tion can be expected with thorough selection of approxima-
tion strategies.

Approximate computing techniques are well suited for
various kinds of applications [9]. Our language extension
set is generic enough to target various application classes,
including (see Sect. 5):

Noisy input systems. Storage and analysis of noisy data
necessitate more resources to extract the relevant data.
Each analog sensor is prone to interferences and comes with
a specification of its capabilities and error margin. It is
non-trivial to extract the signal from the background noise.
Therefore, analysis of numerous noisy data streams
becomes a challenge which can be addressed by using
approximation techniques.

Error-resilient applications. In some cases, e:g. com-
puter vision or sound synthesis, the program output quality
is not impacted if we allow a small error margin. The qual-
ity of the result is bounded and approximation techniques
can leverage the application’s full potential while sticking
to an acceptable output quality.

Iterative applications. Some commonly used algorithms
of scientific simulations or machine learning use iterative
methods in order to reduce the problem complexity. The
runtime of those programs can greatly be reduced by allow-
ing approximate portions of code inside each iteration.

Previous studies came up with various techniques to
allow developers to be able to use approximation techniques
in their programs. Most automatic techniques are based on
error injection (e:g. use approximate algorithms, arithmetic
operations and data representations) along with the moni-
toring of the output quality. Section 3.3 gives more details
on various approximation techniques that can be used
along with our language extensions to yield an approximate
version of the program.

Whenever approximate computing is used, we also need
the ability to measure the precision or quality of the output.
There exists multiple quality metrics available in the
literature. One of the most common metrics is the relative
difference or error with respect to a standard output, i.e.
obtained without the use of approximate techniques [10].
Application specific metrics are available, e:g. image and
video processing have Peak-Signal-to-Noise-Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) [11], phy-
sics based simulations use energy conservation as a metric
[12] and machine learning algorithms are validated against
preprocessed datasets [13]. The developer should be able to
select the best suited metrics for the problem at stake.

While the two previous points are crucial in order to use
the right approximation methods and error metrics, the
developers have yet to use these approximation techniques
in their programs. Three main possibilities are available.
Given that the developers are comfortable with approxima-

tion techniques, the first option is to write the application
from the start with approximation in mind. This requires
a high level of expertise of the application algorithms and
in approximation theory. The second method uses domain
specific libraries that already implement the approximation.
With the last option, the developer provides code annota-
tions for the compiler and lets the framework generate the
approximate version automatically. In our work, we propose
a new way relying on language extensions to enable a new
compiler optimization based on approximate techniques.

2.3 Polyhedral representation of programs

The polyhedral model is an algebraic representation of pro-
grams where the points of a Z-polyhedron correspond to
instances of a statement inside the application [14, 15].
Within this model, we can represent a wide variety of pro-
grams, i.e., the model imposes some restrictions on loop
bounds and data accesses: loop bounds, control statements
and data accesses must be affine expressions of surrounding
loop variables and constant parameters. In this work, we
rely on the polyhedral model to transform, create new opti-
mized versions and add annotations to produce approxi-
mate versions from the original code.

In Figure 4, the loop nest on the left can be represented
in the polyhedral model whereas the one on the right can-
not. In the left case, every loop bounds, data access expres-
sions and control statements are affine functions. In the
right case, the loop cannot be represented in the polyhedral
model because the upper bound of the second loop is depen-
dent on an array access and cannot be analysed statically
by this model.

The polyhedral representation embodies the following
information for each statement:

The iteration domain of the statement, which represents
the number of times that the statement is executed.
Here, each dimension represents a level of the loop nest.
The domain is empty when the statement is not part of a
loop nest.
The scheduling of the statement, which maps the state-
ment instances to a time domain. Hence, it represents
the order in which the various statement instances have
to be executed with respect to each other.

Fig. 4. Loop nest example in C. The left loop can be raised to
the polyhedral model because each data access and the control
statement expression are affine functions. The right loop nest
cannot be represented in this model because the upper loop
bound of the j dimension is an array indirection dependent of i
(C[i]). When considered alone, the j loop can be raised in the
model because its upper bound can be treated as a constant
parameter. In that case we miss the nesting information and
reduce the set of potentially applicable code transformations.
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The array access polyhedra, which are the read and
write map functions from the iteration domain to array
indices. They are used for dependency analysis, to assert
that transformations made to the schedule are valid.

The polyhedral representation allows for code transfor-
mations through linear operations, i.e. reordering the state-
ment instances with respect to each other in the schedule,
and asserts the legality of these transformations with exact
dependency analysis [14–16]. The polyhedral representation
can be extracted from programming languages construc-
tions [17–19]. Code generators can be used to translate it
back to code [20, 21].

In the following of this section we give more details
about the iteration domain, the scheduling, the code trans-
formation, dependency analysis and code generation.

The iteration domain corresponds to the mapping
between the point coordinates and the iterator values of
each statement. This polyhedron is constructed using a
set of inequalities control statements (bounds, ifs) of the
loop nest. In Figure 4 left, there is only one statement,
i.e. S1: {A[i][j] = B[i + j � P];}, whose iteration
domain is:

DS1ðN ; P Þ ¼
i

j

� � 0 � i � N

i � j � N

P � iþ j

�������

8><
>:

9>=
>;

We can easily recognize the two loop bounds and the
guard expression inequations. The bounds depend on the
two parameters (N, P) which are constant for the duration
of the loop nest. The domain has two dimensions named
(i, j) as in the initial loop nest.

The scheduling polyhedron is a function from the itera-
tion space to a multidimensional time space. It defines a
total order between the statement instances. The original
loop scheduling function, which corresponds to the lexico-
graphic ordering is the identity function. In our example,
each instance of (i, j) is ordered lexicographically by con-
struction of the for loop. Therefore, an instance precedes
another one, (i, j) < (i0, j0), if (i < i0) V (i = i0 A j < j0).
An identity scheduling function indicates that the instances
execute in the same order as the dimension of the domain
polyhedron.

Code transformations are linear functions that are used
to modify the scheduling polyhedra of the statements.
Transformations do not modify the number of instances
but their relative order with respect to each other. The fol-
lowing example illustrates the matrix to perform a loop
interchange for a two-dimensional loop nest with the
dimensions i and j. The matrix represents the interchange
loop transformation.

Interchange ¼
i0

j0

� �
¼

0 1

1 0

� �
i

j

� �� �

Thanks to the linearity of the transformations, it is pos-
sible to compose them together to create more complex
ones. It is nonetheless necessary to check that the transfor-

mation itself will not break any dependency of the data
accessed by the loop.

Dependency analysis is one essential cornerstone of the
model. It is used to verify transformation’s legality and to
assert that the new scheduling will not modify the pro-
gram’s behaviour with respect to the original one. Depen-
dency analysis in the polyhedral model uses a dependency
polyhedra to represent all the dependencies between two
statements [14]. A dependency between two statements S
and T exists if there is an instance S (i) happening before
T (j), both accessing the same memory location [22]. Code
transformation functions are applied to the dependency
polyhedron which is formerly checked for the absence of
backward dependency, i.e. a value from a statement is used
before it has been computed. When there is no such back-
ward dependency, the transformation is said to be legal.

Code generation translates the domain polyhedron and
its associated optimized schedule to a programming lan-
guage representation. The task is handled by a code gener-
ator, e:g. CLooG [20], that produces an imperative AST
from the polyhedral representation. The new generated
AST scans the iteration domain following the new schedule
defined by the optimization phase. Code generation can also
optimize the control overhead by lifting, whenever possible,
the control statements outside the loop. Thus aspect is par-
ticularly important in our context (see Sect. 4.2). The code
in Figure 5 is the result of a code generation pass on the
Figure 4 original domain and schedule. The generated code
does not include empty iterations contrary to the initial ver-
sion. New loop bounds are used to ensure the nonemptiness
of the iteration domain. Figure 6 pictures the iteration
domain of the loop nests. The two lines represent the linear
inequalities of the lower and upper loop bounds. The points
that are present inside the cone pointing up are the valid
instances. The generated loop in Figure 5 only visits the
points inside the cone whereas the original loop in Figure 4
left visits points outside and uses the guard internal control
statement to prevent the statements execution.

The code generation algorithm shifts the control state-
ment of guarded empty iterations upwards, to the upper
loop dimensions whenever possible, reducing the total loop
overhead. This overhead could represent a significant part
of the application’s total computation time. Therefore,
polyhedral code generation guarantees that the control
overhead will be small even for complex polyhedra. Our
solution benefits from the optimized loop scanning gener-
ated by the code generator to produce approximate versions
with less overhead (see Sect. 4.2).

