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Abstract—Licensed Shared Access (LSA) is a new sharing
approach that aims to optimize the use of 2.3-2.4 Ghz frequency
band in order to support the deployment of 5G systems. Under
LSA, Mobile networks Operators (MNOs) can share the 2.3-2.4
band with the incumbent of that band under some guarantees.
Those guarantees are mentioned in a license attributed by the
regulator. Using ascending auctions is a natural approach for
attributing licenses. In this paper, we show how to implement the
ascending version of Vickrey-Clarke-Groves (VCG) mechanism
in the LSA context, since that implementation may introduce
some computational complexity problems, we propose another
ascending mechanism called C-LSA based on the clinching
approach. To compare those two mechanisms, it will be much
more easier to compare its equivalent (in terms of allocations and
payments) one shot versions. Hence, we propose the equivalent
version of C-LSA. Finally we compare those ascending mecha-
nisms by comparing their one-shot versions. Simulations shows
that C-LSA is viable candidate for LSA.

I. INTRODUCTION

For fifth generation (5G) wireless networks, dealing with
mobile data traffic is challenging, traffic volume being ex-
pected to explode. At the same time, some licensed frequency
bands hold by governmental agencies are underutilized, lead-
ing to the emergence of the Licensed Shared Access (LSA)
idea [1], [2]. LSA is a new concept, proposed by the Radio
Spectrum Policy group (RSPG) in November 2011, which
aims to optimize the use of spectrum: the incumbents or the
owners of the 2.3-2.4 Ghz bandwidth can temporarily share
their spectrum with Mobile Network Operators (MNOs). Con-
trary to the traditional concept of sharing in which secondary
users (MNOs in the LSA context) have no guarantee for
accessing to the incumbent’s spectrum, under LSA the duration
and conditions of sharing are precisely defined beforehand
by the regulator via a license. Deploying an LSA system
requires the introduction of two new architectural blocks
called the LSA repository–basically a database containing
information about the LSA band such as conditions of sharing
and duration–and the LSA controller which controls the access
to the LSA bandwidth [2]. Several trials have been carried out
to show the applicability of the LSA concept1.

Since the objective of the LSA is to optimize spectrum
usage, spatial reusability (MNOs who do not interfere can use
the same spectrum bands simultaneously) should be leveraged.

1https://www.cept.org/ecc/topics/lsa-implementation

Spectrum reusability has been addressed in spectrum markets
in the last decade [3]–[6]; we will in particular consider a
scenario in which multiple base stations of different operators
compete for LSA spectrum at a defined period of time in a
particular geographical area. In this scenario, a mechanism
for attributing licenses needs to be adopted. A common
approach is to design an auction mechanism, due to the need
for information revealed by potential buyers. Designing an
auction mechanism here raises two major challenges: it should
take spectrum reusability into account, and should be truthful
(strategy-proof) i.e., each player should be incentivized to be
sincere regarding their willingness-to-pay for the good (LSA
spectrum in our context) independently of the bids of other
buyers. In general, players are expected to try to manipulate
the mechanism in order to maximize their profit, which may
hurt other players’ (including the auctioneer’s) interests. For
this reason designing truthful mechanisms is very important.

Several mechanisms have been proposed to address this
issue. In [3], [4], [7], authors have designed auction mech-
anisms for the case where there is only one spectrum block to
allocate. LSAA [7] is the first auction mechanism which was
proposed as candidate for the LSA context, it performs well in
terms of social welfare assuming truth-telling by bidders, but
sincere bidding is not an optimal strategy for bidders. In [8],
we modified the payment rule of LSAA to make it truthful.
In [6], we designed an auction mechanism for the case when
bandwidth is infinitely divisible. But reality lies between those
two extremes: spectrum can be split in several sub-bands or
blocks with a predetermined size, and in [9] an auction mech-
anism for allocating K identical (interchangeable) resource
blocks was proposed.

In this paper, we again suppose that the auctioned LSA
spectrum is composed of K identical blocks, but contrary to
the mentioned previous work which are sealed-bid one-shot
auctions, we focus on “ascending auctions” where information
is revealed by bidders during some convergence phase. As-
cending auctions have been used with great success to auction
spectrum and they are preferred over sealed auctions [10].
Compared with one-shot auctions, ascending auctions have
several advantages: they preserve the privacy of the winning
bidder(s) because the winner(s) do(es) not reveal his/their
valuation(s). Also, they give bidders the opportunity to adjust
their valuations over the convergence phase. This benefit of
price discovery is ignored in one-shot auctions, which as-
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sume that each bidder perfectly knows his valuation. Another
advantage is the transparency because each bidder sees the
evolution of the auction. There are several types of ascending
auction mechanisms, in this document we first focus on two
mechanisms that achieve the outcome of the Vickrey-Clarke-
Groves (VCG) auction [11]–[13], known to be jointly truthful
and efficient (the total value extracted from the resource is
maximal). We start by presenting the model of Mishra and
Parkes [14], who introduce a new concept called “Universal
Competitive Equilibrium” (UCE). Their mechanism can be
applied for general valuations (items may be different) and
yields the same outcome as the VCG mechanism. The other
mechanism has been developed by Ausubel [15], based on
the “clinching approach” which we detail in Section IV-B,
can be applied when items are identical. We investigate those
two mechanisms under the LSA concept. The rest of the
paper is organized as follows: in Section II we present those
two mechanisms. Section III introduces our LSA model, and
Section IV present our first contributions, namely adaptations
of the UCE (U-LSA) and the clinching mechanisms (C-LSA)
to the LSA context, i.e., encompassing spectrum reusability.
We then show in Section V that each of those mechanisms
has a one-shot auction equivalent, which helps us establish
some key properties of the studied mechanisms. Finally, the
performance of those schemes are compared through simula-
tions in Section VI, and we conclude and give some directions
for future work in Section VII.

