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Abstract 

Reliability methods have proved in the past that they were rational aid-tools for the safety 

assessment of existing structures, within which some uncertainties occurred. Condition 

assessment is usually carried out using on-site measurements, which are assumed perfect. 

However, it is now accepted that some significant uncertainties may affect the assessment of 

material properties using semi-destructive methods. The purpose of this paper is to present a 

method for the identification and evaluation of measurement uncertainties using a bias and a 

zero mean error modelled by a random variable. These uncertainties obtained are then 

modelled using a probabilistic model. In a marine environment, the main cause of reinforced 

concrete structure degradation is the corrosion due to chloride ingress. The chloride profiles 

are determined using a destructive method involving many steps where the experimenter 

plays a key role. In order to identify sources of errors, four researchers have performed 

repeatability tests. The total chloride content is expected to be the same for all the samples. 

The heterogeneity has been studied using statistical analysis. A value of the bias is provided 

and the model results are consistent with the original results. Finally, the impact of 

measurement errors on reliability and life-cycle assessment is discussed. 

 

Keywords: error modelling, laboratory tests, probabilistic modelling, chloride profiles, 

statistical analysis, probability of corrosion detection, reliability analysis 
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1. Introduction 

During the past three decades, reliability methods have provided efficient rational aid-tools 

for the safety assessment of new designed concrete structures (Marquez et al. 2012). They 

have gradually been extended to include the structural reliability assessment of existing 

structures. Civil engineering offers key challenges in this field because of the cost and 

difficulty of on-site measurements to evaluate precisely the material degradation. These 

methods require to identify the uncertainty sources, then to quantify and model them, 

generally on the basis of statistical studies. The measurements, achieved through Destructive 

and Non Destructive Testing (NDT) or Structural Health Monitoring (SHM) sensor, are then 

assumed perfect (Oslakovic, 2010; Yang et al. 2012) except for some works where studies are 

mainly theoretical (Faber and Sorensen 2002; Rouhan and Schoefs 2003; Sheils et al. 2010 

and 2012; Bastidas and Schoefs 2012). However, most of the time, measurement error 

modelling assessment is not based on real data because no experimental database is currently 

available. The aim of this paper is to present the findings of the study conducted to identify 

sources of uncertainties for the measurement of total chloride profiles in concrete. With this 

aim in view, uncertainties are then modelled using an appropriate probability density function. 

In a marine environment, indeed, the main cause of reinforced concrete structure degradation 

is the corrosion of steel rebars because of the presence of chloride ions due to concrete 

porosity. When the chloride ion concentration reaches a critical value, called Ccrit, the 

steel bars are not protected anymore and corrosion is initiated. Tuuti proposes a 

conceptual model dividing the service life of reinforced concrete (RC) structures into 

two distinct phases: the initiation phase and the propagation phase (Tuuti 1986). The 

present paper focuses only on the initiation phase through a comparison of the chloride 

content with the critical chloride level, from which the passivation of steel surfaces 

becomes unstable. The adoption of corrosion initiation as the limit state to define service 

life of RC structures has already been challenged by researchers for both saturated and 

unsaturated concrete (Kong 2002, Val 2008). In this, the most accurate determination of 

chloride profiles with depth is one of the main issues of structure service life prediction.  

Non destructive techniques are currently under development in order to detect and quantify 

corrosion rate and chloride content with good accuracy (Ahmad 2003; Balayssac et al 2011, 

Montemor et al. 2003, Torres-Luque et al. 2014, Lecieux 2015). These techniques give good 

results for free chloride content as regards experiments conducted in the laboratory but, as the 

sensors are affected by many parameters (water content, porosity, cracks, etc.), in situ 
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chloride content measurements are still unreliable (Montemor et al. 2006; Atkings et al. 

2001). Other techniques are under development to achieve chloride profiles without breaking 

the concrete specimen (Silva et al. 2012; Wall et al. 2008). Unfortunately, these techniques 

are costly when the key factors for the choice of the method are precisely cost and time.  

For these reasons, the present study focuses only on the total chloride profiles determined 

using a semi-destructive method because both bound and free chlorides are involved in the 

corrosion process (Reddy et al. 2002). As regards the problem of distinguishing 

experimentally between free and bound chloride, some authors consider that the critical 

chloride content must be compared to the total chloride content (Tuuti 1982, standard 2006).  

The total chloride profile measurements are commonly used for service life predictions of 

structures to:  

- update the chloride diffusion coefficient used in corrosion prediction models; 

- calibrate NDT tools (Kirkpatrick et al. 2002; Liang et al. 2005).  

The aim of this paper is to quantify the measurement reliability in providing a rational 

decision aid-tool for inspection or work planning. With this aim in view, error 

measurement of total chloride profiles is essential. To our knowledge, no previous 

experimental works was carried out until now to assess and model the several sources of 

measurement uncertainties. 