Fig. 5. Code generated from polyhedral representation. The
code in Figure 4 generated back from the polyhedral model
without code transformation. The code generator CLooG did lift
the control statement to the upper loop nest dimensions with
modifications to the loop bounds.
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3 Adaptive Code Refinement

Compilers usually translate a high level program to a low
level (optimized) program with special care in respecting
the high level program semantics. In this work, we propose
means to provide additional information to the compiler to
allow it to relax the semantics through approximations in a
controlled way.

In this section we present our language extension API to
help developers to build applications exploiting approxi-
mate computing techniques. Our API can generate various
approximate versions that can be ordered from the least
approximative to the most approximative. We present a
tool called ‘‘Adaptive Code Refinement’’ (ACR) which uses
a directive set to generate approximate and adaptive ver-
sions of annotated compute kernels.

Our extensions define multiple constructions to help the
developers willing to use approximate techniques during the
software optimization phase. At the end of the optimization
phase, the compiler produces multiple modified versions of
the original code with the information provided by the
developer through the extensions. We call these versions
‘‘strategies’’. A strategy is a composition of code transfor-
mations that are expressed as ‘‘alternatives’’, i.e. an alter-
native version of the original code. The final optimized
kernel can be thought as a selection case between multiple
modified versions. The compiler adds snippets of code to
select the right version from information gathered from
application data at runtime. We call this part ‘‘monitor-
ing’’. The strategy selection can be achieved at various
levels of ‘‘granularity’’. For example, it is possible to select
one strategy for the whole loop duration, one strategy per
iteration instance or an in- between, which selects a strategy
for groups of iterations.

3.1 Granularity of approximations

Approximate computing techniques can be applied at dif-
ferent granularity levels: for the whole kernel, for each oper-
ation done or an in-between where we consider sets of
operations. Our goal is to provide the compiler with the
information it needs to use the right approximation at the
right moment during the execution of the application. In

order to take a decision, we need to gather information from
the application. Therefore, we provide the ‘‘monitor’’ con-
struct to gather information from the application data
and the ‘‘grid’’ construct to select the granularity of the
decision mechanism. Ideally, we want to select the best pos-
sible approximate version, i.e., which guarantees that the
output will stay within a given quality range.

3.1.1 Monitoring

The collect of information from the data is declared to the
compiler in the form of a multidimensional array access
within the hmonitor-optioni grammar rule. A simple exam-
ple of the monitor extension format, as seen in Figure 7
is: #pragma acr monitor(data[f ð~iÞ])

The monitor’s harray-accessi grammar in Figure 8
declares an array where f (i) is the data access function.
Our framework constrains the dimensions of the array spec-
ification to form an affine map between the iteration space
and data space. Hence, they must be a linear function of the
parameters, constants and iterators available inside the
optimized kernel. The data domain does not necessarily
need to match the loop’s iteration domain, e.g. in Figure 7,
the iteration and data domains do not match. Our system
relies on polyhedral techniques to recover the iteration
space from the data space by computing the map inverse
or preimage [23]. The statement instances that access the
array A in Figure 7 are pictured with the same color on
the data and iteration domains.

3.1.2 Grid granularity

The granularity specifies the level at which strategies are
selected. It corresponds to the hgrid-optioni grammar rule
in Figure 8. With this ‘‘grid’’ construct, the data array is
subdivided into cells using a tiling transformation [24, 25].
The transformation can be viewed as a function from
Zn ! Z2n where the first n dimensions are the tile index
and the last n dimensions the data cells associated with that
index. Hence, the technique subdivides the initial data
domain into cells which can be selected individually. The
size of the cell used for the tiling technique is selected with
the grid construct.

A more generic meshing procedure using piecewise affine
function could complement the tiling algorithm. Piecewise
affine function allows for non-structured grids, e:g. a recti-
linear or curvilinear grid, but usually requires a grid gener-
ator algorithm. For the time being we only consider
structured Cartesian grids in our API. A tiling size of one
is used whenever data share no similarities. The decision
is then made per data basis.

3.2 Adaptivity specification

The ACR optimized kernel contains several modified ver-
sions of the initial kernel. With the monitoring and grid
constructions defined before, we know where to extract
the information but not how we should interpret them. In
this section we introduce the ACR constructs which provide
the decision mechanism.

Adaptivity means the capability to choose the precision
dynamically at runtime depending on the state of the data.

Fig. 6. Iteration domain graphical representation. Graphical
representation of the iteration domain of the code in Figure 4.
The original loop iterates over empty points because of the
internal loop guard whereas the code generated in Figure 5 does
not.
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Several strategies are possible to select convenient approxi-
mate computing alternatives for given data cells. Two cat-
egories of strategies can be used. The static category
specifies non-adaptive portion of the data that will uncondi-
tionally use a specified version of the code. The dynamic
category uses different versions depending on the runtime
context.

With a static strategy, the compiler can generate an
optimized code at compile time with approximated compu-
tation embedded inside the kernel. The approximation
remains the same during the whole application execution.
The regions to be approximated are marked by the

Fig. 8. Adaptive Code Refinement grammar. The ACR grammar declares simple to use language extensions for approximate
computing. The alternative defines a modification of the code to express various approximate blocks or statements. The strategy links
these alternatives to a constant value for adaptive selection and applies them globally or restricted to an area when defined at compile
time. The monitor serves as the link between the functions that pre-process and compute the strategy values at runtime and the data
used to take a decision. The grid defines the granularity at which the decision is made. In the case where the granularity is more than
one, the folding function is used to map multiple decision values into a single one for the whole cell.

Fig. 7. A loop nest iteration and data domains. A loop nest and
its accompanying iteration domain (middle) and data domain
(right). The data domain is subdivided in two cells of four points
each. The data and iteration points associated to a same cell are
represented with the same color.
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developer with the hstrategy-optioni ‘‘static’’ construct.
The approximation strategy can either be global, i.e., cov-
ering the entire data space, or be defined on a localized area.
In this case the area is specified with the set of iterator val-
ues corresponding to the desired data domain. We rely on
widely used isl or Omega notations [26, 27]. For instance,
to select half the data space of an array data[i][j],
where both i and j span from 0 to N, we may specify
[N] ! {[i,j] :0 <= i <= N/2 and 0 <= j <= N}.

With dynamic strategies, the approximation may vary
at runtime depending on the state of the data. In ACR, this
adaptive capability is inspired by adaptive mesh refinement
(AMR) [28]. AMR technique defines a multi-level dynami-
cally changing grid over the data domain. The deepest
levels typically contain more data points than the outer
levels and are located over active regions. This allows for
a finer grained grid, i.e. more precise, only on the regions
where it matters.

We propose a similar method to dynamically choose
which approximation to use at a cell level granularity.
Cell-level decisions implicitly require the retrieval of the
most conservative level of approximation from the cell state
during the program’s execution. The components of each
cell are aggregated together using the hfolding-functioni
attribute of the monitor construct. The folding function
defines a mapping from multiple data values to a natural
integer (with prototype int fold(datatype, int)).
This integer represents the maximum level of approxima-
tion that can be used while maintaining a good quality of
result. The hpreprocessing-functioni is applied on every
components of a cell before passing the value to the fold-
ing-function. The preprocessing allows an application speci-
fic datatype to be used along with the ACR predefined
folding functions. If not required, the preprocessing function
can be set as the identity function. The hinit-fold-valuei
may be specified to initialize the value of the fold, otherwise
a value of zero is used. This initial value allows for better
flexibility with the folding function implementation and
usage, e:g., use of the min folding function with an initial
value of zero will always return zero.

The compiler computes the affine mapping from the
data space to the iteration space together with the transfor-
mation from the data space to a cell coordinate (see
Sect. 3.1.1). Hence, the compiler can instrument the code
to update the precision whenever a modification of the mon-
itored data occurs. At the price of storage capacity, the
compiler has the ability to select the adequate approxi-
mated code version to execute at a cell level granularity.

Adaptive Code Refinement does not allow the compiler
to break data dependencies between the remaining iteration
instances to limit the deviation of the results. When the
loop carries a dependency between iterations, the potential
schedules are constrained. In the context of ACR, this con-
strains the order in which the tiles are scanned. If automatic
parallelization is applied, further dependency relaxations
could unlock more parallelism at the price of larger devia-
tions. For instance, Figure 10 presents the dependence
graph that shows a dependency carried between the moni-
tored cells. In this example, we propose two valid schedules
with different properties. A close look at the first schedule

and the dependence graph reveals that the computations
could be parallelized within the diagonals (wavefront
parallelism). This schedule, when diagonally parallelized
depicts the maximum parallelism for this particular depen-
dence graph. The second schedule, on the other hand,
allows the diagonal cells to be parallelized. Hence, we trade
a one level parallelism for nested parallelism with better
data locality. The schedule which performs best on a given
Central Processing Unit (CPU) depends on cache proper-
ties, memory bandwidth and data prefetching algorithm.