The contributions of this paper can be summarized as
follows:

1) We adapt the UCE auction to the LSA context (tak-
ing into account spectrum reusability), and highlight
some computational complexity issues with the resulting
mechanism (U-LSA), even when auctioned items (spec-
trum blocks) are identical.

2) To deal with computation complexity of UCE, we pro-
pose to adapt the clinching approach by proposing a new
ascending mechanism which we call C-LSA.

3) We propose a new one-shot mechanism that is equivalent
to C-LSA, and use it to establish some properties of C-
LSA in terms of truthfulness and revenue guarantees.

4) We compare U-LSA with C-LSA through simulations,
by comparing their equivalent one-shot versions, and
show that C-LSA yields in most cases much larger
revenues (with a multiplicative factor between 5 and
10) for a very limited cost in terms of resource usage
efficiency (around 4%).

Hence we think our proposed mechanism C-LSA is a viable
candidate for LSA spectrum allocation and pricing applied in
a wireless 5G network.

II. RELATED WORK: TWO EFFICIENT ASCENDING
MECHANISMS

In this section, we summarize some desirable properties and
present two ascending auction mechanisms from the literature
known to be equivalent to VCG under different scenarios: the
first mechanism is proposed by Mishra and Parkes and can
be applied for general valuations (items may be different),

and the second applies when items are identical and valuation
of a player for an extra item decreases with the number of
items obtained. Note that both mechanisms work only under
the following restrictions which are standard in the literature.

1) Private valuations: Each player i is the only one knowing
his valuation vi(S) ≥ 0 for each bundle of items S.

2) Free disposal: for each player i and every bundles S and
T , S ⊂ T ⇒ vi(S) ≤ vi(T ).

3) Quasi-linear utility: The utility of a buyer or bidder i
is vi(S) − pi(S) where pi is the price paid by buyer i
when obtaining the bundle S .

4) Zero seller valuations: The seller values the items at
zero. His utility is his revenue which is the total payment
of buyers.

We moreover assume (without much loss of generality, since
one can select the monetary unit) that all valuation values are
integers.

A. Desirable properties of an auction mechanism

Here we summarize the most frequently used desirable
properties of an auction mechanism [16], [17]:

1) Social welfare maximization (also referred to as effi-
ciency): Suppose there are N players, social welfare
SW is defined as the sum of all utilities including the
regulator (whose utility is his revenue)

SW =

N∑
i=1

(vi(S)− pi(S)) +

N∑
i=1

pi(S) =

N∑
i=1

vi(S)

2) Truthfulness: this property means that bidders’ best
strategy is to behave sincerely, i.e., lying about one’s
preferences is not beneficial. The strongest version is
when truth-telling is a dominant strategy, but it can also
be a (weaker) ex-post Nash equilibrium strategy : When
truthful bidding is an ex-post equilibrium, each player
knows that bidding truthfully is a best strategy if all
other players also bid truthfully and without knowing
the other players’ valuations [18].

3) Maximize the revenue of the seller which is the sum of
payments of all buyers.

B. Mishra and Parkes’ UCE mechanism

Consider N players and a set of different items I =
{1, ...,K}, and denote by Ω = {S ⊆ I} the set of all
bundles of items. Mishra and Parkes [14] define an ascending
auction–which we will call UCE–as a price path that starts
from round 0 with vector price P 0 and ends at some round T
with vector price PT , and develop an ascending auction that is
equivalent to the VCG mechanism by introducing the concept
of Universel Competitive Equilibrium (UCE). The price vector
P t at each round t is of dimension N2K (each player i
faces a price vector P t

i of 2K elements, one for each bundle),
and is therefore non-anonymous (each player sees a different
price for the same bundle). Before presenting the auction, we
introduce some necessary notations and definitions.

1) Notations and definitions for UCE:
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a) Feasible allocation: An allocation is a vector of
bundles on buyers, the set of feasible allocations is denoted
by X.

b) Demand set: The demand set of a player i, dti at round
t is defined as the set of bundles that maximize his profit at
price vector P t

i , i.e., mathematically,

di(P ) := arg max
S∈Ω

(vi(S)− Pi(S)) .

Note that di(P ) can contain several elements if the player
has several utility-maximizing bundles. Each player reports
his demand set at each round; if a buyer demands the empty
bundle, then this player is called inactive, and must receive
a zero utility from any obtained bundle, i.e., Pi(S) ≥ Vi(S)
∀S ∈ Ω.

c) Supply set: The supply set is the set of allocations
that maximize the payoff of the seller, which is the sum of
payments of all players at price P :

L(P ) := arg max
X∈X

∑
Pi(Xi)

Note that those are not the real paid prices: the price vector
aims at eliciting preference revelation, but each player will
have a discount at the end of the auction. The final payment
by each player is indeed defined in [14] as:

pi = Pi(S)−
(

Π(P )−Π(P−i)

)
︸ ︷︷ ︸

discount

, (1)

where Π(P ) is the sum of prices (based on P ) of players for
the final allocation, and Π(P−i) is the sum of payments of all
players when i is absent (i.e., for a new revenue-maximizing
allocation ignoring i).

