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ScienceDirect
A long-standing hypothesis postulates that the striatum is

essential for the concurrent selection of adaptive actions and

repression of inappropriate alternatives. Here, classical and

recent anatomical and physiological studies are reviewed to

show that, in mammals, the striatum can detect discrete task-

relevant sensory stimuli and continuously track somatosensory

information associated with the generation of simple

movements and more complex actions. Rather than

contributing to the immediate selection of actions, the striatum

may monitor the sensorimotor state of animals by integrating

somatosensory information and motor-related signals on a

moment-by-moment basis. Such function could be critical for

the progressive acquisition or updating of adaptive actions and

the emergence of an embodied sense of time.
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Introduction
The striatum is the main entry point of the basal ganglia

(BG) and it is generally assumed that the dorsal region of

striatum (DS) contributes to motor control [1]. The exact

nature of this contribution is debated [2,3]. A long stand-

ing hypothesis is that the DS is critical for action selection

[4,5]. This hypothesis is mainly based on two striking

features of the anatomy and physiology of the mammalian

BG. First, the output nuclei of the BG are mostly com-

posed of GABAergic projection neurons that provide a

tonic inhibition on the thalamocortical network and on

brainstem motor regions [6–8]. Second, the GABAergic
www.sciencedirect.com 
striatal projection neurons (SPNs), which represent more

than 95% of the striatal neurons, can be divided in two

distinct classes, on the basis of the BG nuclei they

innervate and of the type of dopamine receptor they

express [9]. Briefly, activation of so-called direct pathway

SPN (dSPN) will disinhibit thalamocortical neurons and

subcortical motor regions to ultimately favor movement

generation while activation of so-called indirect pathway

SPN (iSPN) will reinforce tonic inhibition on BG targets

and repress movements generation [10]. The opposite

modulatory power of the direct and indirect-pathways

SPN (d/iSPN) on cortical and subcortical motor regions

makes of the BG a potential system to select, through

disinhibition [11], a given action from a set of competing

possibilities [4]. Despite its popularity, there is still no

direct satisfying evidence in support of this theory. In

addition, it is not clear how the organization of the BG

inputs, which constantly provide sensory and motor infor-

mation from the entire body, could be integrated in this

theory. The objective of this short review is to suggest an

alternative framework in which an important function of

the DS is the continuous monitoring of the sensorimotor

state of the animal.

In this review, the sensorimotor state of an animal refers

to both somatosensory information and efference copies

of descending motor commands [12]. Somatosensory

information is derived from external sensory stimulation

of different parts of the body (e.g. an air puff directed on

the whiskers or the back of an animal) and active move-

ments (e.g. locomotion triggers rhythmical sensory stim-

ulation of the paws contacting the ground; propriocep-

tion). And by actions, we refer to an ordered sequence of

movements (e.g. the act of turning left is composed of

several movements [2]).

Somatotopic organization of sensory and
motor corticostriatal projections
DS SPN receive excitatory projections mainly from the

entire neocortex and a set of thalamic nuclei. Early tracing

experiments revealed that specific regions of the cortex

project to specific, often non-overlapping, regions of the

striatum [13,14]. The topography of cortico-striatal con-

nections roughly respects the rostro-caudal and dorso-

medial positions of the cortical regions providing these

inputs. For instance, in rats, the prelimbic region of the

prefrontal cortex projects to the ventro-frontal regions of

the striatum, the cingulate cortex projects toward the

anterior dorsomedial regions of the striatum, and the

barrel cortex projects to dorsolateral striatal regions
Current Opinion in Neurobiology 2018, 52:123–130
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[15]. Altogether, a large body of anatomical experiments

in non-human primates, cats and rats, at different levels of

the BG, lead to the important concept that sensorimotor,

associative and limbic information are treated in the

striatum through segregated parallel circuits that consti-

tute cortico-basal ganglia-thalamo-cortical loops [16–18].

