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performance of a run-and-stop task

d Neurons could not be divided into discrete functional groups

(start, maintain, and stop)

d Striatal spiking activity correlated with running speed on a

trial-by-trial basis

d Striatal activity is also modulated by non-locomotor

movements, such as licking
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In Brief

It has been proposed that the striatum

contributes to the execution of learned

actions by generating start, maintain, and

stop signals. Sales-Carbonell et al. show,

in mice performing a run-and-stop task,

that such discrete signals cannot be

isolated statistically. Rather, the striatum

continuously monitors the movement

dynamics associated with task

performance.
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SUMMARY

A popular hypothesis is that the dorsal striatum gen-
erates discrete ‘‘traffic light’’ signals that initiate,
maintain, and terminate the execution of learned ac-
tions. Alternatively, the striatum may continuously
monitor the dynamics of movements associated
with action execution by processing inputs from so-
matosensory and motor cortices. Here, we recorded
the activity of striatal neurons in mice performing a
run-and-stop task and characterized the diversity
of firing rate modulations relative to run performance
(tuning curves) across neurons. We found that the
tuning curves could not be statistically clustered in
discrete functional groups (start or stop neurons).
Rather, their shape varied continuously according
to the movement dynamics of the task. Moreover,
striatal spiking activity correlated with running speed
on a run-by-run basis and was modulated by task-
related non-locomotor movements, such as licking.
We hypothesize that such moment-to-moment
movement monitoring by the dorsal striatum contrib-
utes to the learning of adaptive actions and/or updat-
ing their kinematics.

INTRODUCTION

Locomotion allows animals to move around and interact with

their environment, and the control of locomotion is one of the

most fundamental functions of the nervous system. Generally,

animals start, maintain, and stop their locomotor activity accord-

ing to external predictive cues or internal factors (appetite, fa-

tigue, etc.). Locomotion depends primarily on neuronal circuits

located in the spinal cord [1], which are under the direct influence

of descending pathways from the motor cortex and brainstem

[2]. Recordings of brainstem reticulospinal neurons revealed pat-

terns of activity compatible with the presence of locomotion
start, maintain, and stop cells [3]. In addition, selective manipu-

lation of brainstem V2a neurons demonstrated that this geneti-

cally defined neuronal group acts as locomotion stop neurons

in freely moving mice [3, 4]. Thus, it appears that the three

main phases of locomotion may be controlled by traffic light sig-

nals in the brainstem.

If the brainstem is equipped with locomotion start, maintain,

and stop cells, what are the descending mechanisms controlling

the activity of these cells? The selective activation of striatal pro-

jection neurons forming the basal ganglia direct and indirect

pathways, respectively, promotes and inhibits locomotion

through modulation of glutamatergic neurons in the brainstem

mesencephalic reticular nucleus [5]. Interestingly, it has been

proposed that action ‘‘start,’’ ‘‘maintain,’’ and ‘‘stop’’ signals

emerged in the dorsal striatum during the learning of action se-

quences [6–9]. The hypothesis of discrete groups of striatal neu-

rons that regulate learned actions like a traffic light is appealing

due to its simplicity and potential relevance for striatal disorders,

such as Parkinson’s disease, which is associated with difficulties

in initiating movements [6, 10]. However, it is unclear how this

disembodied traffic light hypothesis is consistent with anatom-

ical and physiological data showing that neuronal activity in the

striatum is modulated by movements of different body parts

and sensory stimulation associated with movements. Indeed, a

large portion of the dorsal striatum receives somatotopically

organized inputs from primary sensory and motor cortices that

provide sensory feedback and motor efference signals associ-

ated with the movements of body parts, including trunk, fore-

paws and hindpaws, mouth, face, and whiskers (in rodents)

[11–17]. In addition, electrophysiological studies in rodents and

non-human primates have shown that neurons in localized re-

gions of the dorsal striatum responded to both passive and

active movements of specific body parts [18–24]. Thus, the stria-

tum may provide a moment-by-moment representation of the

ensemble of movements associated with the execution of a

learned action rather than triggering action initiation or termina-

tion [25].

We tested the relative validity of these two alternative func-

tions in a new locomotion-based task, in which head-restrained
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mice were trained to start, maintain, and stop running according

to external cues. After training, we recorded the spiking activity

of multiple well-isolated neurons using silicon probes while

mice performed this run-and-stop action and computed the

average firing rate profile of the recorded neurons relative to

the different run phases (referred to as tuning curve in the rest

of the manuscript). If start, maintain, and stop neurons exist, it

should be possible to statistically separate them into groups

based on the shape of their tuning curve or the time of their

maximal firing rate modulations. The firing rate of start neurons

should be transiently modulated before the beginning of the

runs, and such modulation should be distinguishable from

the modulation of neurons associated with the early phases of

the runs. In addition, the spiking activity of putative start neurons

should be the main source of accurate decoding of the run initi-

ation phases by ensembles of striatal neurons. Alternatively, if

striatal activity mainly follows the dynamics of movements (not

only locomotion-related movements but also those associated

with postural adjustments and orofacial activities occurring

around run initiation and termination), a continuum of tuning

curves is expected. Such continuum would reflect the overlap-

ping nature of the sequential movements of different body parts

during action execution, with a tendency for transient firing rate

modulations occurring around run initiation and termination

and more prolonged modulations between these events. In

that case, it will be difficult to separate tuning curves in functional

groups (start, stop, etc.), even if some neurons may display a

prominent modulation of their firing rate before run initiation

and/or termination. Finally, if neuronal activity in the striatum pri-

marily represents the dynamics of movements on a moment-by-

moment basis, there should be a correlation with the running

speed and/or other non-locomotor movements associated

with the task performance (such as licking or whisking activities).

RESULTS

To investigate how the activity of dorsal striatum neurons is

modulated during and around well-isolated epochs of locomotor

activity, we developed a task in which mice, head-restrained

above a free spinning wheel, performed prolonged runs inter-

leaved with running pauses to obtain a maximum of rewards

(drops of a sucrose solution; Figure S1A). The behavioral ses-

sions consisted of several trials, divided in ‘‘run’’ and ‘‘no run’’

periods (RP and NRP, respectively), whose durations depended

on the animals’ locomotor activity. During RP (signaled by a

continuous white noise), mice obtained a drop of sucrose as

soon as they ran for 100 cm without stopping. At the time of

reward delivery, the white noise was turned off and the task tran-

sitioned to the NRP, which lasted 15 s or more. Indeed, when

mice stayed immobile for at least 2 s at the end of the NRP

(e.g., between 13 and 15 s after the end of the RP; Figure S1A),

a new trial started (sound on). However, when mice failed to

respect this 2-s immobility period, the NRP was prolonged until

animals paused their locomotor activity for 2 s. A trial was

considered correct if the animal ran continuously for 100 cm

before the end of the RP (see illustrative trials 3–6; Figure S1B).