3.3 Approximate alternatives

Traditionally, a compiler must comply with the semantics
of the input program and can by no means alter the preci-
sion of the result on its own. Therefore, the alternative
extension provides, explicitly, the ability for the compiler to
generate modified precision code. This extension allows
alterations of the iteration domain, to partially or even
totally replace the original computations. We only consider
programs that run on a general purpose processor and do
not take into account specialized hardware, e:g., approxi-
mate arithmetical and logical unit or memory storage which
can be used to reduce energy consumption, memory access
time and computation time or resource sharing [3, 29, 30].
This specialized hardware is much less common than gen-
eral purpose processors while our purpose is to provide lan-
guage extensions for a wide range of problems and target
platforms. The approximate strategies to perform on gen-
eral purpose CPUs are listed below.

Loop perforation consists in the deletion of some loop
iterations or by halting the loop prematurely. It efficiently
drops computations but does it evenly or randomly over
the loop nest [31]. The technique uses profiling data from
previous execution of the kernel to select the perforation
stride. While it requires training, this technique does not
have any measurable runtime overhead as the loop perfora-
tion is done at compile time.

Memory access skipping removes superfluous data
accesses [31–33]. The non-accessed values can either be
interpolated using neighboring values or speculated/pre-
dicted using data regression algorithms. Accessing data
from main memory may be much slower than computing
a new one. Applications that process massive amount of
data will reduce the CPU to RAM bus contention and dis-
tributed applications can use this technique to avoid the
network transfers.

Task skipping avoids the execution of some tasks to save
computation at the price of precision [33]. This technique is
similar to loop perforation but applied at a task level. This
technique requires the task output datatype to match its
input datatype, otherwise, the next task in line will receive
an erroneous input. Task based programming usually tends
to split a program into tasks and construct a task graph.
The tasks are represented as nodes in the graph and edges
stand for the data flow between the tasks. After some graph
analysis, it is possible to distribute the concurrent tasks
between multiple processors or computers. Removing tasks
from the graph can lead to better parallelism and reduced
resource utilisation.
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Memoization retains information of previously com-
puted values of pure functions to skip the following same
function call [34]. A pure function always returns the
same value for given argument values and is free of side
effects. To implement this mechanism, the compiler adds
a lookup on the input values and returns the stored result
if it has already been calculated, or computes and stores a
new value for potential future use. This lookup is usually
achieved with the help of a hash table [35]. Determining
the number of return values to store, the retention policy
and the lookup access time are critical for the usage of this
solution. To be profitable, the function’s execution time
must be a magnitude higher than the arguments lookup
and the function has to be called many times with the same
values.

Function multi-versioning can be used to fine tune the
precision of the result [4]. The developer could implement
multiple algorithms to solve the same problem statement
or write a version using less precise data representation
(e:g. double to float). The implementation can also reuse
the previously mentioned techniques. The only restriction
of this technique is that the different function’s versions
must share the same prototype. Some specialized languages
propose function multi-versioning in the form of data-flow
oriented languages [4, 36].

In ACR, the dedicated extensions to specify a collection
of means to achieve approximate computing is the alterna-
tive construct. Multiple approximate versions can be
defined for the same portion of code. In the case of a static
strategy, the compiler will be in charge of executing the
appropriate version depending on the statically specified
data space. In the case of a dynamic strategy, it will use
the appropriate version depending on each grid value at
runtime.

The alternative construct is described in Figure 8 with
the halternative-optioni grammar rule. A simplified nota-
tion is: #pragma acr alternative name(type, effect)

The first parameter provides a name to the alternative
using C identifier notation. Other constructs can reference
this name to select a particular code alternative. This name
is used to link with the strategy selection mechanism. The
second parameter, ‘‘type’’, indicates which approximate
strategy is used to generate the alternative code. To define

an alternative, the developer may choose between the five
following options1:

With ‘‘parameter’’, the constant parameter used inside
the target loop nest will be replaced with the value of
another parameter or a constant value specified by the
developer. Changing a parameter value can result in
loop perforation and task skipping. It is also possible
to write boolean conditional code blocks to be executed
only when a condition holds and set the parameter to
true or false. This condition will be optimized by the
compiler for the different versions with the boolean value
computed by the monitor construct.
With ‘‘Code’’, the alternative is defined as an external
function or code block. The developer can implement
multiple algorithms for a given problem and name them
under different alternatives. This provides the flexibility
of code multi-versioning while leaving the compiler with
the care of generating the runtime mechanism. Memory
access skipping can be implemented by replacing a mem-
ory access instruction with an interpolating function.
With ‘‘zero_compute’’, the target computation is
removed and will not be executed. This construct can
be used to implement loop perforation and task skipping
at the cell granularity.
With ‘‘interface_compute’’, the points of the kernel’s
iteration domain that do not intersect with the cell mesh
are not visited, i.e. only the iterations at the border of a
cell are visited. This allows stencil-like computation to
be implemented in a more natural fashion (see Sect. 5.3).
With ‘‘step’’, the specified loop counter increment is
modified according to the specified parameter (e:g.
i++ is replaced with i+=step). This construct can be
used to implement loop perforation in a particular case
of inter-face_compute.

Figure 9 shows a graphical representation of the last
three aforementioned alternatives. These alternatives selec-
tively reduce the amount of iterations inside the cells, i.e.
the number and position of the empty circles. The ‘‘code’’
alternative modifies the code executed for the remaining
colored instances of the cells. The ‘parameter’ alternative
applies a different constant parameter value globally.

All the alternatives besides parameter can be defined on
a particular statement or code block. By positioning the
code annotation at the right place inside the kernel, the
developer can selectively apply the alternatives. The code
alternatives can be individually linked to one or multiple
integer values using the strategy ‘‘dynamic’’ parameter.
Affecting an integer value to strategies allows to order them
from the most to the least precise and let the runtime select
the most appropriate one dynamically.

It is possible for a unique strategy to compose multiple
alternatives together whenever the following conditions are
met:

The ‘‘parameter’’ alternative can only be positioned at
the kernel top-level, because parameters are constants
for the kernel’s duration.

Fig. 9. Graphical representation of a two-dimensional domain
with several alternatives applied. The domain consists of five
cells delimited by the black-dashed line. Each cell consists of
fifteen iteration instances represented as circles. An iteration is
evaluated if the corresponding circle is filled and not executed
otherwise. With interface compute only the instructions at
the borders are kept. Zero compute disables them all. Step
modifies the step count for the first or second dimension
depending on the position of the annotation.

1 This list may be extended in future versions of ACR.
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The ‘‘code’’, ‘‘zero_compute’’, ‘‘interface_compute’’
and ‘‘step’’ alternatives cannot be nested when linked
to the same strategy.

3.4 Approximation debugging information

Program debugging and patching is usually a demanding
task that occupies a fair amount of the developer’s time.
We propose a workflow separated into two phases to help
the debugging aspect of applications where the quality of
results can be tuned. During the first phase, the developer
writes her/his program as if she/he has an infinite amount
of processing power at her/his disposal. Such a program
would probably not scale well with a bigger problem size.
But, the development is concentrated towards solving the
main algorithm rather than architectural or approximation
specific algorithm choices. Throughout this phase, the
debugging is performed using ordinary debuggers and mem-
ory analysing tools. At the end of the first phase, the pro-
gram should be ready for production but not yet optimized.

The second phase is dedicated to optimization and
approximation of the program’s hot spots, i.e. where most
of the program’s time is spent. The program will be anno-
tated using our language extension set without having to
modify the main algorithm. Selecting the appropriate
approximation strategy is not an easy task but thanks to
our language extensions, the user can investigate multiple
strategies in a small amount of time.

To help with the evaluation of an implemented approx-
imation strategy, we expose multiple metrics to the devel-
oper. The compiler introduces a per-thread storage for
each optimized kernel and allows the user to query, e:g.,
the following information:

– Total time spent in the optimized kernel.
– Time spent on each defined strategy.
– Number of times a strategy is selected.
– Time spent outside of this kernel between two calls.