In the BG, one of the main channels of information

processing is dedicated to the treatment of sensory and

motor information coming from cortex. It is located in the

dorsolateral region of the striatum (DLS) in rodents and

the putamen in primates. This channel is somatotopically

organized [4,17]. For example, the regions of the cortices

that trigger arm movements or represent sensory stimu-

lation of the arm, project on a specific region of the

striatum while cortical regions related to sensory and

motor representation of the face project on a more ventral

region [19–23]. Functional evidence of a somatotopic

organization of the DLS is also suggested from a series

of studies in which extracellular recordings of the spiking

activity of DLS neurons were performed in awake freely

moving rats while a thorough somatosensory examination

(cutaneous touch, passive manipulation) of all accessible

body parts (head, vibrissae, paw, chest, chin, snout, ear,

shoulder, cheek pad, and trunk) was performed. About

half of the DLS neurons increased sharply their firing rate

in response to the selective stimulation of a given part of

the body and neurons responding to a given part of the

body tended to be located close in space in relative

agreement with anatomical predictions [24–27]. Finally,

the somatotopic organization of the DLS was also appar-

ent in a study on the abnormal processing of information

by the striatum, in which local injections of a selective

inhibitor of fast-spiking interneurons in specific striatal

subregions led to the appearance of episodic rest tremors

of specific body parts [28].

When looking at rodent stereotaxic atlases, it is striking

that the DS is one of the biggest undivided regions of the

brain. It is possible that the cortico-striatal connectivity,

despite its topographical organization, does not allow to

delineate clear boundaries between different somatic

regions. Indeed it was shown that corticostriatal projec-

tions originating from the whisker-related motor and

sensory cortices do converge in the DLS, but these

projections also display significant divergence throughout

the DS [29–31]. But maybe the lack of DS subdivisions

finds its origin in the difficulty to quantitatively compare,

across animals and studies, the pattern of cortico-striatal

projections using heterogeneous retrograde or antero-

grade tracers injections. Two recent studies in mice have

used computational neuroanatomic approaches to quan-

tify data from several hundreds of well-localized single,

double and triple injections of anterograde tracers in the

cortex of mice [32��,33��]. Several important conclusions

could be drawn regarding the organization of corticostria-

tal connections carrying somatosensory information. First,
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based on the provenance of the cortical input, it was

possible to subdivide the DLS in five subregions func-

tionally related to specific body parts, namely the trunk,

lower limbs, upper limb, inner mouth and outer mouth

(Figure 1a). Second, projections from the whisker-related

barrel cortex were detected in these five subregions and

beyond. Third, when two cortical regions displayed

strong reciprocal connections (e.g. forelimb motor and

sensory cortices) their striatal projections strongly over-

lapped. Fourth, the delineation of somatotopic bound-

aries in the DLS does not reflect step-like pattern of

projections: a functionally homogenous cortical region

can also provide a diffuse arborization extending outside

its main site of projection. Fifth, sensory and motor

corticostriatal projections are not limited to the classically

defined DLS but cover most of the DS, including so-

called dorsomedial regions [32��,33��]. Altogether these

studies provided quantitative evidence in support of the

somatotopical organization of the sensory and motor

cortical input to the striatum (with the notable exception

of whisker-related information) and revealed an unex-

pected prevalence of these input beyond the traditional

dorsolateral regions they were classically confined to.

Processing of somatosensory stimuli in the
dorsolateral striatum
In regard of the aforementioned wealth of anatomical data

showing that the striatum is equipped to process somato-

sensory information, it is not well known what said

processing consists of. This is partly due to the challenge

of separating sensory and motor components associated

with movement generation when working with behaving

animals. To overcome this issue, several studies used

anesthetized rodents and reported that striatal neurons

respond to passive deflections of the whisker

[34,35,36��,37]. Noticeably, Reig and Silberberg [36��]
performed patch clamp recording of DLS projection

neurons in anesthetized mice and examined the response

of these neurons to whisker air-puffs, which consisted in a

depolarization of their membrane potential. The authors

reported stronger and faster responses for contralateral

stimulation compared to ipsilateral stimulation. Response

amplitudes were stronger when whiskers were stimulated

bilaterally, showing that SPN integrate sensory informa-

tion coming from both sides of the body. Such integration

was not present in the barrel cortex. While this study

provided original knowledge on the integrative sensory

capacity of the striatum, the anesthetized approach makes

it difficult to conclude on the possible behavioral function

of such sensory processing. Still, the integration of bilat-

eral whisker-related information by dSPN was impaired

in dopamine-depleted mice [38�], a particularly interest-

ing result in the context of the well-known somatosensory

abnormalities observed in Parkinsonian patients [39].