Definition 1. Competitive Equilibrium (CE): a price P and an
allocation X are a competitive equilibrium (CE) if X ∈ L(P )
and Xi ∈ di(Pi) for every buyer i, i.e., for this price the
allocation both maximizes revenue and satisfies each buyer.

Definition 2. Universal Competitive Equilibrium (UCE): a
price P is a UCE if it is a CE and the projection of P on every
marginal economy (that is, the same situation but removing
one player: in total there are N marginal economies) is a
CE. This means that we can always satisfy all buyers while
maximizing the revenue of the regulator after excluding any
individual player.

Achieving a universal competitive equilibrium price is very
important because as it was proven in [14], Vickrey payments
can be computed from P if and only if P is a UCE price
vector.

We illustrate these notions using an example with two items
(A and B) and three players having the following valuations:v1(A) v1(B) v1(A,B)

v2(A) v2(B) v2(A,B)
v3(A) v3(B) v3(A,B)

 =

4 0 4
0 5 5
0 2 4


We suppose that P1(∅) = P2(∅) = P3(∅) = 0, consider

the price vector P =

2 0 2
0 2 2
0 2 4

 . The player demands

are then d1(P ) = {A, {A,B}}, d2(P ) = {B, {A,B}} and
d3(P ) = {∅, A,B, {A,B}}. In this example (P,X) –where
X is the allocations that assigns item A to player one and item
B to player two– is a CE equilibrium for the main economy
because the seller can maximize his revenue and satisfy the
players. However, after excluding player one, P is not anymore
a competitive equilibrium in the resulting marginal economy
because maximizing revenue implies allocating both items to
player three, in which case player two is not satisfied.

On the other hand, the price P =

2 0 4
0 4 4
0 2 4

 is a universal

competitive equilibrium: in the main economy composed by
all players, the seller can maximize his revenue (6) while
satisfying all buyers by allocating item A for player one and
item B for player two. In addition:
• this still holds in the marginal economy where player

three is removed;
• in the economy composed by player two and three,

revenue is maximized by allocating both items (or only
item B) to player two, both players having no better
option;

• similarly in the economy composed by player one and
three, the seller can allocate both items to player one.

Now applying (1), we get the paid prices p1 = 2−(6−4) =
0, p2 = 4− (6− 4) = 2, and p3 = 0.

2) The UCE auction steps: We now explain how the UCE
auction can be implemented in practice.

The auction starts with all prices set to 0 in P 0. At each
round t, the seller asks player’s demands for the price vector,
and checks whether a Universal Competitive Equilibrium is
reached. If it is not the case, a subset of active players (i.e.,
not having ∅ in their demand set) is selected and all the prices
of their demand sets are increased by one unit in the next price
P t+1. How to choose this subset opens some trade-offs, larger
subsets speeding up the convergence while possibly increasing
the communication overhead and the revealed valuations of
players. An example of choosing that subset is given in Section
IV. We can summarize the auction steps as follows:

1) At every round t, each buyer reports his demand set for
the price vector P t. Players should respect two activity
rules:
• Round Monotonicity: for every buyer di(P

t) ⊂
di(P

t+1)
• Bundle Monotonicity: if S ⊂ T and S ∈ di(P

t)
then T ∈ di(P t).

Note that these rules are satisfiable because valuations
are integers and prices only increase by one unit (or
zero) between t and t + 1 for bundles in di(P

t), and
never increase if ∅ ∈ di(P t).

2) The seller computes the supply. If the situation is not an
UCE, the auctioneer chooses a set of players who will
see a price increase at each demanded bundle.

3) The auction ends when a UCE price vector P is reached;
then a CE allocation is chosen, i.e., revenue is maxi-
mized and every buyer gets a bundle from his demand
set.
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4) Each buyer is charged an amount pi computed from the
final price P , applying (1) for the chosen allocation.

In the next subsection, we present the clinching auction,
which is another way to reach an efficient allocation, in
the specific case of identical items and decreasing marginal
valuations. Contrary to the previous mechanism in which
players report their demand set, in this auction, since items
are identical, each player just reports the number of blocks
he wants. Also, the payment of each player is computed
dynamically during the auction.

C. The clinching auction

The clinching auction is an ascendant auction for K ho-
mogeneous goods, where bidders have decreasing marginal
valuations: the willingness-to-pay for an extra item decreases
with the number of items already obtained. At each round
t, the auctioneer declares a price pt and bidders respond by
asking for a quantity (at each round the demanded quantity
can not be higher than the demanded quantity in the previous
round) at that price, the price increasing (in general we can
increment by ε > 0 but here with integer valuations we take
pt+1 = pt + 1) until demand is no greater than supply K.
Bidders’ payments are computed during the auction: an active
bidder clinches (obtains) an item at price p if the demand of
the other players at that price is less than the supply. The seller
computes two quantities namely cumulative clinch and current
clinch, defined as follows.The cumulative clinch Clti of player
i at round t is defined as:

Clti = max{0,K −
∑
j 6=i

dtj}, (2)

with dtj the demand of player j at round t. The increment of
the obtained blocks is called the current clinch at round t of
player i, and denoted by clti:

clti = Clti − Clt−1
i . (3)

When the auction ends, each bidder i obtains a quantity equal
to his cumulative clinch Cli, and his payment pi is:

pi =

T∑
t=0

ptclti. (4)

An illustrative example is provided in Table I, with three
items, and three players with respective marginal valuations
{6, 4, 0}, {5, 3, 2}, {2, 1, 0}. (Please note that we will suppose
that players are not willing to pay a price per block equal to
the valuation of that block, as an example if player one gets
one block for a price pt = 6 then his utility is zero, hence we
will suppose that for pt = 6 player one will not demand any
block i.e., his demand is zero.)