This study has been conducted within the context of the European Interreg III B project, 

called Medachs (http://www.medachs.u-bordeaux1.fr). This research project concerns the 

durability and maintenance of coastal concrete structures. Specifically, the structure studied at 

the GeM laboratory is a quayside of the Nantes-Saint-Nazaire harbour (France) built in 1971 

and located in the estuary of the Loire River on the Atlantic coast of France. Some profiles of 

concrete cores extracted from the quay have been analyzed using a probabilistic study, which 

pinpointed problems relating to the lack of measurement uncertainty model (Rosquoët et al. 

2006). The total chloride profiles obtained on field are difficult to analyze with regards to 

their uncertainty measurement and to the many parameters they are depending on: cement 

type, environmental parameters and concrete quality and damaging (Ben Fraj et al. 2012; 

Castro et al. 2001; Costa and Appleton 1999; Djerbi et al. 2008; Lindvall 2007, Sosdean et al 

2016). The determination of the chloride profiles, indeed, is a manual procedure (Chaussadent 

and Arliguie 1999; RILEM 2002; Vennesland et al. 2012), in which the experimenter plays a 

key role. The profile analysis, therefore, implies that the confidence in the measured values is 
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discussed and quantified to be implemented in a rational decision process for maintenance or 

inspection planning.  

It is important to note that chloride transport mechanisms affect the quantity of 

chlorides with depth but not the assessment procedure and the error on measurement. 

Moreover, the error is assumed to be independent from the chloride content. This is a 

common assumption when semi-destructive techniques or NDT without any change in 

the settings of the NDT tool are used. 

This paper initially begins with key issues about uncertainty modelling and about their 

applications for modelling uncertainty of measurement. A probabilistic modelling of errors 

(human and protocol) is then presented. How it affects reliability assessment is finally 

discussed. 

In order to quantify the uncertainty of measurement, some repetitive tests have to be carried 

out on laboratory specimens with a process distinguishing between human and other factors 

influencing the measurement. Section 3 presents the experimental programme, which leads to 

error measurements. In Section 4, the modelling of the uncertainty in total chloride content 

measurements is examined. Finally, the statistical analysis, the probabilistic modelling and the 

effect of uncertainty in measurements for reliability and life-cycle assessment are discussed. 

Our main objective is the better understanding of the estimated probabilities that corrosion 

initiation is detected from on site destructive testing.  

2. Uncertainty of measurement: from identification to 

modelling 

2.1 Sources of uncertainties 

Even though the hierarchy of sources of uncertainties in engineering remains an open and 

controversial question (Der Kiureghian and Ditlevsen 2009), the classification published by 

Ang and Tang (1978), however, provides a satisfactory framework. This list is divided into 

two categories of sources of uncertainties: aleatoric and epistemic. 

Sources of uncertainties are considered as ‘aleatoric’ when they come from natural or 

industrial hazard. 

‘Epistemic uncertainties’ are due to the limitation of human knowledge and modelling of 

complex reality and are assumed to diminish in the future with the progress of scientific 

knowledge, the accuracy of protocols and the development of technology. They gather 
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various sources like uncertainty of measurement, error due to lack of experience when using a 

tool and uncertainty of modelling. 

Deby et al. (2009) consider the modelling error of the diffusion coefficient by comparing 

calculated and experimental coefficients: the model must be selected and the error will vary 

depending on the model. Henceforth, a special focus is placed on the quality of chloride 

content assessment itself.  The objective of this research is to investigate the sources of 

uncertainties when the total chloride content is measured and to present the results as regards 

identification, measurement and modelling. The protocol describing the process is discussed 

in Section 3. 

2.2 Effect on structural reliability and probability of defect assessment  

Measurement errors affect both the computing of structural reliability and the decision 

through the probability of assessment of the measured property. Let  denotes the measured 

material property (typically a Resistance parameter) and R the real value of the property 

measured with a perfect tool:  

= R + et  
(1) 

where et is the total measurement error. 

When measurement data are directly used for reliability assessment without using a structural 

model and a complex limit state, the reliability can be assessed simply by estimating the 

probability of failure, Pf as, defined as: 

Pf = P ( > Rcrit)  
(2) 

where Rcrit is the critical value, also called acceptable or limit threshold in Load and 

Resistance Factor Design (LRFD) method. 

Let us consider a non-perfect measurement of R. A survey of the literature on the concepts of 

probability of detection and probability of false alarm reveals that a considerable amount of 

effort has been devoted to this subject for characterizing the performance of Non Destructive 

Testing tools (Faber and Sorensen 2002; Rouhan and Schoefs 2003; Sheils et al. 2010). The 

probability for good assessment, called PGA, is a quantity very useful for decision planning 

on structural maintenance (Sheils et al. 2010). It is defined by the conditional probability:   

PGA = P( > Rcrit | R > Rcrit)  
(3) 

R̂

R̂

R̂

R̂



- 6 - 

 

3. Experimental programme 

This section describes the experimental program applied to assess the total error of 

measurement, et (1), in the case of total chloride determination in concrete.  