These collected metrics can guide the developer in tun-
ing her/his alternative choice and fine tune the decision
criterion in the case of an adaptive approximation. The
user could provide a function to evaluate the result’s
quality at the cell level. A compilation flag can serve
as a switch to turn on the call duplication quality
checks. In this case, the cell values are computed with
the original and the approximate code version sequen-
tially. The two results are then fed in the user evalua-
tion function and the approximate data discarded.
This online checking method provides insight into the
deviation value at the cell granularity for one kernel
call. This is especially suited when the application
may call the optimized kernel multiple times.

Developers can also use existing quality checkers which
compute the difference a posteriori [11]. Comparing the
final result of both the optimized and the original applica-
tion is also simplified with ACR. Indeed, it is straightfor-
ward with our API to disable parts or totality of the
alternatives by switching off the ACR extension interpreta-
tion, or commenting some extensions.

4 Compiler reference implementation

In the following section we describe the backbone compiler
algorithms to monitor the data and to generate the runtime
to execute strategy code snippets [37]. The first section
focuses on the code generation without runtime. The second
section presents our dynamic approach where the code to be
executed is generated at runtime using just-in-time (JIT)
compilation: the program produces specialized approxi-
mated versions ‘‘on the fly’’ as the data and their corre-
sponding need for precision evolves.

4.1 Static code generation

The first step of the compilation process raises the code to
optimize to the polyhedral representation (see Sect. 2.3).
Clan and pet [38, 39] are state-of-the-art front-end tools
that transform a high level language into an equivalent
polyhedral representation. Clan is a standalone application
and library and pet is a library integrated into clang, the C/
C++ LLVM compiler suite’s front end. The output format
consists of information on parameters and on every state-
ment present in the kernel. Each statement Si 2 S, where
S is the set of kernel statements, it holds the following asso-
ciated information gathered from the input program (see
Sect. 2.3):

– The context polyhedron, which is the information gath-
ered about the constant parameters.

– The iteration domain.
– The scheduling.
– The array access polyhedra.
– The statement itself, which is stored in an AST or

string format. This is the part that will be copied back
in place once the loop control has been generated.

During the compiler front-end execution, the language
extensions are included in the program’s abstract syntax
tree. The statements in relation with an alternative are
marked using a depth-first AST traversal. This is done with
a recursive function managing a state that contains the
active alternative set. Every time an alternative node is
encountered, it is added to the state and will be removed
before the function returns. When a node representing a
statement Si is visited, it is marked with the alternatives
present in the state along with the strategies, alternatives,
grid and monitoring information into a data structure for
future processing.

The computation is altered according to the user’s
defined alternatives. Algorithm 1 describes how the state-
ments are modified according to the alternative types.
The function ApplyAlt takes a statement Si along with
an alternative definition and generates a new statement cor-
responding to the user alternative definition. The first two
cases of the function match the parameter modification. If
the user defined a constant value, the parameter value is
set to the new value inside the context polyhedron. Other-
wise, only the name of the parameter will be altered. The
change of the code statement is handled by a replacement
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of the original code in the compiler internal statement data
structure. For zero-compute, the iteration domain is set to
an empty domain, i.e. a statement that will never be exe-
cuted. To generate the grid borders, we add a new dimen-
sion Dn without any constraints and set the dimensions
Dj to be a multiple of each point a 2 Dn times the
GridSize. We project the newly created dimension Dn

out and what remains in Dj is the multiple of the grid size.
The operation is repeated with GridSize � 1 to capture
the left border of the cells. The ‘‘step’’ is handled in the
same way as ‘interface-compute’ but with a multiple of
the step instead of the grid size. The second function,
ApplyAllAlt, iterates over all alternatives linked to a
strategy and applies the alternatives in the order in which
they are defined.

The following helper functions are used by the code gen-
eration algorithm. These functions are implementations of
regular search algorithms and linear algebra functions
found in the literature [40].

DimsRelatedToData takes a domain and returns the
set of dimension identifier in relation to the data. This is
done by application of the inverse of the monitor array
access matrix.

AddDimEq takes a domain D, a dimension identifier Dj

and a parametric constant C. It adds a dimension Dn to D
and the constraint Dj = C · Dn to D (Zn ! Znþ1).

ProjectOut takes a domain and set of dimension
identifiers Dld and projects these dimensions out
(Zn ! Zn�jDid j)

StrategyAlts takes a strategy and returns the alter-
natives related to this strategy.

Algorithm 1: Alternative application algorithm: Algo-
rithm to apply the different alternatives to a statement Si.
The parameter alternatives are handled inside the context.
The statement code, which is stored as a string literal or
AST, is replaced if needed.Zero and interface-compute alter-
natives do modifications on the iteration domain for the
dimensions in relation to the monitored data map function.

Algorithm 2 which generates the alternative statements
operates in three phases:

The first phase iterates through the kernel statements
Si 2 S and generates two statements from each original
statement. The statement Si0 contains the static-defined
strategy iteration domains mapped from the data space.
The statement Si0 domain corresponds to the remainder of
the initial statement’s domain without these static areas.
The alternatives are applied to Si0 and the monitoring code
is inserted to monitor the data accesses in order to compute
the maximum level of approximation. This statement is
stored in a separate set for future use. The second state-
ment, Si0 , is stored in a statement set used in the second
phase. It is worth noting that a statement with an empty
domain will not generate any code and can be removed at
any point of this algorithm.

The second phase handles the dynamic strategies. For
the dynamic version, the goal is to generate a kernel that
scans the monitored cells one after the other. This allows
for a code with low control overhead, e:g., the second sched-
ule present in Figure 10. The first operation applies a tiling
transformation to the domain with respect to the dimen-

sions used by the monitoring. A new statement is con-
structed from this tiled domain by projecting out the cell
dimensions of the domain. Only one point per cell remains
after the projection. This domain is used to generate a
guard in front of each alternative code version. An alterna-
tive code is comparable to a new statement modified by all
its associated alternatives. This new statement is scheduled
immediately after the guard statement of the corresponding
alternative. The AddMonitoring function ensures that
all writes to the monitored data will be followed by a folding
function call to update the maximum approximation mon-
itor value. The monitor value is initialized by the guard
statement before entering each cell. Once all the strategy
versions along with their guards have been generated, a
default guard is inserted to fall back to the unmodified
statement which is executed by default.

The last phase of the algorithm deals with the static glo-
bal strategies that must be enforced for the whole duration
of the program. These alternatives must be applied to the
previously generated statements, i.e. the union of the static
area and the dynamic related statements. At the end of this
last phase, the statement set is composed of all the polyhe-
dral representation of the static alternative, dynamic alter-
natives with guards, the default code path, all with the
global strategy enforced. Polyhedral code generation finally
generates the actual code to be compiled.

Algorithm 2 is accompanied by the following set of
helper functions:

StaticGlobal, StaticArea, Dynamic respec-
tively return the set of static global, area and dynamic
strategies.

UniverseDomain takes a domain S 2 Zn and returns
a domain with the same number of dimensions that has no
constraints, i.e., an infinite polyhedron.

TileDimensions takes a domain D, a set of dimen-
sions identifier Dld and a constant l and applies a tiling
transformation on these dimensions.

Fig. 10. Loop Dependency. Example of loop carried depen-
dency between iteration instances with two valid schedules. A
point represents the execution of one statement instance. For the
dependence graph, an arrow represents a dependence: some
instances have to be executed before the target instances. For
the schedules, the arrows represent the execution order. Sched-
ule 1 exhibits the maximum parallelism at iteration level
whereas schedule 2 focuses on parallelism at the cell level. The
code generated with the first schedule requires more cell-
transition checks than it would with the second one.
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GenAlternativeGuard takes a statement Si and a
strategy Strati and generates the guard statement that
enters the branch if the alternative value matches the one
of the folding function of the monitoring process.

LowerTileDims takes a domain D and a set of dimen-
sion identifier Dj used for tiling and returns the set of
dimension identifiers of the tile itself and the one it encloses.

AddMonitoring adds the monitoring fold function to
all access to the monitored array inside the statement.

AddMonitorReset adds the code to initialize the
maximum approximation value. If not provided by the
developer, defaults to lowest approximation value (original
code).