When the mice failed to run continuously for 100 cm after 60 s

in the RP, either because they did not run enough (illustrative

trial 1; Figure S1B) or because multiple short runs interleaved
2 Current Biology 28, 1–12, October 8, 2018
with pauses were performed (illustrative trial 2; Figure S1B),

the trials were considered as incorrect and the task transitioned

from RP to NRP without reward delivery. When the mice started

to run toward the end of the RP (illustrative trial 3; Figure S1B) or

ran during the immobility period of the NRP (illustrative trials 4

and 5; Figure S1B), trials were labeled as correct even if they

resulted in a low rate of reward delivery. Indeed, efficient perfor-

mance consisted of short RP (the mice performed 100-cm-long

runs as soon as the RP started) and 15-s-long NRP (the mice did

not run at the end of the NRP; illustrative trial 6; Figure S1B). Early

during training, mice ran very little and/or performed few long

runs that exceeded the RP (Figure 1A, left panels). Still, mice

licked consistently after reward delivery (i.e., at the beginning

of the NRP), but not after non-rewarded RP (Figure 1A, lower

left and middle panels). Progressively, mice became more effi-

cient and regularly alternated between run and immobility

epochs (Figure 1A, middle and right panels). To quantify the

progress of the mice on a session-by-session basis, we used

three complementarymeasures: the average rate of correct trials

(i.e., the reward rate); the average duration of the RP; and a run-

and-stop index (difference between average running speeds at

the end of the RP versus during the NRP; Figures 1B–1D).We ex-

tracted the 20th, 50th, and 80th percentiles of all values obtained

across sessions (n = 2,060) and animals (n = 28) for each metric.

We then plotted, for eachmetric, howmany animals had reached

these performance thresholds across sessions. About half of the

animals learned the task quickly and reached a high level of per-

formance in less than 20 sessions, and other animals took much

longer to become proficient.

In the first training sessions, animals either rarely moved or

performed runs with variable durations (Figure 1A, upper left

and middle panels), precluding the isolation of a sufficient

number of runs with similar durations. Thus, we focused our

analysis on electrophysiological recordings performed once

mice reached good proficiency in the task (see STAR Methods).

To examine how the activity of individual striatal neurons was

modulated relative to the different phases of the run, runs were

isolated and their durations were normalized (Figure 2A; see

STAR Methods). A 32-channel silicon probe targeting a region

overlapping the dorsocentral and dorsolateral striatum was

used to acutely recordmultiple single units while mice performed

the task (Figure 2B; see STAR Methods). Visual inspection of the

spike rasters during task performance from a few representative

neurons (Figure 2C, top) and their average firing rates relative to

the run phases (Figures 2C, bottom, and 2D; from now on,

average firing rates relative to the run phases are referred to as

tuning curves) revealed strong modulations at different phases

of the runs. Amajority of neurons displayed a significant increase

in their firing rate (72%; Figure 2D, top; see STAR Methods), and

a minority displayed a decrease in firing rate during the runs

(14%; Figure 2D, middle). Positively and negatively modulated

neuronal populations displayed a sustained increase and

decrease in firing rate throughout the runs, respectively (Fig-

ure 2D, bottom). Previous studies reported prominent increases

in firing rate around the beginning and end of motor sequences

[6, 9, 26, 27]. Thus, we first focused our analysis on neurons

that increased their firing rate during or just around the runs

(positively modulated neurons). The distribution of all the run

phases associated with significant modulation of the tuning
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Figure 1. Mice Became Progressively More Proficient in the Run-and-Stop Task

(A) 3 illustrative sessions of a given mouse showing, from left to right, progressive proficiency. Locomotor and lick activities are shown during the first 35 trials

(top), along with session-average running speed (middle; all trials) and lick rate (bottom; continuous and dashed lines show correct and incorrect trials,

respectively) relative to RP end. Green squares indicate that the mouse was immobile during the last 2 s of the no run period. Red squares indicate that themouse

was moving during the last 2 s of the no run period. Session-averaged running speeds and lick rates (middle and bottom panels) took in account wheel and lick

detections from adjacent trials, not shown in the top rasters (white areas).

(B–D) Session-by-session improvement in performance quantified via change in reward rate (B), RP duration (C), and run-and-stop index (D). Top panels show

learning curves for the example mouse shown in (A). Empty circles correspond to the illustrative sessions shown in (A). The 3 colored horizontal dashed lines

correspond to 3 performance levels defined as the 20, 50, and 80 percentiles values for eachmetric across all animals. Cumulative number of animals passing the

3 performance levels is shown (bottom, same color code and values as top panels).

See also Figure S1.
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Figure 2. Spiking Activity of Dorsal Striatal Neurons Is Strongly Modulated during and around the Runs

(A) Behavioral performance during a recording session (same legend as Figure 1A; licks were not detected in this experiment; orange areas indicate detected run

periods).

(B) Histological confirmation of silicon probe position in the dorso-central striatum.

(C) Top: spike rasters (red) of 3 task-modulated neurons superimposed on locomotor activity (black, same session as A) aligned to reward delivery. Bottom: mean

firing rates relative to normalized run phases (tuning curves).

(D) Averaged firing rates during normalized runs (sorted according to the peak firing rate’s phase) for neurons showing significant increase (top) or decrease

(middle) in firing rate. Bottom: population averaged firing rate for all (thick line), positively modulated (continuous line), and negatively modulated (dashed line)

neurons.

(E) Distribution of all the run phases with significant positive modulation of firing rate.

(F) Distribution of the run phases corresponding to the peak firing rates.

(G) Z-scored peak firing rates versus run phases.

(H) Distribution of the durations (normalized relative to run duration) of the significant increases in firing rate.

See also Figure S2.
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curves was uniform during the run (Kolmogorov Smirnov test for

uniform distribution’s statistic = 0.032; p = 0.12; Figure 2E). Still,

the firing rate peaks were more numerous and stronger close to

the beginning and end of the runs (Kolmogorov Smirnov test’s

statistic = 0.17; p = 0.0024; Figures 2F and 2G). Finally,

across neurons, the durations of the modulations (normalized

relative to the average run duration) were quite variable

(Figure 2H). Similar results were obtained when the analysis

was restricted to runs with more homogeneous durations (Fig-

ure S2; see STAR Methods). Altogether, this set of descriptive

analyses revealed a trend toward stronger increases in firing

rates close to the beginning and end of the runs, even if the

population average firing rate increased in step-like manner

throughout the runs.
4 Current Biology 28, 1–12, October 8, 2018
To examine whether discrete groups of neurons signaled spe-

cific run phases, as predicted from the traffic light hypothesis, we

first applied principal-component analysis (PCA) on the tuning

curves of positively modulated neurons (see STAR Methods).

This analysis revealed that a combination of a quadratic function

with zero linear term (first principal component) and a linear func-

tion (second principal component) comprised most (�70%) of

the variance of these tuning curves (Figure 3A) [28]. Each tuning

curve could then be fitted with a second-order polynomial func-

tion (see STAR Methods). Accordingly, tuning curves could be

arbitrarily divided into 6 groups according to the sign of the cur-

vature and the slope of the linear component of the fitting func-

tion (Figures 3B and 3C; see ‘‘Functional classification criteria’’ in

STAR Methods). Tuning curves belonging to some of these



A B

C

D

E H

G

F

Figure 3. Continuous, Not Discrete, Representation of the Run Phases at the Population Level

(A) Projections of the normalized firing rate population activity onto the first 2 principal components (PC1: blue; PC2: green) computed from the tuning curves

matrix shown in (C).