3.1 Concrete mixture and specimen preparation 

The concrete material used for the repetitive tests is made of ordinary Portland cement and 

limestone filler. The cement type CEM I 52.5N comes from the Saint-Pierre Lacour’s plant 

(France). The chemical composition, provided by the manufacturer, is detailed in Table 1. The 

density is 3150 kg/m
3
 and the specific surface area is 365 m²/kg. 

The limestone filler consisting of 96.8% of CaCO3 is produced at the Erbray’s facility 

(France). The density and specific surface area are 2696 kg/m
3
 and 419 m²/kg, respectively. 

The 0/4-mm sand is siliceous river sand with a density of 2580 kg/m
3
 and a water absorption 

coefficient of 0.9% (in mass). The aggregate are 10/14-mm siliceous gravels with a density of 

2592 kg/m
3
 and a water absorption coefficient of 0.5% (in mass). Concrete composition is 

described in Table 2. The Water to Binder ratio W/B is O.47. 

Five concrete cylinders with a length of 22 cm and a diameter of 11 cm are prepared from a 

single batch. The concrete is cast in steel moulds and compacted using a mechanical vibrator. 

After casting, the cylindrical moulds are stored in a humid chamber maintained at 20°C with a 

relative humidity (RH) of about 85% for 24 hours before demoulding. Then the cylindrical 

concrete specimens are stored together in the same humid chamber to be well-hydrated. After 

28 days, three cylinders are tested under axial compressive loading conditions to obtain the 

compressive strength. The mean value obtained is 36 MPa. 

The two other cylinders are kept in the humid chamber during six months then cut into 

cylinders with a length of 2.5 cm and a diameter of 11 cm using the water jet cutting 

technology. Four specimens, called S1, S2, S3 and S4, are sampled in the middle part of the 

two cylinders: S1 and S2 from the first cylinder and S3 and S4 from the second one.  

All the four specimens are oven-dried at 60°C to constant weight. This drying stage lasts five 

months. Then, the discs are cooled for 48h in a desiccator at 20°C before being tested. The 

concrete sample preparation, like cutting or drying for instance, may affect the microstructure 

of concrete. However, this damaging risk is equally shared by all the concrete samples. 
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3.2 Chloride contamination in concrete 

The objective is to obtain the homogeneous chloride content in the concrete specimens for 

conducting repetitive tests. Consequently, the chloride content with depth should be the same 

for all the specimens. The specimens must be in equilibrium with the salted solution. 

Three dried samples (S1, S2 and S3) are fully submerged in a container filled with a sodium 

chloride solution, which is renewed regularly to maintain the desired chloride content in the 

surrounding solution. This solution combines a 30g/l NaCl solution closed to the level of 

NaCl in the Atlantic Ocean and a concentrated solution of KOH (0.083 mol/l) and NaOH 

(0.025 mol/l) to obtain a pH closed to that of the interstitial pore solution to avoid leaching of 

concrete. The samples are weighed weekly to constant mass. The immersion stage lasted four 

months. 

The fourth sample (S4) is submerged four months too in another container filled with 

demineralised water loaded with KOH (0.083 mol/l) and NaOH (0.025 mol/l) only. S4 is used 

as a control sample to measure chloride content without chloride contamination.  

 

3.3 Procedure for obtaining total chloride content 

The well-known procedure recommended by the RILEM 178-TMC Technical Committee is 

used here. After exposure, the cylindrical cores are taken from the immersion tank to be 

ground in several steps of 4-mm each, perpendicular to the top faces of the cylinders using a 

grinding instrument. A 4-mm increment is chosen to obtain enough concrete powder for 

analysis by three operators. The powder is collected and stored in sealed plastic bags. This 

procedure recommended by Vennesland et al. (2012) does not use water.  The grinding areas 

are larger than 40 cm² (an 8-cm diameter hole) to avoid excessive contribution from large 

aggregates. 

The procedure described below is used to determine the total chloride content from concrete 

powder (Chaussadent and Arliguie 1999, RILEM TC 178-TMC 2002). Approximately 5g of 

concrete powder is taken from each layer and placed in a beaker. HNO3 and deionised water 

are added and the mixture is stirred and heated to 80°C for 30 min. The solution is then 

filtered into a 250-cm
3
 volumetric flask. The chloride concentration of the filtered solutions is 

determined by potentiometric titration using an automatic titrator with 0.01-M silver nitrate 

(AgNO3). 
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All concrete specimens are ground in the same laboratory and by the same operator (called 

O2) while the others steps (filtration and titration) are conducted by different operators in two 

different laboratories for samples S1, S2 and S3. Four operators and two laboratories are then 

involved in the experimental program: O1 and O2 belonging to the same laboratory and O3 

and O4 to the second laboratory. S2 and S3 samples are analysed twice by operator O2 

(profiles indicated with brackets in Figure 1). These repetitive tests are carried out to quantify 

the error (cf. S96+ection 4). The different experimental steps and the corresponding operators 

are summarized in Table 3. 