For p = 2, the sum of demands of player two and three is
equal to 2, hence, cl21 = 1 − 0 = 1, player one clinches his
first block at price 2. Similarly, player two clinches his block
at the same price. At p = 3, cl31 = 2 − 1 = 1, thus player
one clinches his second block. Finally the auction concludes
at price p = 3 (d1 + d2 + d3 = 3), player one obtains two
blocks and pays 2 + 3 = 5 and player two obtains one block
and pays 2.

Round 0 1 2 3
Price 0 1 2 3

Total demand 7 6 4 3 = K

d1 2 2 2 2
Clt1 0 0 1 2
clt1 0 0 1 1
p1 0 0 2 2+3
d2 3 3 2 1
Clt2 0 0 1 1
clt2 0 0 1 0
p2 0 0 2 2
d3 2 1 0 0
Clt3 0 0 0 0
clt3 0 0 0 0
p3 0 0 0 0

TABLE I: An example of clinching auction for K = 3 items.

III. SYSTEM AND BIDDER MODEL

In this section, we present the LSA system model and we
detail preferences of base stations and the regulator.

A. Grouping operators before the auction

We consider N base stations of different operators in
competitions over K identical blocks. We intend to lever-
age spacial reusability: two base stations can use the same
bandwidth simultaneously if they do not interfere with each
other. Following the approach of [3], [4], [6], [7], [19], the
competition between the N base stations is transformed into
a competition between M groups in such a way that two
base stations in the same group h (the set of base stations
in that group is denoted by gh) do not interfere. While the
group formation has a non-negligible impact, in this paper (as
in [3], [4], [6], [7] that also rely on groups) we assume that the
groups are formed by the auctioneer, and advertised to bidders
before the auction takes place. We indeed focus here on how
to allocate the resource among groups, based on the submitted
bids.

B. Preferences of base stations

We assume that each base station i has a private valuation
vi vector of size K, each element vi,k representing the
willingness-to-pay for one extra resource block. As in [20], we
suppose that the value of an extra block, for a base station,
decreases with the number of blocks already obtained. This
corresponds to a discretization of concave valuation functions
for spectrum [20], as illustrated in Figure 1. Finally, we adopt a
quasi-linear utility model: if a base station i obtains ni blocks
and pays pi, its utility then is

ui =

ni∑
n=1

vi,n − pi,

In particular, a base station obtaining no block gets a utility
equal to zero. We denote by Vi,ni

the valuation of player i for
ni blocks.

Vi,ni
=

ni∑
n=1

vi,n (5)
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Fig. 1: An example of a concave valuation function of obtained
spectrum, and the corresponding block valuations vi,n for
player i.

IV. PROPOSED ASCENDING AUCTION MECHANISMS FOR
LSA

In this section we show how to adapt the UCE and clinching
auction schemes to the LSA context.

A. Adapting the UCE auction to the LSA context

To implement the UCE auction mechanism, we need to take
into account a set of feasible allocations different from the
original design since the allocation will be made for groups
instead of individual bidders while bids are individual.

1) LSA-UCE rules: We denote by Xg the set of feasible
allocations, that assign to each player i a bundle Xg

i such that
Xg

i = Xg
j if players i and j are in the same group and Xg

i ∩
Xg

j = ∅ otherwise. Note that all the demonstrations of [14] are
still valid when replacing X with Xg so the truthfulness and
social welfare maximization properties can be easily proved.
The auction steps are exactly the same as those presented in
Section II-B, except that the allocation is made for groups i.e.,
players of the same group obtain the same bundle. We illustrate
in the following how we can adapt Mishra and Parkes model
in the LSA context.

Note that the price vector for each player is composed by K
components instead of 2K (since items are identical), the first
component representing the price paid for all blocks and the
Kth components represent the price paid for only one block.

An example is provided in Table II. At each round, follow-
ing a proposition in [14], we take a minimum set of buyers who
cannot be jointly satisfied until a CE, i.e., until Round 7. Then
we pick one of the active players (those having strictly positive
utilities) until a UCE is reached, at Round 9: in the marginal
economies where one player of Group 1 is removed, revenue
is maximized by giving one block to each player, and if player
four is removed each player can get two blocks. Finally, Group
1 obtains two blocks since this maximizes revenue, and the
payments yield: p1 = 3− (9− 7) = 1, p2 = 3− (9− 7) = 1,
p3 = 3− (9− 8) = 2, and p4 = 0− (9− 9) = 0.

2) Computational complexity problems with U-LSA: Even
if the original problem of computing an optimal allocation is
not NP-hard when we know the players’ valuations, imple-
menting UCE may involve having to solve NP-hard problems,
which prevents its use in practice.