(B) Example neurons with significant linear and positive quadratic components (onset+ and offset+, top), significant linear and negative quadratic components

(onset� and offset�, middle), and significant quadratic and non-significant linear components (on/off and duration, bottom). Continuous and dashed lines show

the tuning curve and its corresponding fit, respectively.

(C) Tuning curves (sorted according to linear and quadratic coefficients, same colors as B) for positively modulated neurons.

(D) Scatterplot of the linear and quadratic coefficients of the tuning curve fit functions for all positively modulated neurons (same color code as B; non-classified

neurons in gray).

(E) Distribution of the silhouette coefficients for data points in (D). Red dashed line indicates overall silhouette score.

(F) Scatterplot of the 1st and 2nd PC of each tuning curve with significant modulation (same data as in top and middle panels, Figure 2D).

(G) Silhouette score (top) and distortion (bottom) when data in (F) are partitioned in 2–10 groups, using a k-means algorithm. Confidence intervals (CIs) were

generated by randomly sampling pairs of PC values from the distribution of the real data (PC1 and PC2 shown in F).

(H) Data in (F) partitioned in 2, 3, 4, or 5 groups using a k-means algorithm.

See also Figures S3 and S4.
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groups resembled the firing rate profile of start, stop, and bound-

ary neurons previously described (e.g., onset+, offset+, and on/

off neurons in Figure 3B) [6, 7]. Still, separating tuning curves ac-
cording to these arbitrary criteria revealed heterogeneity inside

each group and similarity between certain members of different

groups (Figure 3C). In order to statistically separate neurons on
Current Biology 28, 1–12, October 8, 2018 5
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the basis of the most variable features of their tuning curves, we

plotted the quadratic and linear coefficients of the fit functions of

the tuning curves against each other. This did not reveal obvious

clusters (Figure 3D). We used the silhouette method to quantify

the cohesion inside the aforementioned arbitrary groups and

the separation between groups (see STAR Methods and [29]).

The distribution of the silhouette coefficients of all the positively

modulated neurons was centered around zero (mean silhouette

score = 0.08) and never exceeded 0.5, indicating strong overlaps

between the arbitrarily defined groups (Figure 3E). Finally, we

used an unsupervised approach to try to cluster the tuning

curves. A k-means algorithm generated the best partitioning of

the tuning curves (using their first and second principal compo-

nents; Figure 3F) in k groups, with k ranging from 2 to 10 (see

STAR Methods). The silhouette score and distortion (see STAR

Methods) provided a metric of the tightness and separation of

the clusters generated by the algorithm. Both measures contin-

uously decreased with k, which indicates an absence of optimal

number of clusters (Figure 3G). Similar results were obtained

when more principal components were used to partition the tun-

ing curves (Figure S3). The silhouette scores and distortion pro-

files for k between 2 and 10 generated from our dataset fell inside

the intervals of confidence defined by the silhouette scores and

distortions generated from surrogate datasets (Figure 3G; see

STARMethods). Altogether, these results showed that, at a pop-

ulation level, the striatal neurons we recorded could not be

divided in discrete groups according to the shape of their tuning

curve (see also Figure 3H).

It is possible that the heterogeneity of the tuning curves stems

from the fact that we did not separate neurons according to their

putative cell type (projection neurons [PNs] versus interneu-

rons). Previous studies have shown that it is possible to sepa-

rate PNs and fast spiking interneurons (FSIs) based on the

shape of their spike waveform [30]. We could not observe a clear

separation between narrow and broad spike waveforms in our

dataset (Figure S4A). Still, we used typical waveform criteria to

separate putative PNs and FSIs (Figures S4A and S4B). As ex-

pected, putative FSIs fired at higher rates than putative PNs

(Figure S4C). Still, many putative FSIs fired at low frequencies

(<5 Hz), perhaps due to constant firing rate modulations during

the task (i.e., these putative FSIs might fire at higher frequencies

during home cage or sleep recordings, which could not be

tested as we performed acute recordings). We found that puta-

tive PNs displayed a significant increase of their firing rate

before, during, and after the run (Figure S4D), and their tuning

curves were highly heterogeneous and did not cluster according

to the linear and quadratic coefficients of their polynomial fits

(Figures S4E and S4F).

We further examined the possibility that a dedicated discrete

group of neurons had its spiking activity selectively modulated

before the initiation of the run and could act as start neurons.

For all the recorded neurons, we generated a peristimulus time

histogram (PSTH) of their spiking activity aligned with the time

at which runs started (Figure 4A, bottom). We identified bins

with significant firing rate modulations (Figure 4A, bottom; see

STAR Methods). Sorting these modulations with respect to the

beginning of the run revealed a continuum of modulations rather

than the presence of a discrete population that fires selectively

before the runs (Figure 4B).
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Finally, we examined how the different phases of the run

(including pre- and post-run phases) could be decoded from the

spiking activity of the recorded striatal neurons. We used

a Bayesian decoding approach (see STAR Methods) and

observed that the different phases of the runswere not accurately

decoded from the activity of single neurons (Figure 4C, gray lines).

Decoding accuracy increased sharply around the run start and

stop phases when neuronal ensembles of increasing size were

considered (Figure 4C, green lines), which is expected, as the

most prominent variations in firing rate occurred around these

phases of the run [31]. Next, we arbitrarily defined a group of

pre-run neurons that displayed a prominent modulation of their

firing rate before the start of the runs (gray area in Figure 4B).

We found that the decoding accuracy was similar for same-size

ensembles that either contained or lacked pre-run neurons (Fig-

ure 4D). Finally, we compared decoding accuracy of same-size

ensembles composed of transiently modulated neurons (on/off,

onset+, and offset+; see Figures 3B and 3C) versus ensembles

composed of neurons that displayed more sustained firing rate

modulations (onset�, duration, and offset�; see Figures 3B and

3C). Both types of ensemble similarly decoded the run start and

stop phases (Figure 4E, left). This was expected as firing rate var-

iations occurred mainly around run start and run stop phases in

bothcases (Figure 4E, right). Altogether, this set of results demon-

strates that the decoding of the initiation (termination) of the run

does not uniquely rely on the activity of specialized neurons that

display transient firing rate modulation locked to the initiation

(termination) of the runs.

During recording sessions, mice often performed both unre-

warded and rewarded runs (Figure 5A). If the main function of

the striatum is to signal discrete run phases (start, maintenance,

and stop), firing rate modulation should be similar for both types

of trials. Alternatively, if the striatum monitors the movement dy-

namics on a moment-to-moment basis, a differential modulation

of striatal neurons activity would be expected in these types of

run, as the end of rewarded runs is associated with distinct motor

activities (such as licking). At a population level, fewer neurons

were positively modulated toward the end of the run in unre-

warded runs compared to rewarded runs (Figures 5B and 5C).

This effect was not associated with a clear difference in striatal

population firing rates (Figures 5D and 5E) or in the magnitude

of peak firing rates modulations occurring during runs (Figure 5F)

but was visible in the distribution of the significantly positively

modulated phases (Figure 5G; p < 1.10�5; two sided Kolmo-

gorov-Smirnov). Figures 6A and 6B show an example of a neuron

whose activity was stronger at the end of rewarded runs

compared to unrewarded runs. This neuron’s waveform was

characteristic of PNs (Figure 6C). Its spike timings autocorrelo-

gram displayed prominent rhythmicity around 8 Hz (Figure 6D),

which is the typical licking frequencyofmice. Finally, cross-corre-

lating spiking and licking activities confirmed that this neuron fired

spikes mostly when the mouse was licking (Figure 6E).