 

3.4 Total chloride profiles 

Figure 1 presents nine total chloride profiles, which are supposed to be identical, and one total 

chloride profile for the specimen not contaminated with chloride (S4). Three profiles are 

provided for each sample immersed in chloride solution (S1, S2 and S3) to assess test errors 

on chloride determination. The nine profiles should be identical since the samples are made of 

the same concrete and contaminated with the same solution. They should also be horizontal 

(same content with depth) as the equilibrium is reached using the same sodium chloride 

solution. However, it is not.  Therefore, the error is quantified in Section 4 using the 

information about this unexpected scattering.  

With a cylinder length of 2.5 cm, six points are expected for each profile. Yet since the 

concrete samples broke when the grinding instrument reached a depth of approximately 2 cm, 

only five points have been obtained for samples S2 and S3 and four points only for sample 

S1. The error, therefore, will be calculated on 42 points. 

The non-contaminated specimen S4 presents a profile with a non-zero concentration. The 

experimental mean content for S4, calculated using the five points obtained as a function of 

depth, is 2.61 10
-4

 kg/kg of concrete. It is related to the initial chloride content of the different 

concrete compounds: cement, filler, aggregates and water.  

The chloride from the concrete components is calculated by considering the initial chloride 

content of each component given by the manufacturers (Table 4). The 10/14 aggregate 

material does not appear here because its initial chloride content is null. The apparent concrete 

density used to calculate the chloride content in kg of chloride by kg of concrete is 2293 

kg/m
3
. The value obtained is 2.52 10

-4
 kg/kg of concrete with the primary source of chloride, 

coming from sand.  Indeed, the sand used here is extracted from sand mines in the Loire 
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estuary. This value is close to the experimental value obtained with the profile (2.61 10
-4

 

kg/kg of concrete).  

4. Error modelling 

4.1 Modelling of measurement uncertainty 

Generally, measurement uncertainties are due to three main errors: protocol error ep, sample 

error es and human error eh. The term “error” is purposely used in here because experimental 

results are compared with theoretical values.   

The protocol error ep comes from all the uncertainties in devices and materials used 

throughout the experimental process (cf. Section 3.3). As regards the accuracy of the devices 

used for the measurements, the key factors are: the quality of the sample preparation (built in 

the laboratory or extracted on site), the quality of the testing devices. As regards 

measurement, it is a matter of quality of the post-treatment algorithm providing the output 

useful indicator. So, key factors involved here are: powder quality (powder fineness and 

heterogeneity), quality of the demineralised water and procedure for chloride extraction from 

concrete powder. 

The error es is due to the variability of the samples, which are assumed to be identical. 

Samples S1, S2 and S3 being saturated with the same solution and the chloride penetrating all 

the surfaces, the total chloride content should be the same and uniform for all the samples. 

However, this has not been experimentally verified and the profiles, which appear in Figure 1 

show variability.  This can be accounted for by the concrete heterogeneity even though the 

specimens are laboratory samples. In the case of concrete used for bridges in a marine 

environment, sampling under the same conditions provides some significantly different 

assessments of chloride ingress and service life predictions. These differences are probably 

due to concrete variations in areas assumed to be homogeneous (Goltermann 2004). This error 

is assessed by conducting a test of porosity measurement, for which all other uncertainties 

(protocol and human errors) are negligible. Porosity can be considered as the key-factor 

affecting chloride penetration into concrete. If porosities are similar, the specimens can be 

considered as homogeneous. The porosities studied here are assessed using the water 

saturation method (Table 5). The scattering of the porosity being weak, we can consider that 

the samples are similar. The scattering of the measurements between the samples is quantified 

below in order to analyse its impact in comparison with other uncertainties. 
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The error eh, called human factor, is caused by the operator. It mainly occurs in the course of 

the different non-automated sample preparation steps or when using the testing and 

measurement devices within predefined and normalized quality requirements (NF in France or 

EN in Europe). The error eh due to the operator usually occurs during solution filtration steps 

or when pipetting for titration dosing, which must be carried out very thoroughly. The human 

factor can be assessed after selecting the variability sources. Both, training (laboratory) and 

experience appear to be key-factors. Thus, four operators with different experience in two 

different laboratories have been selected. The tests have been carried out three times in the 

same laboratory using samples S2 and S3: twice by operator O2 and once by operator O1 who 

is an expert on this experimental procedure. Sample S1 has been analysed only once by 

operator O2 in order to save extra powder for the tests in the other laboratory (LNEC). These 

tests have been carried out by Operators O3 and O4. Test results are displayed in Table 6 and 

presented by profiles in Figure 1. 

 

The three sources of uncertainties are considered to be independent and added up to obtain the 

total error: 

et = ep + es + eh  (4) 

The human error can lead, for instance, to the underestimation of the chloride content in a 

given sample in the case of a badly rinsed filter. In case of structure maintenance, an 

underestimation may mislead the manager and prompt a ‘do nothing’ decision although repair 

or protection is necessary. More generally, human errors do not lead systematically to the 

under or overestimation of the chloride content. Protocol error, however, leads to either over 

or underestimation. An overestimation leads to ‘False Alarms’ in terms of decision theory 

(Straub and Faber 2005; Rouhan and Schoefs 2003). Repair works are then planned when 

they are not fully needed, thus giving rise to additional costs. 