Round
Group 1 Group 2

buyer 1 buyer 2 buyer 3 buyer 4
Vi,2, Vi,1 5, 3 6, 4 6, 3 7, 6

0 Price 0, 0 0, 0 0, 0 0, 0
Utility (5), 3 (6), 4 (6), 3 (7), 6

1 Price 1, 0 0, 0 0, 0 1, 0
Utility (4),3 (6),4 (6), 3 (6), (6)

2 Price 1, 0 0, 0 1, 0 2, 1
Utility (4), 3 (6),4 (5), 3 (5), (5)

3 Price 2, 0 0, 0 1, 0 3, 2
Utility (3), (3) (6), 4 (5), 3 (4), (4)

4 Price 2, 0 1, 0 1, 0 4, 3
Surplus (3), (3) (5), 4 (5), 3 (3), (3)

5 Price 2, 0 1, 0 2, 0 5, 4
Utility (3), (3) (5), 4 (4), 3 (2), (2)

6 Price 2, 0 2, 0 2, 0 6, 5
Utility (3), (3) (4), (4) (4), 3 (1), (1)

7 Price 2, 0 2, 0 3, 0 7, 6
Utility (3), (3) (4), (4) (3), (3) (0), (0)

8 Price 2, 0 3, 1 3, 0 7, 6
Utility (3), (3) (3), (3) (3), (3) (0), (0)

9 Price 3, 1 3, 1 3, 0 7, 6
Utility (2), (2) (3), (3) (3), (3) (0), (0)

TABLE II: Example of an UCE auction in the LSA context
for two resource blocks and two groups. At each round, bidder
utility in parentheses indicate the demand sets (as example,
in the round 0 player one demands two blocks because he
maximizes his utility if he obtains two blocks), and grayed
cells indicate the bidders whose prices (of the demand set)
will be raised by one unit (as example, in the round 0 player
one demands two blocks and player four demands two blocks,
we choose them as minimum set, thus prices of their demanded
set will increase in the next round.

Proposition 1. Even when blocks are identical, an implemen-
tation of UCE can lead to the regulator having to solve NP-
hard problems.

Proof. We show that the step of finding a revenue-maximizing
allocation can correspond to solving a knapsack optimization
problem with N items, item i (i = 1, ..., N) having weight wi

and value ṽi and maximum allowed weight W . Note that we
assume W <

∑
i wi otherwise the problem is trivial.

We consider an instance of the previous problem and let us
reduce it to our problem:
• The maximum allowed weight W is the number of blocks
K to allocate.

• Each item of weight wi and value ṽi corresponds to a
group which contains only one player with vector of
valuations vi such that vi,n = ṽi1n≤wi , this means that
the valuation of player i for ni blocks is niṽi if ni ≤ wi

and wiṽi if ni ≥wi.
Then, as long as its price is below ṽi, player i will keep asking
for being allocated wi blocks or more, and the corresponding
prices will be of the form “pi for wi blocks or more, and
0 otherwise”. Since the algorithm does not specify whose
(unsatisfied) bidder prices will be raised, it can happen that
the prices of each bidder i reach ṽi. As an example suppose
that W = 6 and let us consider an item of weight wi = 3
and valuation ṽi = 5, this object corresponds to a player with
vi = (5, 5, 5, 0, 0, 0) thus Vi = (15, 15, 15, 15, 10, 5), the price
starts with (0, 0, 0, 0, 0, 0), player i keep asking for 3, 4, 5 or 6
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blocks, thus the price can achieves (5, 5, 5, 5, 0, 0). Since the
algorithm does not specify whose (unsatisfied) bidder prices
will be raised, it can happen that the price pi of each bidder
i reaches ṽi, and finding an allocation maximizing revenue is
equivalent to solving the knapsack problem. 1

Thus, we propose in the following mechanism with a
simpler allocation based on the concept of clinching.

B. Adapting the clinching mechanism to the LSA context: C-
LSA

In this section we study the possibility of implementing the
clinching approach in the LSA context, through a mechanism
that we call C-LSA.

1) C-LSA rules: As in the initial clinching auction, the
auctioneer broadcasts a per-block price P starting with P = 0
(to simplify notation we write P instead of P t), each group h
responds with its demand Dh(P ), that is, a number of blocks
the group is willing to buy at that price, we describe later on
how to compute such demand. The auctioneer keeps increasing
P by one unit until the sum of demands of all groups is
equal or below K. To perform clinching (decide on blocks
allocation), we use the same model as before but adapted for
groups: the cumulative clinch Clth of group h is then defined
as:

Clh(P ) := max{0,K −
∑
j 6=h

Dj(P )}. (6)

As in the original scheme, the current clinch at time t for
group h is the increment of Clh.

clh(P ) = Clh(P )− Clh(P − 1). (7)

The payment of each group h is:

Ph =

T∑
t=0

P tclh(P ). (8)

At each round, if group h obtains a block at price P t then he
pays P t. An overview of the clinching approach for groups
is presented in Fig.2. Please note that this is the price paid
by the group, the price paid by each player belonging to such
group and the computation of each group’s demand is defined
in the following.

To apply (6) the demand Dh(P ) of each group h at price
P needs to be defined. We define Dh(P ) as the maximum
number of blocks that a subset of players in group h are willing
to buy if they equally share the unit price P . Mathematically,

Dh(P ) = max{n : ∃ ω ⊂ gh and r ∈ R s.t.
∀ i ∈ ω di(r) = n and r|ω| = P}.

Thus, we have to know demands of players in order to compute
groups demand.

1From Isabel: pas assez clair pour moi

P = P + 1

Compute demands
of all groups
at price P

Operate clinching Can we conclude
the auction?