Finally, we examined whether the firing rate of positively

modulated neurons correlated with the running speed on a

trial-by-trial basis [32–34]. We first determined the running

phases during which the tuning curves were significantly modu-

lated (see STARMethods; red shaded areas Figures 7A and 7B).

We then measured the correlation between firing rates and

running speeds taken in the modulated run phases on a
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Figure 4. Continuous Representation of Run Initiation and Decoding Accuracy by Striatal Ensembles

(A) Top: tuning curves of 3 illustrative neurons with a peak firing rate modulation around run start. Bottom: PSTHs (same neurons as top) aligned relative to run

start. Dark and light gray bands indicate pointwise and global CIs. Black dots indicate contiguous significant bins that surrounded the maximal modulation.

(B) Detectedmodulated portions of the PSTHs around run start for all the neurons, sorted in time. Modulated portions of illustrative neurons in (A) are shown in blue.

(C) Bayesian decoding accuracy of the run phases from the spiking activity of individual neurons (light gray lines; dark gray line indicates averaged individual

decoding) and ensembles of increasing size (light to dark green lines indicate ensemble decoding when the number of neuron is 25, 50, 100, or 146). Dashed

horizontal red line indicates chance level.

(D) Decoding accuracy of the run phases by ensembles of neurons (size = 122 neurons) in which pre-run neurons (shaded area in B) were excluded (red) or

included (black; in this condition, the thick black line indicates median decoding accuracy over 100 ensembles and gray area shows data comprised between 5th

and 95th percentiles).

(E) Left: run phases decoding accuracy by ensembles of neurons (size = 50 neurons) composed of neurons that either displayed transient (black) or prolonged

(red) modulations of their firing rate (arbitrary classification based on Figure 3C; see main text). Thick lines indicate median decoding accuracy, and areas show

data comprised between 5th and 95th percentiles. Right: mean normalized firing rate for the two groups of neurons partitioned based on transient versus pro-

longed modulation of firing rate.
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trial-by-trial basis. We found that the firing rate of more than a

third of the positively modulated neurons was significantly corre-

lated with the running speed (Figure 7C). Some neurons

displayed prolonged modulations of their firing rate and strong

correlation with running speed (Figure 7A), and others displayed

more transient modulations and weaker (but still highly signifi-

cant) correlations (Figure 7B). At a population level, running-

speed-correlated neurons displayed a wide range of tuning

curves with modulations covering the whole run durations (Fig-

ure 7D). Altogether, these data show that a significant fraction

of striatal neurons displayed robust sensitivity to running speed

across the different run phases.

DISCUSSION

Here, we developed a task in which mice performed prolonged

runs interleaved with running pauses to maximize reward con-

sumption. We examined how striatal neurons fired with respect
to the different phases of the runs. The firing rate of the majority

of neurons increased significantly around the initiation, mainte-

nance, and termination phases of the runs. Some of these

modulations strikingly resembled those of start, stop, or bound-

ary-related neurons previously reported during self-pacedmotor

sequences. However, at a population level, the shapes of single-

neuron average firing rates (the run-related tuning curves) varied

continuously according to the task dynamics: transient modula-

tions tended to occur around the initiation and termination of runs

although more prolonged modulation occurred during the run.

Consequently, it was not possible to statistically separate the re-

corded neurons in groups using the shape of their tuning curve or

the time of the peak firing rate modulations. In addition, a signif-

icant fraction of the run-modulated neurons showed robust trial-

by-trial correlations between firing rates and running speeds.We

propose that, collectively, these types of modulations are not

compatible with a role of the striatum in action gating or limited

to action initiation. Rather, the striatum may monitor on a
Current Biology 28, 1–12, October 8, 2018 7
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Figure 5. Population Activity in Rewarded

and Unrewarded Runs

(A) Detection of rewarded (green) and unrewarded

(orange) runs in a few trials of an illustrative

session.

(B and C) Mean firing rate for all modulated cells

during rewarded (B) and unrewarded (C) runs. In

(B) and (C) upper panels, continuous running lines

represent the peak firing rates of all modulated

neurons in unrewarded and rewarded runs,

respectively.

(D and E) Population mean firing rates of positively

modulated (continuous line), negatively modulated

(dashed line), and all (thick line) neurons during

rewarded (D) and unrewarded (E) runs.

(F) Z-scored peak firing rates versus run phases

(circles) and population average (continuous line)

for rewarded (green) and unrewarded (brown) runs.

(G) Distribution of all the run phases with significant

positive modulation of firing rate for rewarded

(green) and unrewarded (brown) runs.
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moment-to-moment basis thedynamics ofmovements of the an-

imal. Such a function could be required for learning and updating

the kinematics content of adaptive actions.

Early in vivo single-unit recording experiments revealed

outstanding modulations of spiking activity in sensory (e.g., vi-

sual cortex) and associative (e.g., hippocampus) brain areas by

specific features of the stimuli or behavior [35, 36]. These studies

provided powerful intuitions on the functions of these areas (e.g.,

in vision processing and spatial navigation). Similar efforts have

been applied to understand the contribution of the striatum in the

control of actions. Single-unit recordings performed in the puta-

men of non-human primates performing overlearned short ac-

tions, such as saccades or arm reaching, revealed neuronal

modulations that (1) were movement related and covered a

wide range of timings, mostly after but also before movements’

initiation, (2) showed context-dependent modulations to move-

ment, and (3) were sensitive to task-relevant cues or sensory

stimulation [37, 38]. In contrast to this complexity of striatal re-

sponses to short actions, recordings in the dorsal striatum of ro-

dents have revealed a predominance of modulation around the

beginning and the end of learned prolonged actions, such as

lever press sequences or T-maze run bouts [6, 7, 9, 26, 27, 39]

as well as more sustained modulations during faster actions

[7]. It has been proposed that these distinct forms of modulation
8 Current Biology 28, 1–12, October 8, 2018
are critical for initiating and terminating

learned actions [7]. Such a ‘‘traffic light’’

coding mechanism [10] supposes that

start, maintain, and stop signals can be

unambiguously distinguished. In the

example of the traffic light, if highly similar

colors were used to signal start and stop,

drivers might be confused and cross a

road intersection while they should have

stopped. Thus, a basic requirement of

the traffic light hypothesis for striatal func-

tion is that the firing rate modulations of

two start neurons should be more similar

than the firing rate modulations of a start
and a maintain neuron. The classification of neurons in distinct

functional groups based on their firing rate modulations requires

unbiased methods to capture their variability and to quantify the

degree of separability versus overlap of the putative groups.