4.2 Data available for quantization of error 

The experimental campaign includes three samples (S1, S2 and S3) and four operators (O1, 

O2, O3 and O4) (Tables 3 and 6). Forty-two measurements have been performed with five 

points for each profile (Figure 1). According to the confidence interval of sampling 

theory, the statistical uncertainty due to a limited amount of data is quantified. If a 

conclusion can be drawn, then the available data are sufficient. Subsequently, we 

therefore show that the samples are adequate in quantity to demonstrate the main 
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statistical properties and to quantify probability distribution statistical estimates. The 

chloride content as a function of the distance to the surface of the samples, which have a 

maximum length of 2.5 cm, is presented in Figure 1. It can be recalled that all the surfaces of 

the cylindrical samples are in contact with the salt solution and that the specimens broke 

during the grinding step, thus reducing the profiles by 2 cm. No significant trend between the 

samples is visible along the depth axis. This observation confirms that the samples are 

homogeneous (no depth effect) and that each measurement carried out on a sample at 

different depths can be considered as a repetitively test, i.,e., a test with the same concrete in 

the same conditions. Operators O1, O2, on the one hand and O3, O4, on the other hand, have 

worked in their respective laboratory and used the same devices and products. 

When considering the three previous errors, the data are used as follows: 

- protocol error: The tests performed on the control sample S4 can be used to quantify part of 

the protocol error. The measurements carried out by O2, twice on S2 and S3 can also be used 

to quantify the protocol error because a single operator followed the same protocol.  

- sample error: The data from operator O2 are used to quantify the effect of the heterogeneity 

of samples because that same operator did all the measurements on S1, S2 and S3. 

- human error: The operator influence is analysed by comparing the results obtained with 

Sample 1 because three different operators O2, O3 and O4 carried out measurements on S1. 

 

5. Results 

 

5.1 Probabilistic modelling 

A probabilistic method is used to model uncertainties. The error is modelled using some 

random variables obtained from forty-two values. If insufficient information is 

available, other methods can be applied:  interval theory and fuzzy logic (Möller and 

Beer 2008). A probabilistic 3-D space is considered based on the assumption that ep, es and eh 

are independent random variables. From a theoretical point of view, this assumption is 

acceptable because the nature of the errors is different. From a statistical point of view, the 

limited amount of data cannot be used to investigate deeper this property using a factorial 

analysis (this may require further dedicated examination). Moreover, due to the under or 
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overestimations of the chloride content (cf. Section 4.1), the total error is modelled by adding 

a bias b and a zero mean variable , as:  

et = b +  (5) 

The bias is defined by: 

b = - C
r
 (6) 

with C
r
: the reference chloride content value (assumed to be the real value); 

 : the mean error, which is the average of the measured value   . 

We note that C
r
 is:  

- very close to 0 in the reference sample S4;  

- calculated for samples S1, S2 and S3 using the concrete porosities and the supposed chloride 

binding capacity. When the equilibrium is reached, the concrete solution within porosity is 

supposed to be concentrated in chloride to a volume of 30g/l. This allows for the calculation 

of the free chloride content in kg/kg of concrete for each sample by taking porosity values 

displays in Table 5 into account. The chloride binding capacity used here has been found in 

the literature (Francy and Francois 1998) on mortars casted using the same cement. This 

information permits the evaluation of the supposedly bound chloride content. Free, bound and 

total chloride contents are summarized in Table 7. The discrepancy observed between the 

maximum (S1) and the minimum (S3) values  is only 0.08 10
-3

 kg/kg of concrete. 

The fact that C
r
 is subjected to the condition ‘C

r
 ≥ 0’, we obtain the condition: b + ≥ 0. 

 

Assessment of bias b: 

Each component of et, starting with the protocol error, is now examined. Table 8 shows the 

values of C,  and b for S4. Although sample S4 is assumed to be free of chlorides, detection 

is made. This part of the protocol error is modelled using a deterministic bias, called bp. The 

bias is calculated as the mean value of the five chloride measurements carried out on sample 

S4. We obtain: 

 bp =  0.26 10
-3

 (kg/kg of concrete) (7) 

Sample S1, for which the bias includes the bias due both to operator and protocol is now 

considered. The results of all the operators are used. However, because only four 

measurements are available for each operator, it is not sufficient to highlight a significant 

difference between operators. Moreover, the results show a weak scatter of the standard 

e

e

e

e
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deviation between 0.12 10
-3

 for O2 and O3, and 0.19 10
-3

 for O4 but, since the 95% 

confidence interval around a theoretical value of 0.15 10
-3

 for four measurements is [0.08510
-

3
, 0.56 10

-3
], the scatter is considered negligible. Therefore, no significant correlation between 

the standard deviation and the operator experience or laboratory is found. They are considered 

as independent events of the same variable. Consequently, all the data obtained by the 

operators are gathered. Then, the global standard deviation of  is 0.14 10
-3

 and the coefficient 

of variation is approximately 9%. The bias b1 (notation of bias for S1) is the sum of the 

protocol plus human factor biases and is obtained from Equation (6). The result (-0.4 10
-3

 

(kg/kg of concrete)) is reported in Table 8, where sign ‘-’, for b, denotes an overestimation of 

the total chloride content.  