Yes

No

Exit

Enter with

P = 0

Fig. 2: Overview of the clinching approach for groups

2) Deriving group demands in C-LSA: The demand Dh(P )
can be obtained by requesting demands from individual group
members. We propose to introduce a price ph per group h, and
ask each player i to reveal his demand di(ph) for that price.
As shown in Fig. 3 We keep increasing ph, (ph = ph + 1)
until we can compute Dh(P ) i.e.,find the maximum number
of block n, the subset w and the price r. If each player reports
his demand truthfully, then di(ph) = max{n s.t vi(n) > ph},
we have supposed that player i is not interested on paying a
price equals to his valuation for a block. Note that we can
derive the vector of valuations of player i from his demand:
if di(ph) = n and di(ph + 1) = n− 1 then vi(n) = ph + 1.

Can we compute
the demand
of group h
at price P ?

Each player
of group h
reports his

demand for ph

ph = ph + 1

No

Yes

Fig. 3: Relation between P and ph

The following simple example illustrates the process of
collecting individual demands and deriving group demands.

Example 1. Consider K = 4 blocks, and one group (say,
group 1) with 3 players having the following valuations v1 =
{9, 7, 6, 5}, v2 = {7, 7, 5, 2}, and v3 = {6, 3, 3, 2}.

To compute D1(P ) for P = 1, we start with p1 = 1 and
ask players their demand at p1. All players are willing to buy
4 blocks at that price, hence we know that D1(P ) = 4 as long
as P ≤ 3, each player paying a unit price r = P/3 ≤ 1.

For P = 4 we need to ask individual demands at p1 = 2.
Truthful answers give d1(2) = 4 and d2(2) = d3(2) = 3, so
we know that D1(P ) = 4 as long as r = P/3 < 2, i.e., when
P ≤ 5.

For P = 6, we know from the responses for p1 = 2 that
D1(P ) ≥ 3, since all three players are interested to buy 3
blocks at a unit price 6/3 = 2. But possibly D1(P ) = 4, if
player one is willing to buy 4 blocks at a unit price 6. So
we increase p1 and ask players their demand until either 6 is
reached or d1(p1) < 4. The latter occurs first, for p1 = 5,
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which leads to the conclusion that D1(6) = 3 (each player
paying 2).

Following that process, we derive the group demands
D1(P ) = 3 for P = 7, 8, 9, D1(P ) = 2 for 10 ≤ P ≤ 13,
D1(P ) = 1 for 14 ≤ P ≤ 17, and D1(P ) = 0 for P ≥ 18

C. The working of C-LSA

We now put together C-LSA rules and computation of
demands to build the complete C-LSA process. Its working is
detailed in Fig. 4 and Algorithm 1: at each price P and for each
group h, we keep increasing ph until being able to compute
Dh(P ), then we operate clinching (perform allocation); and
we increment P until we can conclude the auction i.e., the sum
of demands of all groups is below or equal to the capacity K.

Can we compute
the demand
of group h
at price P ?

P = P + 1

Enter with

P = 0

Each player
of group h
reports his

demand for ph

ph = ph + 1

Can we compute
the demand

of all groups?

No

Yes
No

Take a group h
whose demand

at P is unknown

Yes

Operate clinching

Can we conclude
the auction?

Yes

Exit

No

Fig. 4: C-LSA: applying the clinching approach in the LSA
context

Through the following example we illustrate the complete
mechanism.

Example 2. Consider three groups and K = 4 blocks,
the first group is composed by three players, the second by
two and the third by one player, with the following valuation
vectors:
• in the first group: {9, 7, 6, 5}, {7, 7, 5, 2}, {6, 3, 3, 2}.
• in the second group: {7, 6, 4, 3} {9, 8, 5, 2}
• in the third group: {13, 10, 3, 1}

At each P , we compute the demand of all groups (as we did
before in the previous example), until total demand gets equal
to or below K. The details for each round are shown in Table
III. We conclude that the auction stops at P = 12 (sum of

Price 1 2 3 4 5 6 7 8 9 10 11 12
D1 4 4 4 4 4 3 3 3 3 2 2 2
D2 4 4 4 3 3 3 3 2 2 2 2 1
D2 3 3 2 2 2 2 2 2 2 1 1 1

TABLE III: Demand and price evolution for Example 2.

Algorithm 1 C-LSA allocation and pricing

Set P = 0
Set ph = 0 for each group h
Set Cl0h = 0 for each group h
Set Dh(P ) = K for each group h

while
M∑
h=1

Dh(P ) > K do

P = P + 1
get-demand-at-P=False
while get-demand-at-P==False do

if demands of all groups can be computed at price
P then

get-demand-at-P=True
Perform clinching

else demand of some group h cannot be computed
ph = ph + 1
Ask bidders in group h their demand at ph

end if
end while

end while

demands equals to 4):
1) The first and the second group clinch their first block at

P = 10. Each player of the first group obtains that block
and pays 10

3 . Each player of the second group pays 10
2 .

2) At P = 12 the first group clinches its second block and
the third group clinches its first block. Player one and
two of the first group pay 6 each one for their second
block (player three will not obtain that block because he
is not willing to pay 4 for a second block). The player
of the third group pays 12 for his first block.

Note that our proposed clinching approach is not equivalent
to VCG, as the clinching approach presented in Section II was.
Indeed, suppose we have two groups and one block, the first
group counting two players with equal value 5 and the second
group with one player with value 2. Then implementing VCG
means that each player of the first group obtains that block and
pays zero. Having an equivalent clinching mechanism would
imply that group one clinches that block when P = 0, which
is impossible because when P = 0 the demand of the second
group is one.