Here, using principal-component analysis, we found that the tun-

ing curves’ variability was well explained by a polynomial func-

tion [28]. The most informative aspects of the run-related tuning

curves can thus be represented in a lower two-dimensional

space defined by the curvature and linear components of the

fitting functions. When considered individually, many of the tun-

ing curves resembled previously described start, stop, or

‘‘boundary-related’’ neurons (see Figure 3B). However, at a pop-

ulation level, tuning curves changed continuously and separate

groups could not be isolated using either the coefficients of the

fit functions or their first two principal components (Figures

3C–3G). Such a continuum of neuronal modulations was also

observed when we analyzed and sorted the times of peak firing

rate modulation around run initiation across neurons (Figures 4A

and 4B). It is still possible to arbitrarily define groups of neurons

based on the time of their peak firing modulations or the value of

fit functions (Figures 3B and 3C and gray area in Figure 4B). We

found that the decoding accuracy of the different run phases

(including pre- and post-run phases) by striatal ensembles was

not compromised when we excluded neurons that exhibited



A

C D E

B Figure 6. Licking Rewards Modulate

Spiking Activity at the End of Runs

(A) Behavioral activity during a few trials of a

recording session and spiking activity of a neuron

showing increased firing rate at the end of the runs.

(B) Mean firing rate during unrewarded (left) and

rewarded (right). Same neuron as (A).

(C) Mean spike waveform and waveform features

of neuron in (A) (right, blue cross), superimposed

on all recorded neurons waveform features (black

dots; dashed squares indicate classical limits

used to distinguish putative FSIs [teal] and PNs

[salmon]).

(D) Auto-correlogram of spiking activity.

(E) Cross-correlogram between spiking and licking

activities.

Data in (A)–(E) are from the same neuron.
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prominent firing rate modulation just before the runs (Figure 4D).

We also found similar encoding accuracy of the run start and

stop phases by neuronal ensembles composed of neurons either

displaying transient firing rate modulation around run start and

stop or prolongedmodulations during the runs (Figure 4E). These

results show that, contrary to what might have been expected,

neurons with firing rate modulations that peak or plateau during

the runs also contribute significantly to the decoding of the initi-

ation and termination of the runs.

The existence of start, maintain, and stop signals in the

striatum has been proposed from the predominance of modula-

tions of firing rates at the beginning and ending of learned actions

[6–9, 26, 27]. This trend is also apparent in our data (Figures 2F

and 2G). In addition, we also observed that transient modula-

tions occurred preferentially around the start and stop phases

of the run, and more sustained modulations occurred during

the run (Figure 3C). This suggests that the impossibility to cluster

neurons using the shape of their tuning curves is unlikely to stem

from a difference in task design or learning level between our

study and the aforementioned related works. Still, it would be

interesting to examine, using large-scale chronic recording tech-

niques, whether the separability of the tuning curves of a given

neuronal ensemble evolves during task learning and automatiza-

tion of the motor routine. We believe that the continuum of

modulations we observed is congruent on the one hand with

the movement dynamics of prolonged stereotyped actions

and, on the other hand, the somatotopic organization of somato-

sensory and motor inputs reaching the dorsal striatum (reviewed

in [25]). In our task, somatosensory stimuli andmotor commands

occurring around run initiation and termination will overlap with

more sustained and stable movement dynamics associated

with running. For instance, we reported a clear case in which a

‘‘run stop’’ neuron was primarily driven by the licking activity

that occurred toward the end of rewarded runs. Here, we only re-

corded licking activity and running wheel movements. Thus, it is

possible that some of the transient modulations occurring

around the beginning and the end of the runs can be triggered
C

by brief movements, such as changes

in posture or bouts of whisking activity.

This possibility is supported by a recent

study performed in head-fixed mice in
which phasic dopaminergic signals in the dorsal striatum pre-

ceding run bouts were primarily correlated with brief whisker

movements that systematically occurred prior to locomotor

activity (Kim and Uchida, 2017, Soc. Neurosci., abstract). In

addition, a tendency for a representation of movement-rich

parts of tasks by striatal ensembles has been suggested

before in the context of spatial navigation [31]. The detection

of movement-related signals around the beginning or end of

learned actions will be facilitated if these actions are inte-

grated in a larger stereotyped motor routine (e.g., whisk-run-

lick, run-press-run, etc.). Consequently, experimental condi-

tions associated with low level of behavioral stereotypy

(such as early during training or following neuronal perturba-

tion) are bound to be associated with weak or undetectable

firing rate modulations around the start or stop action phases

[6, 26]. A role of the dorsal striatum in providing moment-to-

moment movements representation cannot be overlooked,

as the striatal regions in which we (and others) recorded

neuronal activity receive massive cortical input from motor

and sensory regions related to movements and stimulation

of different body parts, mainly the trunk, limbs, and, to a

lesser extent, orofacial regions [13, 14]. Moreover, it has

been shown that the spiking activity of dorsal striatal putative

FSIs and direct and indirect pathway PNs is strongly modu-

lated by passive manipulations of body parts in mice and

rats [23, 40]. Finally, large-scale calcium imaging of both

direct and indirect pathway PN activity has revealed that

distinct behavioral patterns associated with open field explo-

ration are fully mapped in the dorsal striatum [41]. These

anatomical and physiological considerations are sufficient to

explain the predominance of transient modulations during

early and late phases of the runs and more sustained modula-

tions during run, without invoking discrete start, maintain, or

stop signals. Such monitoring capacity is compatible with

the dynamics of a network model of striatal projection neurons

responding to a sequence of excitatory inputs [42]. We pro-

pose that the main function of the dorsal striatum is not to
urrent Biology 28, 1–12, October 8, 2018 9
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Figure 7. A Large Fraction of Striatal Neurons Displayed Trial-by-Trial Correlation between Firing Rate and Running Speed

(A and B) Two illustrative neurons with significant running speed-firing rate correlation. Top panels show rasters of spike times superimposed onwheel movement

detections for a few consecutive trials. Lower left panels show the mean firing rate (red thick line) relative to run phases, superimposed on the average running

speed (black). Red area indicates phases with significant modulation of the firing rate. Dashed red lines and gray shaded area indicate, respectively, the global

and pointwise CIs used to detect significant modulations (see STAR Methods). Lower right panels show a scatterplot of speed versus firing rate taken in the

modulated run epochs across all runs. (B) is the same as (A) for a second illustrative neuron.

(C) Distribution of Spearman correlation coefficients between firing rate and running speed for all positively modulated neurons.

(D) Tuning curves for all the neurons with a significant correlation coefficient between firing rate and running speed, ordered by the phase of the peak firing rate

(left) or according to the coefficients of the quadratic and linear polynomial fit functions (right).
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gate action by sending disembodied traffic light signals but is

more likely to continuously monitor the movement dynamics

of different body parts during action execution.
10 Current Biology 28, 1–12, October 8, 2018
What could be the behavioral function(s) of such movement

monitoring by the dorsal striatal network? A first possibility is

that it is not directly related to the control of ongoing actions
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but could be useful forde novomotor learning. For instance, if the

action-reward contingency of our task was suddenly changed,

the movements dynamics representation combined with

dopaminergicmodulations triggered by the updated reward con-

tingency [43] could contribute to anexploration of differentmove-

ments dynamics [44]. The continuous movements monitoring by

striatal neurons could also contribute to keeping track of time in

an embodied manner, in agreement with previous studies

reporting that the striatum multiplexes time and task-related in-

formation [32, 45, 46]. A given somatosensory state would auto-

matically trigger a specific movement pattern, and stereotyped

task performance would result from the succession of somato-

sensory-motor couplings. The design of our task, in which

distinct running patterns can lead to reward delivery, does not

allow to examinewhether alteredmovement dynamics represen-

tation can cause variations in running behavior. However, in line

with such possibility, it has been shown, in mice trained to lick in

response to whisker stimulation, that an absence of whisker-

evoked response in striatal neurons occurred selectively in trials

in which mice failed to lick in response to the whisker stimulation

[47]. Finally, because themonitoring of movement dynamics was

accompanied by high correlations between firing rate and

running speed on a trial-by-trial basis, our results also support

a role of the striatum in controlling the speed of action or vigor

[28, 32, 48–50]. Although future studies will surely delineate the

exact (and possibly multiple) contribution(s) of the striatum to

motor control and learning, our results add to a significant body

of work suggesting that the classical view of the striatum as a

key element of action selection and/or initiationmust be revisited.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were conducted in accordance with the standard ethical guidelines (European Communities Directive