Assuming that protocol gives a bias bp of 0.26 10
-3

 (kg/kg of concrete), the bias bh due to the 

operator reaches -0.66 10
-3

 as: 

bh = b1 – bp = (bh + bp) – bp =  (-0.4 10
-3

) – (0.26 10
-3

) = -0.66 10
-3

 (kg/kg of concrete) (8) 

The other samples, whose results increase the size of the database (Table 6: 12 to 15 tests) are 

finally considered. The accuracy of the bias assessment is improved. Knowing the theoretical 

value of C
r
 for each sample, the values obtained with the three samples for bi and e i (i 

denotes the sample number) are computed and presented in Table 9. The discrepancies among 

the three biases are very small and stand within the range -0.4 10
-3

 and – 0.3 10
-3

. The 

statistical assessment error from twelve measurements, on the other hand, provides a 95% 

confidence interval of [-0.42 10
-3

 ; -0.31 10
-3

]. The bias mean value is selected and considered 

subsequently as the average value: -0.37 10
-3

.  

We thus obtain: b = -0.37 10
-3

 (kg/kg concrete); bp = 0.26 10
-3

(kg/kg of concrete); bh = -0.66 

10
-3

(kg/kg of concrete) 

 

Assessment of the zero mean error : 

The measurement error  is now assessed. As underlined, the gathering of the results obtained 

by different operators makes it possible to analyze the effect of the material heterogeneity 

using a larger number of tests (Table 6: 12 to 15 tests). For each sample, scattering includes 

errors due both to operator and protocol. On the basis of the value of b (Table 9), the sample 

of  is obtained from Equation 5. The standard deviation of  is 0.14 10
-3

 for samples S1 and 

S2 and 0.07 10
-3

 for sample S3, respectively. The coefficients of variation are 9%, 8% and 4% 

for samples S1, S2 and S3, respectively. 
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This discrepancy is small considering the small amount of data available (12 or 15) because 

the width of the 95% confidence intervals for the standard variation ranges between 0.06 10
-3

 

and 0.12 10
-3

. The 95% confidence intervals are [0.1 10
-3

 ; 0.24 10
-3

], [0.09 10
-3

 ; 0.21 10
-3

] 

and [0.047 10
-3

; 0.1 10
-3

] for S1, S2, S3, respectively. This result confirms the findings in 

Section 4.1 about es: the heterogeneity of this test is not a key factor in interpreting both bias 

and scatter. The error modelling is then obtained by gathering the forty-two tests. The 

standard deviation is then 0.12 10
-3

 with a higher confidence whereas the 95% confidence 

interval is reduced to [0.1 10
-3

; 0.16 10
-3

]. We note that a different reference value is 

considered for each sample by using the bias in Table 8 and when computing zero mean error.  

The  distribution is given in Figure 2 from forty-two values. The zero-mean distribution 

is not symmetrical. The classical assumptions on error distributions, normal or uniform 

(Sheils et al. 2012) are not suitable here. Using the maximum likelihood estimates (MLE) of 

parameters (Jöreskog 1967) for fitting the error distribution using a probability density 

function (pdf), a comparison between three pdf is carried out. Generalized Extreme Value 

(GEV), Student and Normal. The GEV is selected because of its non-symmetrical shape 

whereas Student and Normal are usually considered for modelling error of measurements. 

Maximum likelihood estimation results (log likelihood) are given in Table 10. The maximum 

value of MLE is obtained for GEV pdf whose expression is given in Equation (9). As shown 

in Figure 2, good fit to the distribution of experimental data and compliance with the 

asymmetry is provided. This pdf, therefore, proves to be the best choice. Its parameters (scale, 

shape and location parameters, respectively) are: [K=0.016; =9.3 10
-5

; =-8.4 10
-5

]. Here, 

K>0 and GEV is called type II, or Frechet, extreme value distribution (Kotz and Nadarajah 

2001). We obtain: 

 (9) 

with  

Analysis results are compared using a probabilistic model. The error directly calculated from 

the statistical results is obtained as the difference between the measured value  and the 

reference value as:  

et = - C
r
 (10) 

))1(exp()1(
1

)(
)/1()/11( KK

zKzKxf

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The experimental distribution is plotted (with bars) and fitted with an extreme value (EV) pdf 

(in dashed line) in Figure 3. Modelling, on the other hand, assumes that the error et is the 

addition of the bias (0.37 10
-3

) and the zero mean error  according to a GEV with the above 

parameters. We find: 

et =  - 0.37 10
-3

 (kg/kg of concrete) (11) 

A comparison of this model with the real distribution of error is carried out by adding the 

distribution curve obtained from the model in Figure 3 (full line). The model results appear to 

be consistent with the experimental data. This is the first time that the bias is identified and 

quantified and that the error is modelled with a non-symmetrical (GEV) pdf. This 

contribution will help to introduce a real model for maintenance updating and semi-

destructive testing optimization and to quantify the benefit over Non Destructive 

Testing. 