4.2 Dynamic code generation

The static code generation algorithm is well suited for ker-
nels that can be generated using the tiling process. However,
dependencies can forbid the use of a tiling transformation
and thus the use of static code generation. A small grid size
can also cause extensive control overhead such as in schedule
1 of Figure 10, making the static code impractical. To rem-
edy to these problems, we designed a dynamic method that
generates a specialized approximate code at runtime. It is
based on a runtime library that exploits cell monitoring
information and polyhedral code generation techniques to
generate a specialized version of the code with the lowest
possible control overhead. For application which have
strongly correlated data locality, the dynamic approach
can reduce the number of guards tremendously as cells
neighbors may more likely share the same maximum
approximation level.

Algorithm 2: Code generation algorithm: Given a set of
statements and strategies, this function returns a new set of
statements corresponding to the annotated strategy ver-
sions with alternatives applied.

The code generation algorithm is briefly depicted in
Figure 11. The domain to be translated is similar to the
one in Figure 10 and contains four cells. In this example,
during the execution of the application, three of those cells
situated on the bottom and left part of the domain allow a
maximum approximation corresponding to the alternative
A0 and the remaining one to the alternative A1. There is
no use for extra control overhead to be generated whenever
the flow of execution goes from one cell to another one shar-
ing the same alternative. Hence, the iteration domains of
the cells that share the same alternative are merged
together and treated as the same entity. This step is done
with the information gathered by monitoring the data
before the code generation algorithm is executed.

The code generation algorithm takes as argument a set
of statements S in their polyhedral representation and out-
puts an AST. For dynamic code generation, each statement
potentially represents a different alternative. The iteration
domain for an alternative is computed as the union of
domains of all the cells monitored with the same alternative
value DAlti ¼

S
Cell2Alti

DCell. The loop generation algorithm

acts dimension by dimension recursively. It starts with
the outermost dimension where a projection is applied. This
projection delimits the contiguous part of the domain in this

dimension where the same statement is present. The projec-
tion over the ‘i’ dimension in Figure 11 results in two
domains, one containing only the statement for the alterna-
tive A0 and the other which contains both A0 and A1. In
order to avoid a guard inside the loop nest to guard the exe-
cution of a given alternative, the loop is split in two parts
and the algorithm used recursively on the two remaining
polyhedra for the second dimension. The final result is an
AST with a low control overhead compared to an equiva-
lent compile time generated code which would contain
many inside loop guards.

With dynamic code generation the iteration domain is
split per alternative. Figure 12 stage 3 shows such parti-
tioning, where the boxes match with the alternative’s dis-
joint domains. The code generator will interleave the
iteration instances of the various alternatives following
the original code’s schedule while keeping a low control
overhead.

An illustration of the code generated for the static and
dynamic methods is shown in Figure 13. The original ver-
sion of the code (a) calls a function at each iteration of a
three dimensional loop nest. Each white points of the itera-
tion domain maps to a triplet values (i, j, k) passed to the
function. The monitoring operates on 2 · 2 cells, on a data
array related to the i and j dimensions. The cells are illus-
trated by the square tiling projected at the bottom of the
domain. For this example we consider the following alterna-
tives: the white cell is using the original kernel, the black cell
is using the ‘‘zero-compute’’ alternative and the grey
cells use the alternative ‘‘parameter’’ to set the number
of iterations of the outermost dimension to one. The
‘‘guarded’’ code version (b) is a valid implementation of
our extensions that, for each iteration instance, checks
against the cell maximum approximation value collected
by the monitoring. In this naive implementation the control
overhead is high because of the internal guard. Each dark

Fig. 11. From polyhedral to code. CLooG polyhedral code
generation algorithm applied on the union of two alternative
statement domains. The dimensions are processed one after the
other recursively. The first dimension to be generated is the
outermost loop (left). Then the second loop dimension is
generated on the last two domains (center and right). The
algorithm stops when there is no remaining domain to generate.
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dot of the domain corresponds to the execution of a test
without useful computation. On the other hand, the
dynamic version (c) has the least control overhead as the
runtime generated code matches exactly the state of the pro-
gram data. The last version (d) is the statically generated
code for whom the cells are entirely visited in series. This
version only requires four checks, here represented by the
k dimension upper bound, to select the number of iterations
to do in the outer most loop from zero to one. Because the
iteration ordering in the statically generated version is

different from the original code, it is not always possible
because of data dependencies.

The dynamic method requires a just-in-time compiler to
be able to generate a specialized version of the code during
the execution of the program. We choose to implement the
runtime as a shared library that can be loaded whenever the
program encounters a dynamic optimized section. At com-
pile time, the compiler adds a call back to the library func-
tions responsible for the compilation management. In
Figure 12 we disclose the implemented architecture. The
runtime is separated in four distinct functional units:

The monitoring thread constantly checks the current
state of the data to select the most appropriate approxima-
tion strategy for each cell. Once a kernel has been fully exe-
cuted, it provides the list of all the states (i.e. the suggested
strategy identifier for each cell) to the coordinator thread.

The polyhedral code generation thread generates on
demand an AST from the polyhedral representation given
by the coordinator thread. Each generated statement corre-
sponds to an alternative.

The compilation thread is responsible for generating an
executable from the AST that has been generated from the
polyhedral code generation unit. We choose to implement a
compilation with two separate parallel paths. A fast lane
using Tiny C Compiler (TCC) that has a fast JIT but
has low code optimization capabilities and a second lane
with the GCC compiler which is an order of 10–50 times
slower but applies efficient code optimizations.

Fig. 13. Code Generation Approaches. This figure presents the result of different code generation approaches for the original
situation depicted in part (a). The top of the figure shows the code’s iteration domain, where white points are executed while black
points are not. Arrows represent the execution ordering. Under the iteration domain is a representation of the grid state. The
approximation strategy is the following: in the black grid cell, no iteration is executed, in the grey grid cells, one iteration of the k-loop
is executed and on the white grid cell, two iterations of the k-loop are executed. Parts (b), (c) and (d) show how the various
approaches implement equivalent versions of the approximated code: with an internal guard for guarded, perfectly matching the
situation for dynamically or on a grid-cell basis for statically.

Fig. 12. ACR dynamic runtime optimizer. Dynamic runtime
used to generate optimized strategies application at runtime.
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The coordinator thread is the central part which orches-
trates the other threads. It has the responsibility to check
whether a specialized code version that is used for the kernel
is still valid from the current cell state obtained from the
monitoring thread. The validity can be expressed in three
ways:

1. Raw checking: For each cell, compare the maximum
approximate level, i.e. dynamic strategy number, used
in the optimized kernel to the value obtained by the
monitoring thread. If the two values do not match
to the same alternative, the check fails.

2. Versioning checking: The same as ‘‘raw’’ checking but
accepting monitored values that require less precise
computation than the one the kernel is using. Reject
cell values that require more precise versions than
the one currently used by the kernel. If the percentage
of values in an over-precise state exceeds a threshold,
a new version is generated.

3. Stencil checking: The last checking is similar to ‘‘ver-
sioning’’ but it also considers that the neighbors of a
cell can influence the precision required for a given
cell. It sets the cell strategy value to the minimum
approximation alternative possible between what the
cell requires and the immediately greater approxima-
tion level than the most precise of its neighbors, for
each cell, before applying the ‘‘versioning’’ checking
algorithm.

The coordinator thread will use one of the three prede-
fined validity checks before requesting a new version gener-
ation. An example of a validity check computation is shown
in Figure 14. If the check fails, the monitor generates the
alternative statement domain from the monitored data
and sends a request to the polyhedral code generation
thread. Once the AST has been generated it is directly for-

warded to the compilation thread. The coordinator waits
for the binary code from the compilation thread to modify
the function pointer in the main executable to the newly
optimized version instead of the previous one.

The coordinator thread may be configured in two modes,
synchronous or asynchronous checking. Synchronous check-
ing only allows the main application to ask for a new
optimized version whenever the version is checked. If the
coordinator requested a new version and the resulting binary
code is not ready yet, the main application will be stalled in
the mean time. This mode of operation is preferred to limit
deviation of the output result. The asynchronous mode
allows the application to run in parallel, with a non-appro-
priate approximation strategy, while the new optimized ver-
sion is computed. If the main application arrives at the
kernel call site before the new version is fully compiled, the
code falls back to the original code version instead. Asyn-
chronous mode may allow a less precise version to run tem-
porarily while the monitoring and coordinator are
processing the data cells. The original version can be used
whenever no optimized version is available, allowing for
the compilation to run concurrently to the slower but more
precise version. To optimize the time required to generate
new specialized code versions, the coordinator could specula-
tively generate new versions that could be called instead of
the original version for the non-‘‘raw’’ policies. The coordi-
nator can also maintain a buffer of previously generated ver-
sions and use least-recently-used replacement policy
whenever the buffer is full. Our runtime implements all these
mechanisms. The user may select them through compilation
option or through the ACR’s ‘checker-select’ extension
depending on the needs (speed vs. precision).