86/60 - EEC) andwere approved by the relevant national ethics committee (Ministère de l’enseignement sup�erieur et de la recherche,

France, Ref 00172.01). 3 types of mice were used in this study: wild-type (WT) C57BL/6J (n = 18, Charles River), Drd2-Cre (n = 10,

C57BL/6J background, founder ER44, donated by Dr Valjent), and eNpHR-ChAT (n = 6, donated by Dr Beurrier, Ai39 mice were

crossed with ChATcre/cre to induce eNpHR3.0 expression in cholinergic neurons). Drd2-Cre mice were included in the task learning

figure (Figures 1B–1D, n = 5) and/or in the neurophysiological data analysis (n = 7). eNpHR-ChAT mice were included in the task

learning figure (Figures 1B–1D, n = 6). There was no difference in the number of sessions necessary to reach proficiency in the

task (Figures 1B–1D) between WT, Drd2-Cre and eNpHR-ChAT mice (correct trial rate: p = 0.09; median trial duration, p = 0.31,

Run-and-stop index: p = 0.25, Kruskal-Wallis test), thus all the behavioral data of all animals, regardless of genotype were pooled

together (Figure 1). Some of the Drd2-Cre and eNpHR-ChAT mice were used in yet unpublished optogenetic-based experiments

that took place after training or electrophysiological recordings presented in this manuscript. Two days before fixation of head plates,

mice (�3 months old, male) were housed individually in transparent cages located in the experimental room, with controlled temper-

ature (22�C) and humidity levels (60%) and maintained on a 12:12 hr dark-light reverse cycle to allow experimentation during dark

phase. Before training, mice were housed with ad libitum access to food and water.

METHOD DETAILS

Surgical Procedures
All surgical procedures were performed under stereotaxic control and deep isoflurane anesthesia. In anticipation of head-fixed

behavioral and acute electrophysiological experiments, a custom-designed head-plate was cemented on the exposed and cleaned
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skull of all animals (Superbond Kit, Frapident). For mice intended for electrophysiological recordings, two miniature stainless steel

screws (Small Parts, size 000-120) were epidurally implanted above the cerebellum, to serve as ground and reference. A bilateral

craniotomy was performed at the following coordinates relative to Bregma: 0 mm AnteroPosterior and ± 2 mm MedioLateral. The

dura was not removed but protected with a layer of Kwik-Cast (WPI). Animals were given at least 1 week of recovery after the surgery

before behavioral training started.

Behavioral apparatus
The behavioral apparatus consisted of a custom-made enclosure made of Mini T-slot profile beams (MakerBeam) that maintained in

its center a free spinning wheel (12 cm diameter and 8 cmwide, 3D printed in la Plateforme Technologique du Pays d’Aix, Plateforme

Technologique, IUT d’Aix en Provence). The enclosure design allowed to position themice on top of the wheel via the head-plate. The

wheel was covered with a layer of washable velvet and rotated around a ball-bearing shaft, allowing the mice to walk easily on the

wheel (Figure S1A). Movements of the wheel were measured using a photodetector that detected the passing of the wheel spokes

(Figure S1A). The number of spokes allowed the detection of rotations of the wheel, whichwas equivalent to 2.36 cm of linear travel. A

liquid well was positioned near themouth of themice. The delivery of rewards (10 mL of 10% sucrose solution) was ensured through a

solenoid valve, which generated an audible click at the time of opening. Mice simply collected the reward by licking. In some exper-

iments, the licking activity was recorded using a custom-made photodetector (Figure S1A). A white noise was played through a mini

loudspeaker to signal the RP (Figure S1B). Themovements of the wheel, sound, lick detections and openings of the solenoid valve for

reward delivery, were recorded/controlled through a custom-designed electronic board interface connected to a multifunction data

acquisition device (USB-6353, National Instruments) and managed by a custom made software (LabVIEW, National Instruments).

Behavioral task and training
After recovery from the surgery (2 to 5 days), mice were handled by the experimenter every day for at least 5 days. Then, the mice

were familiarized with the head-fixation/wheel apparatus during 20 min-long sessions. In these sessions, rewards were delivered

manually by the experimenter as soon as the mice ran/walked for about 10 cm. Once mice performed several runs of at least

10 cm, training in the run-and-stop task started. Mice were placed on a water restriction schedule (1 mL/day, weight > = 85% of

pre-training weight). Training sessions lasted 40 min, during which the experimenter was not physically present in the room. The

behavioral sessions were composed of several trials, divided into ‘‘Run’’ and ‘‘No run’’ periods (RP and NRP, respectively), whose

durations depended on the locomotor activity of the animals. During RP, which were signaled by a continuous white noise, mice ob-

tained a drop of sucrose as soon as they ran for 100 cm without stopping. Operationally, stops were defined as moments during

which no wheel movements were detected for more than 1 s. At the time of reward delivery, the white noise was turned off and

the task transitioned to the NRP, which, depending on the locomotor activity of the animal in that period, lasted 15 s or more. Indeed,

when the mice did not run (i.e., no wheel detection) for at least 2 s at the end of the NRP (between 13 and 15 s, after the end of the RP,

Figures S1A and S1B), a new trial started. However, if the mice failed to respect this 2 s immobility period, the NRP was prolonged

until animals paused their locomotor activity for 2 s. A trial was considered correct if the animal ran continuously for 100 cmbefore the

end of the RP (see illustrative trials 3-6, Figure S1B). If, after 60 s in the RP, the animal failed to reach this objective, either because the

runwas too short (illustrative trial 1, Figure S1B), or becausemultiple short runs interleavedwith stopswere performed (illustrative trial

2, Figure S1B), the trial was considered as incorrect and the task transitioned fromRP to NRPwithout reward delivery. The transitions

between the different trials and periods of the tasks and the recording of the behavioral performance were ensured by a LabVIEW

custom made software. At the end of each session, we measured the total amount of liquid delivered during the session. 1 hr after

the training session, mice received a complementary amount of tap water to ensure they consumed at least 1 mL of liquid per day.

Acute in vivo electrophysiological recordings
Acute extracellular recordings of spiking activity were performed in the dorsal striatum while mice performed the run-and-stop task.