More recently, Sippy et al. [40��] directly investigated

the role of the DLS in head-restrained mice trained to lick

a reward spout in response to single whisker deflections.
www.sciencedirect.com
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Figure 1

Somatotopic organization of the dorsolateral striatum and electrophysiological singature of somatosensory responses. (a) The dorsolateral striatum

can be subdivided in five regions according to the functional origin of cortical sensory and motor inputs (left, adapted from [33��]). Right, the

different regions of the mouse body are colors coded according to the striatal body map. (b) Schematic of the treadmill (top). Spiking raster plot

of a DLS neuron with strong rhythmical modulation of the neuronal activity coordinated with the oscillatory dynamics of forelimb movements

during treadmill locomotion (top). Green lines indicate treadmill onset, blue line goal time, orange arrow and dots indicate beginning and end of

running (modified from [50�]). (c) Spiking raster plot (top) and peri-event histogram (bottom) of a DLS neuron, aligned to forepaw footfall, from [26].
The authors performed patch clamp recording and found

that whisker-evoked depolarizations of SPN were stron-

ger during ‘hit’ trials (in which the mouse successfully

licked in response to the whisker deflection) compared to

‘miss’ trials. Whisker-evoked depolarization were com-

posed of fast and slow components and the fast one was

only expressed by dSPN. Brief optogenetic stimulation of

the dSPN evoked licking. Altogether, this work shows for

the first time that dSPN contribute to the expression of a

conditioned motor response by signaling a predictive

sensory stimuli.

Somatosensory responses and action-related
neuronal representations in the dorsal
striatum
If neuronal activity in the DLS can be modulated by

somatosensory stimulation, either applied externally or

resulting from movements, such modulations may be also

apparent during the performance of motor tasks. While
www.sciencedirect.com 
early electrophysiological studies in rodents and primates

had reported modulations of firing occurring during move-

ments (see also Panigrahi et al. [41]), a series of landmark

articles have proposed that, after learning, DLS neurons

mainly encode the initiation and ending of prolonged

actions, in support of a role of the striatum in the gating of

action [42–45]. Using cell-type specific calcium imaging

in freely moving mice it was also shown that both dSPN

and iSPN increased their activity just prior to lever press

[46]. This work is now taken as a strong evidence sup-

porting a role of dSPN in action selection while iSPN

repress unwanted actions. Still, it remains possible that

action initiation-related and termination-related activities

are primarily driven by the somatosensory dynamics

occurring around action initiation and termination (e.g.

whisker stimulation, postural/limb adjustments). This

possibility has not been directly tested but several recent

works suggest that this interpretation should not be

discarded. Coffey et al. [47��] used optrodes to identify
Current Opinion in Neurobiology 2018, 52:123–130
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dSPN and iSPN and found that about half of the recorded

neurons in both populations increased their firing rate

sharply in response to the passive stimulation of a given

body part. In addition, it was shown in mice trained to

perform a head-movements task that the firing rate of

putative SPN is perfectly correlated with head-move-

ments velocity [48]. This result confirmed previous stud-

ies in rats in which DLS neurons responding to passive

head-movements were also correlated with head move-

ments kinematics [49]. Similarly, in rats performing a

learned running sequence on a treadmill, a fraction of

the neurons fired synchronously with movements of the

forelimb (Figure 1b) [50�], in agreement with previous

reports of striatal neurons sensitive to passive and active

forelimb movements (Figure 1c) [26,51]. Klaus et al. used

calcium imaging to record the activity of ensemble of

identified SPN in the DLS of mice exploring an open

field. They found that similar exploratory actions (e.g. left

turns) were associated with the activation of similar

ensembles of SPNs that were not randomly located but

spatially close [52], which could be accounted for by

somatosensory responses to the movements that compose

each action. Using a similar experimental setup, the

activity of ensemble of dSPN and iSPN was shown to

correlate with animals velocity, on a very slow speed

range (from 0 to 10 cm, a logarithmic scale was use to

reveal the correlation) [53]. This encoding of locomotion-

related information (see also [54,55]) might be largely

explained by an increased rate of somatosensory

responses of striatal neurons when animals transitioned

from resting to a variety of foraging and exploratory

behaviors.