V. EQUIVALENT ONE-SHOT AUCTIONS FOR U-LSA AND
C-LSA

We now introduce a new One-Shot auction mechanism,
which we will call OS-LSA, and which will turn out to be
equivalent to C-LSA. The equivalent one shot version will
then allow as to probe differnt properties of C-LSA.

A. VCG and UCE

As was mentioned before, UCE is an ascending implemen-
tation of the VCG mechanism. VCG allocates blocks in a way
that maximizes social welfare and charges each player i with
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the loss of declared welfare his presence incurs on others. If we
take the example provided in Table II , when player 1 is absent
SW=13 (each group obtains one block) and when he is present
the social welfare without counting him is 12 (player one and
two obtain two blocks) thus: pVCG

1 = 13− 12 = 1. The other
VCG payment are pVCG

2 = 12−11 = 1, pVCG
3 = 13−11 = 2,

and pVCG
4 = 17 − 17 = 0. We obtain the same payments

with UCE. In the following, we illustrate the equivalence
between VCG and UCE. To implement a mechanism which
is equivalent to VCG means (Fig. 5):

1) Achieving an efficient allocation. For UCE we reach an
efficient allocation by reaching a competitive equilib-
rium (CE).

2) Preserving truthful telling. We preserve truthful telling
for UCE by applying two activity rules presented in
Section IV.

3) Charging each player his Vickrey payment. For UCE,
we can compute Vickrey payment of each player after
reaching an universal competitive equilibrium (UCE)

Activity rules Truthfulness

Universal
Competitive
Equilibrium

Vickrey payment

Competitive
Equilibrium

Efficient
allocation

Fig. 5: Analogy between VCG and UCE

B. OS-LSA: a one-shot equivalent to C-LSA

Mirroring the relationship between one-shot and ascending
auctions, we now introduce a new one-shot mechanism, OS-
LSA. We first describe the mechanism’s rules, and then show
its equivalence with C-LSA.

1) Bidding, allocation and pricing rules: In OS-LSA, we
require each base station, which belongs to one and only one
group, to submit a bid vector bi composed of non-increasing
components, the n-th element bi,n (n ≥ 1) representing the
declared willingness-to-pay of base station i for an n-th block,
if it already obtained n− 1 blocks. After collecting bids, and
for each group h (with set of players gh), we sort the bids of
its players for their n-th block in a non-increasing order. We
then construct the group-bid vector Bh = {Bh,1.., Bh,K} as
follows:

Bh,n = max
i∈gh

(
bi,nrank

(
bi,n
))
. (9)

Here Bh,n represents the bid of group h for its n-th block,
which can be interpreted as the maximum amount that a subset
of players of group h can agree to equitably share to obtain
an n-th block.

Considering allocation, intuitively, since groups are inde-
pendent (there is no player in common), given the group bids,
in order to maximize social welfare, blocks should be allocated
to the highest K bids among the M ×K bids.

Finally, the payment rule is inspired by VCG. We first
denote by Ch the (nondecreasing) vector of competing bids
facing group h, i.e., Ch is composed by the highest K bids
of all groups but group h, sorted in an ascendant order. From
our allocation rule, the number of blocks that a group h wins
is the number of bids in Ch it defeats. We propose that a

group h obtaining j blocks pays
j∑

n=1
Ch,n. More specifically,

we propose that for the n-th block obtained by group h, a
subset of its players pays Ch,n equitably, and we choose as
set the largest subset of players in the group such that the price
paid by each for each obtained block is not greater than his
declared valuation for that block. Therefore, we define:

jn = max {rank(bi,n), i ∈ gh and rank(bi,n)bi,n ≥ Ch,n} ;

where rank(bi,n) is the rank of bi,n among bids of players in
group h (to which i belongs) for their nth block. Our proposed
payment rule is then that each player with rank below or equal
to jn pays Ch,n/jn, players with rank above jn will not get
that block and will not pay for it.

Let us now run our allocation and pricing rules on a simple
example, for illustration and clarification purposes.

Example 3. We take the same configuration as for example
2. Following (9), for computing groupbid vector for the first
group,B1, we have:
• B1,1 = max{9× 1, 7× 2, 6× 3} = 18
• B1,2 = max{7× 1, 7× 2, 3× 3} = 14
• B1,3 = max{6× 1, 5× 2, 3× 3} = 10
• B1,4 = max{5× 1, 2× 3} = 6

Thus, B1 = {18, 14, 10, 6}. Similarly B2 = {14, 12, 8, 4}
and B3 = {13, 10, 3, 1}. Also, the sets of highest bids
from competing groups (Ch) are, following our definition,
C1 = {10, 12, 13, 14}, C2 = {10, 13, 14, 18} and C3 =
{12, 14, 14, 18}. Ranking all groupbid in a descending order,
we obtain that the first group is allocated two blocks, priced
as follows.
• For the first block, the group pays 10. Since each player

is willing to pay at least 10
3 for his first block, then all

players get that block and each one pays 10
3 for it.

• For the second block of group 1, group one pays 12,
player 3 will not pay 4 for this block, only player 1 and
2 get the block and each one pays 6.

The second group obtains one block and pays 10, with each
player paying 5. Finally, the third group obtains a block and
pays 12.

2) Equivalence with C-LSA: We establish in the following
the equivalence between the one shot auction OS-LSA and the
ascending auction C-LSA.