On the recording day, mice were briefly anesthetized with isoflurane, the craniotomy was cleaned (by removing the Kwik-Cast) and

the durawas removed.Micewere head-fixed above thewheel andwhile theywoke up from the anesthesia a 32-channel silicon probe

(Buzsaki32A, NeuroNexus) was slowly lowered into the brain with a precision stereotaxic arm. After reaching the dorsal striatum

(DV:� 2.0 mm, relative to bregma), liquid agar (1.5%) at near body temperature was applied around the probe to seal the craniotomy

and to improve the stability of the recordings. To visualize the silicon probe track in the brain, DiI Lipophilic carbocyanine dye (DiI,

42364, Sigma-Aldrich) (1%–2% diluted in ethanol) was applied to the back of the tip of the probe before penetration. Recording ses-

sions for all mice typically lasted 40min, duringwhich the animal performed the task.Many sessions had to be removed due to exces-

sive drift or lack of proper behavior performance on the day of the electrophysiological recording. In this manuscript, we consider the

activity of 167 neurons recorded during 30 different sessions (1 to 3 recording sessions per animals in one or two brain hemispheres)

in 13 well-trained animals. Animals were considered well-trained if they performed at least 3 consecutive sessions with an average

rate of correct trial > 10 correct trials/5 min).

Electrophysiological data acquisition and processing
Wide-band (0.1–8 KHz) neurophysiological signals were amplified 1.000 times via a Plexon VLSI headstage and a PBX2 amplifier and

digitized at 20 kHz on two synchronized National Instruments A/D cards (PCI 6254, 16 bit resolution). Raw local field potential signals
e2 Current Biology 28, 1–12.e1–e5, October 8, 2018
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were processed off line and spike sorting was performed using a semi-automatic method, as described previously [32, 51] except

that we used an updated version of the klustakwik algorithm (http://klusta-team.github.io/, [52]).

Histology
At the end of the experiments, mice were deeply anesthetized and transcardiacly perfused with PBS (Phosphate Buffer Solution) fol-

lowed by 4% paraformaldehyde. Cresyl violet staining of coronal and sagittal sections (60 mm) was performed to confirm the position

of the silicon probe during recordings through visualization of the DiI stain traces.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the analyses were performed using the Python language taking advantage of the Jupyter Notebook web interface which allowed

regeneration (or modification) of the manuscript figures. A first pre-analysis step was performed to synchronize the timings of spikes

of well-isolated units (see above for processing), wheel and lick events. These timings were aligned relative to the structure of the task

(trial numbers, beginnings and ends of RP and NRP).

Firing rate relative to run phases (tuning curves, TCs)
Runs were detected as series of consecutive wheel movement detection times occurring in intervals < 1 s. We restricted our analysis

to runs that lasted at least 2 s and shorter than 15 s (i.e., the time difference between the first and last wheel detections in a detected

series was > = 2 and% 15 s). Similar patterns of firing rate modulation were obtained if our criteria for run detection was more strin-

gent (Figure S2).We then normalized the duration of all the runs detected during a recording session. For each session, we computed

the median run duration across all the detected runs. We then divided all the runs in an equal number of bins (nbin): nbin = mrd x 4

where mrd is the median run duration in a session (for example, if the mrd was 6.5 s in a given session, all the runs of this session

were divided in 26 (6.5 3 4) bins). For each bin, we computed the instantaneous firing rate (spike count / bin duration). We also

included 3 s before and after the detected runs. These pre- and post-run epochs were divided in bins of 250 ms (i.e., 12 bins). By

definition, the 1st second before and after the detected run epochs corresponded to immobility (no detection of wheel movement)

epochs. Finally, the binned firing rates of the normalized runs, and their flanking 3 s-long epochs, were averaged across all runs

in a given session. TCs (such as seen in Figure 2C) were obtained by convolution of the resulting averaged/binned firing rate series

with a Gaussian Kernel (s = 1). For a single neuron, a TC could be computed for all the detected runs (Figures 2, 3, 4, and 7), or sepa-

rately for rewarded and non-rewarded runs (Figures 5 and 6). Because all the TCs have the same number of bins, we refer to the bins

as phases of the run. Here, phases are not circular (the 1st phase is not equivalent to the last one). Rather, theymust be understood as

relative times versus the beginning and the end of the run. As a consequence, the first and last 12 phases of the TCs correspond to

pre- and post-run phases.

To detect the run phases during which the spiking activity of the neurons was significantly modulated, we randomly altered the

relation between spike times and wheel detection events. We constructed 500 surrogate TCs as explained above, except that for

each detected run, the spike times were jittered by a value randomly chosen between ‘‘– run duration’’ and ‘‘+ run duration.’’ A global

band of confidence was defined as the 5% highest and lowest values of the 500 surrogate TCs (i.e., 2 values). A pointwise band of

confidencewas defined as the 5%highest and lowest values of the 500 surrogate TCs at each point. A TCwas defined as significantly

modulated if it crossed the global band of confidence. The significantly modulated phases were defined as the bins corresponding to

the area between the TC and the pointwise band (see examples in Figures 7A and 7B, lower left panels, and supplementary methods

in [53]). Some TCs crossed both superior and inferior limits of the global band of confidence. In these cases, we transformed the TC in

Z-score and the sign of the maximum absolute deviation was used to determine if the TC was positively or negatively modulated.

For all the neurons that displayed a positive significant modulation of their TC, we quantified the trial-by-trial correlation between

firing rate and running speed during themodulated phases (Figure 7). In each trial, we only considered the phases corresponding to a

continuous modulated part of the TC, between run start and stop. If the TC was modulated in more than one region, we only consid-

ered the phases showing the strongest modulation. In each run, we computed the average running speed (rs) in the modulated run

phases: rs = (nwheel-event-1)*2.356/(nbin*binduration), where nwheel-event is the number of wheel detection events in themodulated portion,

nbin is the number of modulated bins and binduration is the bin duration in this run. The relation between the running speed and firing

rate was statistically assessed using the Spearman’s rank correlation coefficient.

Functional classification of neurons
The positively modulated TCs displayed a wide range of shapes (Figures 2, 3, and 4). We used PCA to capture themain determinants

of this variability. Themajority of the variance (70%)was contained in the first two principal components, that were well approximated

by a quadratic function with or without a linear function, respectively (Figures 3A and 3B). Each neuron’s TCwas approximated with a

second order polynomial function g: g(x) = ax2 + bx + c, where x is the normalized trial duration (0% x 0% 1), a is the quadratic co-

efficient, b is the linear coefficient and c is the origin value. The coefficients a and bwere considered significant if their p values (pa and

pb, respectively) were lower than 0.05. The TCs (i.e., the neurons) were divided into 7 putative groups according to the significance

and sign of the quadratic and linear coefficients (see Functional classification criteria below). In brief, onset positive/negative neurons

weremostly active/inactive at the beginning of the trials, offset positive/negative neuronsweremostly active/inactive at the end of the
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trials, on/off neurons were mostly active at the beginning and end of the trials, and the duration neurons showed sustained activity.

The seventh pseudo-class contained neurons with non-significant quadratic and linear coefficients.

To evaluate if the different groups could be considered as segregated entities, we considered the polynomial fit function of each TC

and plotted its linear coefficient versus its quadratic coefficient (as approximations of their 1st and 2nd principal component value).

Given that each TCwas assigned to one of the 7 putative groups, we computed the Silhouette Coefficient score (SC) of all the neurons

to measure the inter-dependency of the groups as: SC = (d’ - d) / max (d, d’) with d being the mean intra-cluster distance and d’ the

mean nearest-cluster distance to the considered neuron (Rousseeuw, 1987)5. For each TC, the SC could take a value between 1

(perfect assignment) and �1 (perfect assignment to the nearest cluster). A value near zero indicated that the TC was equally likely

to belong to its assigned group/cluster or to the closest neighbor. A negative value indicated that a TC was assigned to the wrong

cluster.