 

5.2 Effect on the probability of chloride detection  

When considering the corrosion of steel bars, two different probabilistic approaches are 

possible. The first one considers the corrosion as a stochastic process and aims to assess the 

probability of corrosion time (Mori and Ellingwood 1993; Sheils et al. 2012). The second 

approach is considered here. Its objective is to assess the probability of failure (Equation 2).  

In reliability analysis of reinforced concrete, it is generally computed as the probability that 

the residual steel area Ar,s can be lower than a critical area Acrit at time t. The critical area is 

either the percentage of acceptable loss of steel or the minimum area required to fulfill service 

or else the ultimate limit state of a structural component. The probability of failure is therefore 

expressed as: 

P(Ar,s(t)< Acrit) = P(Ar,s(t)< Acrit |C>Ccrit) . P(C>Ccrit) (12) 

The probability of systematic failure is called instantaneous probability of failure. Assume 

Ccrit is a deterministic critical chloride content, called detection threshold in the literature, that 

we want to detect. In this paper, it is considered as deterministic to avoid the introduction of 

an additional random variable and to focus on the analysis of the effect of the uncertainty of 

measurement. NF EN 206-1 standard suggests that the limit content of chloride ions by 

weight of cement be taken as 0.4% (NF-EN 206-1 2000), which represents 0.0005 kg/kg of 

concrete when considering the cement content. This value is the same than that used by 
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Goltermann (2004). We then define PGA-CI (Probability of Good Assessment of Corrosion 

Initiation-see (3)) as: 

PGA-CI =  P(C + et  > Ccrit | C > Ccrit) (13) 

where et is defined in (5) and C is the real value. This concept proves very useful for the risk-

based maintenance of existing structures (Breysse et al. 2009). Then, Equation (13) becomes: 

P(Ar,s(t)< Acrit) = P(Ar,s(t)< Acrit |C+ et >Ccrit) . PGA-CI. P(C > Ccrit) (14) 

If the model for b and is now know and by introducing Equation (5) into Equation (13), then 

the solution of the problem becomes:,  

PGA-CI (C) =  P(C+b+  > Ccrit | C > Ccrit) 

                   = P(b+  > Ccrit - C| C - Ccrit > 0)= b+  
(15) 

Figure 4 presents the evolution of PGA-CI with Ccrit-C.  The probability of detection of a 

chloride content of 0.0006 reaches 87%. C-Ccrit=0.0001 is represented by the coordinate point 

(0.0001, 0.8667) in Figure 4. We can conclude that the result is highly dependent on the value 

of the critical chloride content, which is a deterministic value here. This value is deeply 

dependant on the type of concrete and could be used as a probabilistic value in the future. 

6. Conclusions and future  

In marine or de-icing salt environments, chloride concentration is the main input factor 

considered by concrete structure operators in the decision chain. The chloride concentration 

value is currently the only rational decision aid-tool for repair strategies and planning of 

future control campaigns. However, the reliability of the measured values must be discussed 

and quantified to provide a truly rational decision aid-tool for repair or inspection planning. In 

order to address this problem, the determination of measurement errors on chloride 

concentration is the key factor. Errors depend mainly on the different steps of the protocol: 

grinding, preparation of powder, acid attack, dilution, concentration measurements.  

The paper addresses the problem by examining chloride concentration measurements in 

saturated samples carried out by four operators from two different laboratories. The three 

samples being saturated with the same solution and the chloride penetrating all the surfaces, 

the total chloride content should be the same and uniform with depth. 

fe (x)dx
C-Ccrit ;
C-Ccrit>0

+¥

ò
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The forty-two chloride content measurements are analysed in order to assess the total 

measurement error by considering three main errors (protocol error ep, sample error es and 

human error eh). The total measurement error is modelled using a bias and a zero mean error, 

well fitted by the Generalized Extreme Value probability density function. A value of the bias 

is also provided. Finally, the model results satisfactorily agree with the experimental 

results showing an unusual model: bias and non-symmetrical probability density 

function.  

The probability of detection of corrosion initiation is then assessed as a function of the margin 

between the critical concentration and the real concentration. We observe that if this margin 

does not exceed 0.0001 (by weight of concrete), the probability of detection is less than 86%. 