4.3 Compilation with polyhedral optimisations

One of the many advantages procured by the polyhedral
representation of programs is the robustness of dependency
analysis. A property of this model is to handle complete and
exact dependency information [14]. Computing the depen-
dency polyhedron requires solving a Diophantine equation
that runs in the worst case in exponential time. Hence, this
method is mostly reserved for complex dependency analysis
as required when optimizing loop nests [22].

Compilation tools have been developed to automatically
optimize loop nests [14, 41, 42]. Those tools search for a
solution to an algebra problem. For example, find a sched-
ule which minimizes the distance of reuse of written vari-
ables, i.e. optimizing for locality, or to push dependency
on the lowest level of the loop, i.e. optimizing for paral-
lelism. Such algorithm has been implemented in tools like
PLUTO [41] or Traco [43].

These loop optimization techniques are orthogonal to
ACR. They search for a different schedule for the loop nest
that exhibits certain characteristics useful for performance.
Our method focuses on slicing the input domain by alterna-
tives and ensuring that the appropriate alternative is used.
Hence, the automatic optimization tools can be used in a
preprocessing stage to obtain the optimized schedule. In
ACR, the original lexicographical schedule would be
replaced by the optimized one before the alternative code

Fig. 14. Precision computation for the raw, versioning and
stencil validity checks. The domain consists of three monitored
cells. The precision of the optimized kernel is also visible. A
vertex from one cell to another represents a value dependency. If
multiple vertices enter a same destination cell, the lowest of the
parent’s values is chosen. The stencil check requires an
intermediate step because the neighbor’s values are also consid-
ered to compute a cell precision. The value from the neighbors is
incremented by one (green dashed lines) before they enter the
intermediate cell. This increment limits the influence of the
neighbors when the stencil check is used.
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generation stage. The generated code could then exhibit
parallelism or better locality. Ongoing work aims at mix-
ing polyhedral optimizations with our ACR optimization
engine.

5 Experimental study

This paper presents a new method to express static or adap-
tive approximation strategy to the compiler with the help of
the ACR language extensions. Developers specify the
approximation information with the alternatives construct
and use the strategies to select the appropriate situation
to use them. The dynamic alternative selection is tightly
coupled to the monitoring and grid constructs for the defi-
nition of the cell grid. ACR’s API is designed for quick test-
ing of many approximation techniques.

In this section we put this API to work on various exam-
ple applications. We detail the procedure to follow in order
to find the alternatives and their applications on compute
intensive kernels through the use of ACR’s API. We also
compare the final implementation with respect to the use
of library or hand tuning. The following applications are
representing several fields, from numerical simulations and
cellular automaton to signal processing and data mining.
We especially selected a broad range of algorithms to
demonstrate the expressiveness of our language extension
set in many situations.

5.1 Eulerian fluid simulation

We first evaluate ACR on a fluid simulation solving the
Navier-Stokes equations [44]. It uses a non-conservative
algorithm presented by Stam for the video-games industry
[45]. He proposes an iterative solver to reproduce smoke or
flames in real time for scenes rendering. Thus, the solver
must be as fast and lightweight as possible. The quality
of the output should also be accurate enough as too much
approximation would lower the perceived resolution. We
empirically observed that less than 5% of deviation of the
result is not visually perceptible. Important portions of
the simulation are empty of fluid until an advanced time
in the simulation. A convenient approximation strategy is
to monitor the values of the density and lower the number
of iterations of the solver in parts of the simulation where
the density is close to zero.

In this simulation, only two variables are used, the fluid
density q and the fluid velocity v. The algorithm is divided
in two phases. The first phase, the density movement,
updates the grid fluid density q to the next time step
depending on the density present in neighboring cells, com-
puting the diffusion. The second phase, the streaming,
moves the density and computes the velocity in the next
time step with respect to the velocity vector. Using runtime
analysis of the application, we discovered that approxi-
mately 60% of the runtime is spent in the first phase and
the remaining in the second phase. Inside these two phases,
there is one function where most of the computation time of
the application is spent. This function is sketched in

Figure 15. It is a numerical solver using Gauss-Seidel relax-
ation iterative method to solve a linear equation.

Observation of the simulation data reveals that, for
many scenarios, the smoke forms a funnel shape with a
mushroom-like form at the top. These scenarios coincide
with a source of fluid having a force applied at the base
to simulate burning objects or particles moving with the
air flow. The solver is used in the diffusion and streaming
steps of the algorithm. Inside the collision, the parameter
‘‘a’’ of the function is set to the diffusion value of the fluid
and inside the streaming step, ‘‘a’’ is set as the viscosity of
the fluid. Therefore, if the updated value and its neighbors
are roughly the same, the tolerance factor of the iterative
solver should be reached faster. Hence, the number of iter-
ations of the solver can in this case be lowered. The initial
number of iterations is set to a value that is big enough
for any kind of simulation. This high value reduces the over-
all speed of the simulation and can be improved.

Following our strategy to reduce the number of itera-
tions of the iterative solver, the first extensions to specify
are the code alternatives. The lines 14 to 16 of Figure 15
define the alternatives that set the number of iterations of
the solver to 1, 4 or 6, which is used whenever there is a
really low, medium or a high density of fluid respectively.

Fig. 15. A Gauss-Seidel iterative solver of linear equations.
Three levels of approximation are used: low, medium and high
which map to modified number of iterations of the solver. The
number of iterations of the solver is lowered by the runtime in
the cells where the density is low or medium.
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The next implementation step of the ACR extensions is to
declare in which case the alternatives are used. We define
three dynamic strategies lines 17–19 that orders the alterna-
tives relatively to their level of approximation, fewer itera-
tions of the solver is equivalent to a less precise solver. To
select the right strategy at runtime, the monitor construct
should point to the relevant data, here the density ‘x’ line
11. The density is defined on a 2D plane with respect to
the loop dimensions i and j. The function density_val

is a mapping from the density values to the strategies values
in the range [0, 1, 2] and is used as the pre-processing for the
monitoring. Inside a cell, the minimum possible strategy
value is kept using the ‘‘min’’ folding function. Lastly, the
runtime enforces those alternatives on cells whose size is
defined by the grid directive line 12.

An interesting aspect of this simulation is that it is not
possible to generate the compile time tiled version due to
the dependencies between iterations of the solver. A value
at iteration k of the solver uses the neighbor values at the
iteration k � 1. Hence, it is not possible to use the tiling
transformation as it would break the dependencies between
the iterations of k. Therefore, the optimized code is gener-
ated using the dynamic runtime.

These alternatives reduce the number of times that the
statement code line 32 has to be executed between 70% and
30%, after 100 and 2000 time steps respectively. The
observed kernel speedup relative to these two time steps
are 6.19 and 2.1. The mean deviation of the result stayed
below our set limit of 5%. However, a maximum deviation
of 50% can be observed for very small values but when
taken proportionally to the density values range, the change
represents a fraction of 1

10000 which is not significant.
The ACR extensions lead to a lowered utilization of

resources without modification of the original algorithm.
Specializing this kernel without ACR would require the
developer to write the monitoring and the just-in-time gen-
eration of the optimized kernel manually. Such task is not
trivial and may require multiple days of development on
its own. On the other hand, with ACR, it takes a maximum
of few minutes to compile and test various alternatives.

This first example demonstrates the simplicity of use of
the ACR extensions. The sole addition of twelve lines of lan-
guage extensions was sufficient to add adaptivity to this
application with the help of the compiler to generate low
overhead optimized code at runtime.

5.2 Finite-difference time-domain

Finite-Difference Time-Domain (FDTD) is used in computa-
tional fluid dynamics to solve Maxwell-Faraday differential
electrodynamics equations [46]. The software implements a
solver which updates the magnetic integral of the equation
as a first step and then updates the electric field at the same
instant using the magnetic field.

Figure 16 includes the function which updates the elec-
tric field in a two dimensional (x, y) space. The magnetic
field is orthogonal to the electric field and resides in the z
dimension, orthogonal to the (x, y) plane. Figure 1 shows
a representation of the magnetic field over the 2D space
of the simulation. The simulation consists in a wave starting

at the left of the domain and traveling to the right. When
the wave encounters the impermeable block at the middle,
part of it is reflected back and the remainder continues as
seen on the top figure at step 700. Later in the simulation,
i.e. the bottom part of the figure at step 1300, the waves on
the right of the block did not reach the right wall yet while
the ones on the left have already bounced back. However, it
is clearly visible that many parts of the simulation retain a
null magnetic field, i.e. that there is no current flowing in
those parts. Therefore, for this application we consider
the removal of the electric field computation where the
magnetic field is null.