Functional classification criteria
pb % 0.05 pb > 0.05

a > 0 a % 0 pa % 0.05 pa > 0.05

g[0] % g [1] g[0] > g [1] g[0] < g [1] g[0] > = g [1] a % 0 a > 0 Non classified

Positive offset Positive onset Negative offset Negative onset Duration On/off
Unsupervised clustering of neurons based on TC profiles
We performed PCA of the tuning curves of both positively and negatively modulated neurons. A k-means algorithm (fscikit-learn py-

thon package) was used to generate the best partitioning of the tuning curves on the basis of their first and second PC (Figure 3F). We

then varied the number of partition (k) between 2 and 10. The number of runs of the algorithmwas set to 20 and themaximum number

of iterations was 300. To quantify the quality of the clusters generated by the k-means algorithm, we used the Silhouette score as a

measure of cohesion inside groups versus separation between groups (see above). We also used distortion (also referred to as inertia

or within-cluster sum-of-squares), which is directly computed by the k-means algorithm. Indeed, the k-means algorithm tries to mini-

mize distortion, which is the sum of the squared distances between each observation (pairs of PC) and its dominating centroid. To

demonstrate quantitatively the lack of clusterability of the PC scatterplot (Figure 3F), we generated one thousand surrogate datasets

by independently sampling pairs of PC from the distributions of the first and second PC of our tuning curve dataset (i.e., independent

reverse sampling from the real dataset). Each surrogate dataset (n = 146 pairs of PCs) was clustered using the same k-means algo-

rithm and Silhouette scores and distortions were computed.

Peristimulus time histograms of spiking activity
For all the recorded neurons, we generated a peristimulus time histogram (PSTH) of their spiking activity aligned with the time at

which runs started. We used bins of 100 ms and examined the spiking activity from 2 s before to 2 s after the beginning of all the

detected runs (Figure 4A, bottom). We identified bins with significant firing rate modulations by comparing each original PSTH

with one thousand surrogate PSTHs generated after randomizing the relationship between the spike trains of the neuron and the

times of run start. Those surrogate PSTHs served to generate a global and a pointwise confidence intervals. The crossing of those

intervals by the original PSTHs was used to isolate PSTH bins exhibiting significant modulation (same as TC analysis). From all the

significantly modulated bins of a given neuron, we isolated those that surrounded the maximal firing rate modulation and that

occurred from 2 s before to 2 s after the start of the runs (Figure 4A, bottom). For instance, in the case of the first illustrative neuron 1,

we did not consider the significantly modulated bin around 2 s (Figure 4A, bottom).

Bayesian decoding
The decoding procedure consisted in computing the probability of the animal being in a given run phase (normalized time bin

computed from run start and stop times and run duration) knowing the spiking response of a single neuron (or an ensemble of single

neurons [31]). We used the same normalization procedure of the run durations as the one used to construct the TCs and used a leave-

one-out cross-validation procedure [54]. For each time bin t before, during and after the detected run (12 bins before, 28 bins during

and 12 bins after the run, average bin duration = 250 ms), we first took the instantaneous firing rate xi of a neuron i in that bin at a

random trial. Second, we computed the posterior probability function p (Bin = t j xi, t from 1 to 52) of the mice being at each of

the 52 time bins given the tuning curve of the neuron computed from the remaining trials, assuming a uniform prior and a Poisson

distribution of the spike count variability [54]. To perform decoding using an ensemble of neurons, we multiplied the individual prob-

ability functions to obtain the ensemble posterior probability, assuming independence between the ensemble members (low level of

correlation between striatal neurons and pulling of neurons from different sessions). The accuracy of predicting the considered bin

(run phase) t0 by an ensemble of k neurons (k > = 1) was given by themean ensemble probability of a correct estimate: p (Bin = t0 j [xi, i
from 1 to k]) over 50 leave-one-out repetitions [54].

To compute the decoding accuracy of run phases, we used the trial-by-trial instantaneous firing rates relative to the normalized run

phases (see above) of both positively and negatively modulated neurons (n = 146 in total). For the decoding accuracy of striatal
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ensemble of increasing size (25, 50, 100, Figure 4C), we randomly selected 25, 50 or 100 neurons out of the total dataset (146 neu-

rons). We repeated this operation 10 times and reported the average decoding accuracy. To compare the decoding accuracy be-

tween ensembles that included or excluded the 24 pre-Run neurons (Figure 4D), the size of the ensembles was 122 neurons,

for each condition. We randomly selected 122 neurons from the entire dataset to generate ensembles that included the pre-Run neu-

rons and computed the decoding accuracy of each ensemble. We repeated the procedure 100 times and reported the median

decoding accuracy and the 5th and 95th percentiles. This was compared to the decoding accuracy obtained when we used the

122 non-pre-Run neurons (i.e., same size comparison). To compare the decoding accuracy between ensembles composed of neu-

rons that displayed either transient or prolonged neuronal modulation (Figure 4E), we assigned positively modulated neurons into two

groups. The transient group was composed of neurons classified as On/Off, Onset+ and Offset+ (53 neurons in total, Figures 3B and

3C). The prolonged group was composed of neurons classified as Onset-, Duration and Offset- (63 neurons in total, Figures 3B and

3C). We compared the decoding accuracy of ensembles of 50 neurons randomly selected from each group and repeated the oper-

ation 100 times.

Statistical tests
To statistically compare task learning rates across mice genotypes we used the Kruskal-Wallis test. To test for uniformity of distri-

butions we used the Kolmogorov Smirnov test (Figures 2E and 2F). To test for statistical difference between two distributions, we

used the two sided Kolmogorov-Smirnov test (Figure 5G). p values were reported in the main text. To test for firing rate difference

between putative projection neurons and fast spiking interneurons (Figure S4C), we used the non-parametric Wilcoxon test. In

this case, the p value was directly reported on the figure. The relation between the running speed and firing rate was statistically as-

sessed using the Spearman’s rank correlation coefficient (see above). p values for all the units analyzed are reported graphically (Fig-

ure 7C). The method to identify significant modulations of firing rates has been explained in detail above. The method to statistically

test for the presence of functional groups, based on the shape of the neuronal tuning curves, has been described above.

DATA AND SOFTWARE AVAILABILITY

The notebooks supporting the pre-analysis processing steps are available at https://bitbucket.org/davidrobbe/

sales-cabonell_manuscript. All the figures of this manuscript were generated through a series of python codes, which analyze, quan-

tify and visualize specific aspects of the behavioral and neuronal data and their relationship. These codes are entirely described in

notebooks available at https://bitbucket.org/davidrobbe/sales-cabonell_manuscript. Raw electrophysiological data (unfiltered 32-

channel LFPs, sampled at 20 kHz) are conserved at INMED and can be shared to any reader upon reasonable request. Processed

electrophysiological data (spike times, features and IDs, behavioral data) used by the Jupyter Notebooks to generate the figures can

be directly uploaded from Mendeley Data (https://doi.org/10.17632/4hv73sgb5b.1).
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