Somatosensory responses in the striatum
bring experimental challenges
The fact that a large fraction of neurons in the DS

(including identified d/iSPN) responds to a variety of

somatosensory stimulation in behaving animals presents

serious challenges when interpreting action-related neu-

ronal patterns of activity. While it is tempting to assign

causal interpretation to patterns of activity recorded in the

striatum in terms of action generation/selection/initiation/

chunking/learning, the possibility that these patterns are

‘merely’ caused by movements and their associated sen-

sory consequences is often overlooked [42–46,52,53,56].

Somatosensory responses in the striatum are related to the

entire body, including the trunk, neck, paw, inner mouth

and whiskers, which are difficult to track in behaving

animals. Thus, an additional potential confound is that

patterns of neuronal activity in the striatum may not be

primarily related to an action of interest studied in a task

(a lever-press, nose-poke, a bout of locomotion or even

licking) but to secondary covert movements and sensory

stimulation (whiskers, body postures, head or jaw move-

ments) that precede, co-occur, or follow this action. These

issues are especially important when investigating the

neural bases of motor learning, which is associated with
Current Opinion in Neurobiology 2018, 52:123–130 
reorganization of somatosensory dynamics. To overcome

these difficulties, a possibility is to use behavioral designs

allowing a fair comparison between actions performed

before and after learning. This approach revealed that

striatal population activity recorded in untrained and

trained animals performing a similar action (run back

and forth on the belt of a motorized treadmill) displayed

a similar over representation of the beginning and ending

of that action (Figure 2) [50�]. Thus, the representation of

these specific action phases is likely to be primarily

accounted for by the somatosensory sensibility of the

DLS, rather than higher order processes such as learning

or action selection/gating. A second experimental strategy

is to complement imaging or electrophysiological record-

ings during spontaneous or conditioned behaviors with an

exhaustive and quantitative somatosensory examination

[24,47��,27]. This is difficult to do in freely behaving

animals. However, recording striatal activity while, for

instance, an experimenter gently rotates the head of a

mice toward the left, would allow to investigate to what

extent the representation of a left turn action is accounted

for by passive somatosensory responses.

A role for striatal somatosensory responses in
motor learning
The high prevalence of somatosensory responses in the

DS should not just be seen as a challenge but also as a key

to the understanding of the behavioral function(s) of this

brain region. The integration of somatosensory represen-

tation and efference copies of motor programs with

reward prediction error signals could contribute to motor

learning by linking a given sensorimotor state to an action

that favored the consumption of rewards or prevented

unpleasant/dangerous situations. This associative learn-

ing process could occur through bidirectional dopamine-

mediated synaptic plasticity of the cortico-striatal con-

nections [9] that convey somatosensory information and

efference copy of motor programs. The resulting changes

in synaptic transmission strength could contribute to the

formation of neuronal ensemble distributed across corti-

cal and subcortical regions such as primary and secondary

motor cortices, the striatum and the BG targets (thalamus

and midbrain/brainstem motor nuclei). Such general

hypothesis is in agreement with a recent study showing

that learning a cue-guided motor sequence is associated

with the strengthening of the excitatory connection

between motor cortex and dorsolateral dSPN [57]. It is

also supported by the fact that during performance of a

simple voluntary action, the spiking activity of dorsolat-

eral SPN is comodulated by movement-related and

reward-related information [58]. The functional rele-

vance of a sensorimotor tracking function of the dorsal

striatum for learning purpose can be illustrated in the

context of time estimation tasks. Rodents naturally

develop embodied strategies when challenged in such

tasks, independently if the time interval to estimate is

short [59,60] or long [50�]: they progressively refine, by
www.sciencedirect.com
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Figure 2