To nullify the computations inside a zone, the imple-
mentation uses the ‘‘zero-compute’’ ACR extension line
11 of Figure 16. The data of importance is the magnetic
field Hz, which is set to be monitored at line 10. The strat-
egy annotation line 12 adds a dynamic strategy which maps
the ‘‘zero-compute’’ alternative to a value of 1. The prepro-
cessing function ‘‘hz_to_monitor’’ returns one whenever
the magnetic field is close enough to zero. The low alterna-
tive is active for cells filled with ones but a single zero trig-
gers the original computation instead. The grid value is set
to one fifth of the y dimension size and is drawn as overlay
of the domain in Figure 1. The static strategy line 13 dis-
ables the computations for the portion of the simulation
where impermeable object resides.

Fig. 16. Kernel updating the electric field in a 2D space of a
FDTD simulation. The kernel is annotated with ACR compiler
directives to disable the electric field computation whenever the
magnetic field is close to null for all the values inside an ACR
cell.
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For this application the code uses dynamic code gener-
ation for maximum performance of the generated versions.
The maximum observed deviation from the original output
was 0.99% and a speedup of 1.35 after 5000 steps of the sim-
ulation. The ACR extensions allow reasonable speedup at
the expense of very low deviation of the output. It is worth
noting that after 4500 simulation steps, this technique does
not help anymore because the magnetic field does not reach
zero in a complete cell anymore. If every portion of the sim-
ulation requires precise computations, adaptive methods
are of no use. However, this technique can be helpful to
quick start the simulation and once the precise state is
met, the runtime could be disabled and the original kernel
would finish the computation.

This application was optimized using ACR extensions
to generate an adaptive code which is specialized at run-
time. Writing adaptive and just-in-time code would be time
consuming and hard to debug without these extensions. For
this application, we encountered a limitation of the adap-
tive methods where the runtime does not use approximate
versions anymore. After a given simulation point the
ACR runtime can be disabled to reduce the overhead.

5.3 Game of Life

Game of Life (GOL) is a cellular automaton invented by
the British mathematician John Horton Conway. The
automaton is constructed using a set of rules describing
the evolution of a grid of cells from one state to another.
The said rules are very simple and can be used to model
complex behaviours:

– A cell becomes alive if there are at least three alive cells
in its direct surrounding at the time step before.

– A cell stays alive if it had two or three alive neighbors
at the previous time step.

– Otherwise a cell is considered dead at the next step.

The implementation uses a 2D grid which represents the
cells domain and an update function. At each time step the
state of all the cells is updated using the previous step val-
ues. The update algorithm is shown in Figure 17. Advanced
algorithms use the particularity that life automatons have
many recurring cell patterns. They use macro-cells and a
hash table to store and access the pre-computed results
for these patterns [47]. We reused the macro-cell approach
with our framework as it matches our proposed ACR-cells
almost perfectly.

This application’s optimization uses the ACR-cells as
macro-cell to determine whenever the macro-cells are
updated or not. The life rules state that a cell can only
become alive if it has exactly three alive neighboring cells.
Therefore, if an ACR-cell contains zero alive cell, the only
possible cells that can raise from the dead are the ones on
the borders with an alive neighboring ACR-cell. The com-
putation of the ACR-cell is enabled if there is at least one
cell alive inside of it.

The ‘‘zero-compute’’ and ‘‘interface-compute’’ alterna-
tives are defined lines 8 and 9 of the GOL kernel Figure 17.
These alternatives are linked to strategies in their order of
approximation on lines 10 and 11. The ACR-cell grid is gen-

erated over the cell grid and represents the macro-cells. The
monitoring sets an ACR-cell to use the ‘‘zero-compute’’
alternative whenever no cells are alive using the user defined
cell_to_precision and the ‘‘min’’ folding function line 6.
The implementation uses the particularity of the ‘‘stencil
checking’’ to set active cells neighbor’s to update their bor-
der cells if they are not active. Therefore, with ‘‘stencil
checking’’, a non-active ACR-cell of alternative value 2 is
set to the alternative value 1 if it has an active neighbor.
This results from the definition of ‘‘stencil’’ which computes
the alternative value as min(2,0 + 1), where 2 is the cell raw
value, 0 is the cell value of one of its neighbors and 1 is
added according to the stencil definition. The resulting pro-
gram only computes the new state for active ACR-cells and
for the surrounding of these, only computes the borders
with ‘‘interface-compute’’ if they are not active.

The equivalent of the ‘‘stencil checking’’ is not yet avail-
able with the static code generation version of our ACR
implementation. Therefore, we used the dynamic version
in synchronous mode. The cellular automaton state cannot
be approximated, but the synchronous mode does not allow
to compute a new state before the specialized code version is
ready. Hence, there is no possibility for an ACR-cell state to
be approximated. This method has been tested against an
automaton simulating a digital clock and leads to a speedup
between 1.4 and 2 after 20 and 160 generations respectively.
With the help of ACR extensions we were able to quickly
narrow the computations of the automaton in place where
it matters, and to obtain respectable performance gains
compared to the original code.

Fig. 17. Game of Life (GOL) algorithm to update the state of
the cell grid from one generation to the next one. The part of the
cell grid where there is no living cell is not computed. The active
ACR-cells are surrounded by cells that update the border of the
ACR-cell and not their center because the GOL rule does not
allow cell creation. This strategy both lowers the computations
that are needed and allows for a non-approximate GOL update
algorithm.
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5.4 K-Means clustering

K-Means is a partitioning algorithm which distributes n
observations into k sets. The partitioning algorithm has
the particularity to minimize the variance within clusters.
Observations that are ‘‘related’’ or ‘‘closer’’ to each other
have a greater chance to end up in the same cluster. The
algorithm inside Figure 18 is actually an heuristic imple-
mentation of the NP-hard general problem. The algorithm
has use cases in signal processing, cluster analysis and
machine learning [48]. Most of them try to characterize
noisy data using this algorithm.

The implementation uses an iterative algorithm. At the
start, it chooses k points from the observations as the center
of the clusters. Then at each iteration, each observation is
attached to the center of the cluster that is at the lowest
‘‘distance’’. The ‘‘distance’’ is a function that takes two
observations and returns lower values when the observation
are closely related and bigger ones when they are less so.
Once all the observations have been attributed to a cluster,
the center of all the clusters are set at the barycentre of all
the observations belonging to them. The algorithm loops
unless the clusters stabilizes, i.e. such that points do not
migrate between clusters, or when the ratio of unstable
points is lower than a threshold (typically 5%).

Behavioural analysis of the algorithm shows that the
cluster’s center tends to migrate rapidly during a few itera-
tions at the start of the algorithm, before staying approxi-

mately in the same position with fewer observation
migrations [48]. Our ACR implementation can take advan-
tage of this behaviour by managing two versions of the clus-
ter affectation. Whenever an observation has already been
part of a cluster for many iterations, the probability that
it will migrate to another cluster becomes very low. Unfor-
tunately, the original algorithm has no such information
available and the code needs to be slightly modified to
add the ‘‘settling’’ time of an observation inside a cluster.
The additional code is straightforward and sets the counter
to zero whenever the observation switches from cluster and
increments the value otherwise.

The ‘‘complex_compute’’ function is the original algo-
rithm which computes the distance between a given obser-
vation to every centers and assigns the observation to the
cluster which yields to the lowest distance. If the observa-
tion migrates to another cluster, it sets the convergence
to false and the settle value of this observation to zero.
Otherwise, the observation is not moved and its settle value
incremented. The alternative ‘‘converged_compute’’ is less
compute intensive than the original algorithm. It only
affects the observation to its previous cluster. The alterna-
tive is used whenever the number of iterations that the
observation has settled within the same cluster exceeds a
threshold. The alternative is defined line 13 of Figure 18.
It changes the function called when linked to the strategy
of value one. The monitoring oversees the settle information
and selects the alternative 1 whenever an observation has
settled for more than seven iterations. The approximation
is done per observation as defined line 10 with a grid of only
one element.