This lack of information will affect the decision of action by generating non-optimal 

(generally curative) maintenance or repair works. In order to improve our 

understanding and quantify the impact of assessment error in relation to perfect 

assessment, the modelled error discussed here can be introduced in the chloride ingress 

model as an additive variable. The propagation of this error with time will, indeed, 

altered the intervention dates of maintenance and repair actions. These timing changes 

will involve extra costs that will be quantified by undertaking a Life-Cycle-Cost analysis. 

The updating of probabilistic time-dependent degradation models with semi-destructive 

testing will be a challenge in the future with a key question: should the model be 

updated with a random variable that included significant error of measurement or 

should its use be limited to decision at a given time? 
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Figure 1. Total chloride profiles 
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Figure 2. Distribution of the zero mean error (epsilon) fitted with three pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution of error (e) fitted with EV and compared with model results (full line) 
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Figure 4. PGA-CI as a function of C-Ccrit 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

X: 0.0001

Y: 0.8667

C-Ccrit

P
o
D

-C
I

PG

A-

CI 



- 25 - 

 

Table 1. Chemical composition of cement  

Compounds mass % 

CaO 64.53 

SiO2 20.12 

Al2O3 5.03 

Fe2O3 3.12 

MgO 0.98 

K2O 0.98 

Na2O 0.16 

SO3 3.34 

Specific surface (m
2
/Kg) 382 

Density (-) 3.18 

Main compounds (Bogue’s composition) mass%  

C3S 63.49 

C2S 12.6 

C3A 8.09 

C4AF 9.8 

Gypsum 4.5 
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Table 2. Ordinary Portland Concrete composition 

 

 

  

Compounds Mix 

ingredients 

(kg/m
3
) 

Aggregate 10-14 mm 887,1
 

Sand (Loire) 0-4 mm 852,8 

Cement CEM I 52.5 215,7
 

Calcareous Filler 161,4
 

Total water 

Water to binder ratio (W/B) 

176 

0,47 
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Table 3. Operators experimental steps 

Sample S1 S2 S3 S4 

Solution 

immersion 

NaCl = 30 g/l 

KOH+NaOH 

NaCl = 30 g/l 

KOH+NaOH 

NaCl = 30 g/l 

KOH+NaOH 

NaCl = 0 g/l 

KOH+NaOH 

Grinding O2 O2 O2 O2 

Filtration 

+ Titration 

O2  

O3  

O4 

O1 

O2 (2 times) 

 

O1 

O2 (2 times) 

 

O2 
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Table 4. Initial chloride content provided by concrete components 

Compound Chloride 

content 

(from furnisher) 

Mix design  

(kg of compound/m
3
 of 

concrete) 

Chloride  

(kg of chloride 

/m
3
 of concrete) 

Chloride 

(kg of chloride 

/kg of concrete) 

Sand 0.065 

% (by weight) 

852.8 0.55432 2.41744.10
-4

 

Cement 0.01 

% (by weight) 

215.7 0.02157 0.09407.10
-4

 

 

Filler 0.002 

% (by weight) 

161.4 0.00323 

 

0.01407.10
-4

 

Tap water 0,18.10
-6

 

(kg/L) 

176 0.00003 

 

0.00013.10
-4

 

 

Total    2.52573.10
-4
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Table 5. Open porosity measured by water saturation 

Sample S1 S2 S3 

Water porosity (%) 14.3 13.8 13.7 
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Table 6. Available data (S: sample ; O: Operator) 

 

Sample 

Operator O1 O2 O3 O4 Total 

S1  -  4 4 4 12 

S2  5 10 - - 15 

S3  5 10 - - 15 

Total  10 24 4 4 42 
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Table 7. Free, bound and total chloride contents for samples S1, S2 and S3 

Chloride content 

(kg/kg of concrete) 

S1 S2 S3 

Free chloride 1.87 10
-3

 1.81 10
-3

 1.79 10
-3

 

Bound chloride 0.19 10
-3

 0.19 10
-3

 0.19 10
-3

 

Total chloride 

C 
r
 

2.06 10
-3

 2 10
-3

  1.98 10
-3
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Table 8. Values of bias due to both human and protocol errors  

 

Reference, 

error and bias  

(kg/kg of concrete) 

Source 

of 

error 

Protocol 

(S4) 

Protocol + 

Human factor 

(O1, O2, O3 

for S1) 

C 
r
  0 2.06 10

-3
 

e   0.26 10
-3

 1.66 10
-3

 

b  0.26 10
-3

 - 0.40 10
-3
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Table 9. Values of bias in case of heterogeneous samples (sample error) 

 

Reference, 

error and 

bias  

(kg/kg of 

concrete) 

Sample S1 S2 S3 

C 
r
  2.06 10

-3
 2 10

-3
 1.98 10

-3
 

e   1.66 10
-3

 1.7 10
-3

 1.6 10
-3

 

b  - 0.4 10
-3

 - 0.3 10
-3

 - 0.4 10
-3
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Table 10. Maximum likelihood estimates (MLE) for three pdf candidates 

Probability 

density function 

GEV Normal Student 

MLE 323 319 320 

 

 

 