Over-representation of beginning and ending of a running sequence in naive and well-trained rats. (a) Rats trained in a time estimation task on a

motorized treadmill developed a stereotyped back and forth running sequence (left). Hand-guided naive animals can perform a similar sequence

(right) [50�]. Blue(gray) traces are trajectories for correct(incorrect) trials. (b) Normalized average firing rates (sorted according to the task phase

of the maximum firing rate) of all the positively modulated neurons recorded in self-trained (left) and naive hand-guided animals (right, modified

from [70]).
trial-and-error, the movement content and kinematics of a

motor sequence, until it matches the time interval to

estimate (which is typically associated with reward deliv-

ery). In one of the aforementioned time-estimation stud-

ies, a lesion of the primary motor cortex in naive rats

prevented the learning of the embodied strategy but the

same lesion was without effect when performed after

learning. It was suggested that, during learning, the motor

cortex provided a ‘tutor’ signal to subcorticals motor

regions [60], most likely to the DLS [61]. In our general

hypothesis, efference copy of motor programs and

somatosensory responses would tutor DS SPN. During

learning, when correct or incorrect behavioral sequences

are performed, the opposite modulatory power of dopa-

mine on dSPN and iSPN activity would facilitate and

depress the cellular link between sensorimotor states and

motor programs, respectively. In support of this hypothe-

sis, when mice were given the possibility to self-stimulate

their own dSPN by touching a capacitive switch, they

quickly repeated such action. On the opposite a similar

self-stimulation of iSPN induced avoidance of the switch

[62]. Moreover, it was recently shown that the specific

stimulation of dSPN or iSPN while mice performed a

simple action at certain speed was sufficient to produce
www.sciencedirect.com 
specific and sustained increases or decreases in the selec-

tion of this speed [63�]. Altogether, these different studies

support the idea that the DS, by combining continuous

sensorimotor state estimation and bidirectional dopa-

mine-based neuromodulation/plasticity, could contribute

to learning, at the level of action content and kinematics.

Such general function might apply to a wide range of

behavioral context, that is beyond trial-and-error embod-

ied strategy for time estimation.

Conclusion and outlook
Compelling evidence in support of prominent somato-

sensory responses in the dorsal striatum have been

reviewed, along with the experimental challenges associ-

ated with such responses and their possible functional

implication in trial-and-error motor learning. It is never-

theless important to highlight that DS neurons are not just

sensitive to specific somatosensory stimuli. They can also

integrate multimodal information. This has been ele-

gantly demonstrated in single-cell recordings of SPN in

anesthetized mice, in response to visual and whisker

stimuli [36��]. Early electrophysiological experiments

in behaving non-human primates had also shown that

DS neurons respond to movements or sensory stimuli in a
Current Opinion in Neurobiology 2018, 52:123–130
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context-sensitive manner [4]. More recently, during time

estimation tasks, the activity of individual DS neurons

was reported to be comodulated by time and movements-

related aspect of task performance [50�,64�]. It has also

been proposed that the striatum outperforms the prefron-

tal cortex in predicting elapsed time because it integrates

incoming information from multiple cortical areas [65].

Two important questions need to be addressed in the

future regarding the integrative capacity of the striatum.

First, how much of this integration is performed by DS

neurons versus conveyed by external input? Indeed,

while the DS receives inputs from a number of function-

ally distinct brain regions [32��,33��], these inputs might

already convey integrated information, as illustrated in

the visual cortex with the robust modulation of visually

evoked responses by locomotion [66]. Second, the rela-

tive contribution of cortical and thalamic input to striatal

patterns of activity during behavior needs to be further

specified. While the predominance of the cortical contri-

bution to whisker-evoked striatal responses has been

recently demonstrated [67], there is also converging evi-

dence that thalamic input contribute to the processing of

somatosensory and motor information in the striatum

[32��,68]. It has been proposed that, to support motor

learning, striatal neurons may integrate complementary

information provided by the cortex and thalamus [69].

Progress in our understanding of the striatum function

will require to test the predictions of such precise models

[69] and to address the aforementioned gaps in knowl-

edge, all this while keeping in mind that, even in the BG,

modulations of patterns of neuronal activity that follow

movements are as interesting than those preceding them.
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