The application was evaluated on linearized 2D images
of animals and fruits of various resolutions. ACR is used
with the static code generation technique. The maximum
deviation of the result is 4.29%. It was observed for the
biggest data set of the benchmark which leads to a
speedup of 1.54. The approximation tends to work better
for larger datasets as the number of settled observations
grows in correlation with the problem size. However, to
use this approximation technique we needed additional
information and construct a new structure to hold it. With
the ACR extensions, we successfully leveraged this infor-
mation to generate a specialized version with a low compu-
tational kernel version to achieve a valuable performance
gain.

5.5 Overall performance and overhead

In this section we provide benchmark results, the deviation
caused by the approximation and the overhead characteri-
sation of ACR’s runtime. In the first part, we focus on the
application wall clock times and speedups with respect to
the deviation of the results, then in the second part, we pro-
vide the methodology used to measure the overhead of the
runtime. The experimental setup consists of a dodeca-core
Intel Xeon E5-2620 v3 with 16 GB of ECC ram. The
compilers and flags used are GCC v7.1 (–O3–march=na-
tive) and the Tiny C Compiler v.9.26 for fast just in
time compilation of kernels. Our ACR extension implemen-
tation is open source and available online [49].

Fig. 18. K-Means core algorithm where the observation points
are placed into the clusters and the center of the cluster is
updated. The application skips the cluster assignment complex
function whenever an observation has settled for more than
seven iterations within the same cluster. In that case, it is
assigned to the same cluster it was at the previous iteration.
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Table 1 shows the averaged results obtained from runs
on multiple input problems and data sizes. Our technique
achieves significant speedup while keeping the deviation
of the result relatively low. The proportion of cells per alter-
native remained equal for smaller and bigger datasets, while
runs on big datasets tend to have a better response to
ACR’s adaptive methods. We believe that this difference
comes from cache and memory latency effects. Different
problem statements do not react equally to the same set
of alternative parameters. We are working on an auto-tuner
that explores the parameters space to better guide the
developer in this task. ACR’s extensions allowed the com-
piler to generate the adaptive code automatically without
modification to the original algorithm with little investment
from the developer.

In order to measure the overhead induced by the run-
time and code instrumentation, we saved the application
parameters, the optimized kernels along with their utiliza-
tion timeline while the application was running. Then, pro-
grams are run a second time with the same parameters but
with the ACR runtime replaced by the saved versions in the
same order. This simulates the ideal scenario, i.e. where an
‘‘oracle’’ knows ahead of time which version to run. The
monitoring and compilation time is finally eliminated.

Table 2 shows the overhead for the FDTD application.
It is the application that exhibits the highest overhead
because of the high number of generated kernels. The mea-
sured overhead increases with the complexity of the gener-
ated kernels, because the code generation and compilation
take more time for complex polyhedra. Complex polyhedra
are typically generated where there are local perturbations.
We ran the simulations with the application pinned on one
or three CPU cores to identify the compilation and moni-
toring overheads. On one core, the application and runtime
are competing for the CPU resources leading to a slow-
down. On three cores, the runtime and the application
can run concurrently with performance close to the optimal
configuration. The overhead for three cores compared to the
optimal is due to thread synchronizations and the asyn-
chronous monitoring of the values. The ACR runtime has
been designed to take advantage of modern multi-core
architecture and shows low overhead on such systems.

6 Related work

Approximate Techniques Research on techniques to relax
data dependencies and skipping computations led to various

approximate strategies. Output-prediction (memoization)
techniques have been applied on CPU and GPU (Graphics
Processing Unit) to leverage the similarities in the output
of some applications [34]. Other techniques reduce the
number of computations to gain performance, e:g., loop-
perforation which removes some loop iterations based on
profiling information [31]. Semantics relaxation can lead to
better utilization of the capacity of the hardware, e:g., by
extracting more parallelism [50]. Byna et al. used approxi-
mation techniques on a sequential CPU algorithm to obtain
a parallel algorithm with great performance on GPUs [51].
Similarly, SAGE (Self-tuning Approximation for Graphics
Engines) allows for better parallelism on GPU [52].
Approximate techniques can also take advantage of approx-
imate hardware capacity, e:g., approximate data storage
regions or approximate instruction set [53–55]. Less power-
hungry approximate hardware can reduce the power
required by applications in constrained area [56]. Hoffmann
et al. provide a runtime that monitors systems metrics,
e:g. load or power draw, to tune running application
parameters to meet a desired application throughput in
expense accuracy [57]. Paraprox uses pattern recognition
techniques to automatically generate the approximate
kernels [58]. Chippa et al. propose a framework to character-
ize the resilience of applications to approximate computing
techniques [59]. This framework can help the developers to
uncover the parts of an application where approximate tech-
niques could be implemented. These techniques along with
ACR allow for optimized usage of the available resources
and architectural specificities of the hardware.

Language Extensions: Language extensions give new
opportunities to relax or extend the semantics of existing
programs. OpenMP annotations relaxe dependency con-
straints to allow the compiler to generate a parallel version
of the program [1]. Similarly, the ACR extension set relaxes
constraints to allow for approximate computing. Automatic
compiler techniques for approximation purpose take advan-
tage of in-language annotations to generate an approximate
version. Ansel et al. provide annotations for the data flow
language PetaBricks [4]. They use a feedback loop with a
genetic algorithm which randomly alter some statements.
The program’s output deviation is analyzed and the
approximation parameters are autotuned against a user
provided dataset. EnerJ provides type system annotations
in order to reduce the overall system power draw with the
help of approximation techniques [29]. EnerJ also formalizes
the semantics of a program executing on approximate data-
type or code portions to isolate them from ordinary code

Table 1. Performance of optimized kernel versions against the original code version. The deviation of the results present
both the average and the maximum value measured.

Application Wall time (s) Speed-up Deviation

Orig. Opti. Mean Max

FDTD 24.53 18.67 1.31 0.29% 0.99%
GOL 170.47 93.58 1.82 None None
Fluid sim. 108.67 82.47 1.32 0.11% 4.64%
K-Means 15.73 11.37 1.38 1.7% 4.9%
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sections. With Green, developers specify the maximum
acceptable deviation of result for loops and procedures
[60]. Their framework provides a statistical guarantee that
the value computed by the application will follow the qual-
ity of service requested. These previously mentioned tech-
niques use a feedback loop to automatically alter the
program semantics and check the output deviation against
nonmodified training dataset. Bornholt et al. provide an
uncertain datatype and operations to manipulate this
object [61]. Eon provides a language and runtime system
that integrates hardware information, e:g. battery level,
to tune the quality of service depending on the environment
[62]. With ACR, the programmer has full control on the
transformations and the decision mechanism. Our exten-
sions allow for automatic generation of localized adaptive
approximation which, to the best of our knowledge, is not
available in previous methods.

7 Conclusion

Adaptive Code Refinement language extension set provides
approximation and adaptive capabilities to existing lan-
guages through specific annotations to be exploited by both
a compiler and a runtime system. While being less invasive
than writing an optimized code manually or using dedicated
libraries, these extensions allow a software developer to
annotate a computational kernel to transform it to an effi-
cient and adaptive approximate version. ACR’s annotation
system is well adapted for a two phase software develop-
ment workflow. First, the developer focuses on the develop-
ment and validation of the main algorithm. Then, in the
optimization phase, the algorithm is optimized to scale to
large datasets using approximation techniques. With the
help of ACR extensions and a compiler supporting them,
the software developer can quickly evaluate various approx-
imation strategies easily.

Approximation techniques are achieved, e:g., with algo-
rithmic tuning or removal of computations in selective con-
ditions. Such possibilities are offered by ACR’s alternative
construct for a new level of flexibility and productivity.
The alternatives can be enforced globally using static
strategies or dynamically depending on the dynamic state
of the data. ACR builds on the polyhedral representation
of programs to generate monitoring and approximated code
with low control overhead and limited deviation of the

results. Furthermore, ACR’s runtime includes several
mechanisms for the user to control the precision.

We evaluated the expressiveness of the ACR extension
set on various example applications, from fluid simulation
to signal processing and data mining. The strategies were
implemented on top of their compute intensive kernels with
few ACR extensions and low or no modification of the orig-
inal programs. All ACR-extended code show speedups at
the price of a reasonable loss in precision.

ACR language extension set opens up new possibilities
for software developers that need to exploit approximation
to trade precision for speed. It allows for fast testing and
prototyping of multiple approximation techniques. To the
best of our knowledge, ACR is the first language extension
set dedicated to approximation that covers such a wide
range of approximation strategies.

Ongoing work includes mixing approximation with
polyhedral optimization and parallelization techniques,
improving ACR’s runtime and extending ACR annotations
with data compression capabilities to reduce memory foot-
print and adapt computation accordingly.
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