Proposition 2. Any instance of C-LSA can be mapped from
its history to an instance of OS-LSA that generates the same
outcome via an appropriate mapping of demands into a
bids vector. The opposite direction is also true i.e., any OS-
LSA outcome can be obtained in C-LSA via an appropriate
mapping of bids vector into demands.

Proof. In fact, there is an equivalence between demands and
bids: proposing a bid bi,n is equivalent to say that di(bi,n) =
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n− 1 and di(bi,n − 1) = n− 1. Let us fix a C-LSA sequence
that starts from a round 0 and ends at round T , the demand
of each player during the C-LSA auction can be mapped to a
bids vector as follows: we build loosing bids from the history
as explained before i.e., if di(ph) = n and di(ph +1) = n−1
then we set bi,n = ph + 1. For winning bids, please note
that it is not always possible to build them from history as
before, since an auction might finish with a non zero demand.
However, we can fix each uncompleted component of the bids
vector of each player from his payment, if a player gets n
block and pays ph for his nth block then we fix each winning
bids bi,n such that bi,n is higher than ph. Please note that
this way an equivalent mechanism is obtained since prices are
computed only based on losing bids.

The opposite direction mapping (from OS-LSA to C-LSA)
is also intuitive: player i just has to act in C-LSA with respect
to the proposed bid vector in OS-LSA as his valuations i.e.,
report di(ph) in accordance to the reported OS-LSA bid bi.

In the following proposition, we provide the connection
between C-LSA and OS-LSA in terms of truthfulness.

Proposition 3. If sincere bidding in OS-LSA is a dominant
strategy (each player can maximize his utility by proposing
bi = vi independently of bids of other players) then sincere
bidding in the C-LSA ascending auction is an ex-post Nash
Equilibrium.

Proof. Let us fix a player i when C-LSA is applied, suppose
that all other players act truthfully (demands are derived from
valuations), suppose that by bidding truthfully player i obtains
a utility u1 and by using any other strategy he obtains a utility
u2, we have to show that u1 ≥ u2. From Proposition 2, player
i can obtain that same utility u1 by bidding truthfully in OS-
LSA and can obtain u2 by proposing other bids vector in
OS-LSA. Since bidding truthfully is a dominant strategy in
OS-LSA, u1 must be higher than u2.

3) Truthfulness of C-LSA and OS-LSA: We prove that the
proposed mechanism is truthful. To establish that result, we
will establish two intermediate lemmas.

Lemma 1. Payments for blocks can only increase i.e., if player
i pays pn for his n-th block then he pays pn+1 ≥ pn for his
(n+ 1)-th block.

Proof. Consider a player who obtains an n-th block and is
charged a price pn for it. We denote by qn the number of
players in the same group, who are willing to pay at least
pn to obtain an n-th block (we therefore have qnpn = Ch,n).
Since Ch,n+1 ≥ Ch,n and bids decrease with the number of
obtained blocks, we have qn+1 ≤ qn. Thus pn+1 =

Ch,n+1

qn+1
≥

pn =
Ch,n

qn
.

In the following, we call a component bi,n of a bid vector
bi of a player i a winning component if bi,n ≥ pn and a losing
component if bi,n < pn.

Lemma 2. If a player gets n blocks, then his winning
components of his bid are exactly his first n components.

Proof. Assume that there is a situation in which bi,n is a losing
bid and bi,n+1 is a winning bid: bi,n being a losing bid means
that bi,n < pn with pn the price paid by the other bidders in
the group for that block, and bi,n+1 being a winning bid means
that bi,n+1 ≥ pn+1, hence from the Lemma 1 bi,n+1 ≥ pn and
then bi,n+1 > bi,n, a contradiction

In the following proposition, we prove that truthful bidding
is a dominant strategy for OS-LSA.

Proposition 4. Truthful bidding in the proposed mechanism
is a dominant strategy.

Proof. Suppose that by bidding truthfully, player i (who
belongs to group h) gets n blocks. For his first n bids,
player i cannot do better than proposing his true valuations:
lowering the corresponding bids could make him lose blocks
that are charged below his valuation for them, and increasing
those bids would have no impact because the payments are
independent of his bids. If player i wants an (n + 1) − th
block then he has to propose a bid bi,n+1 ≥ vi,n+1 such
that Bh,n+1 ≥ Ch,n+1, however this leads to a lower utility:
because vi,n+1rank(vi,n+1) ≤ Ch,n+1, where rank(vi,n+1)
is just rank(bi,n+1) when bi,n+1 = vi,n+1, and by proposing
bi,n+1 ≥ vi,n+1 (which ensures Bh,n+1 ≥ Ch,n+1 ), player i
pays at least Ch,n+1

rank(vi,n+1) which is higher than vi,n+1.

4) Revenue guarantee of C-LSA and OS-LSA: In the fol-
lowing, we establish some revenue guarantee for OS-LSA. We
have B1, .., BM group bids vector. Each element is composed
by K components. In total we have KM components. We
sort all those components in a non increasing order to form a
vector bids R of size KM , R = {R1, .., RKM}. Let us first
introduce the following lemma.

Lemma 3. if a group h wins n blocks then he pays the first
n bids in {RK+1, ..., R2k} proposed by other groups.

Proof. Ch is composed by the highest K bids of other groups
which are a set in {R1, ..., R2k}. {Ch(n+ 1), .., Ch(K)} are
in {B1.., BK} because they are a winning bids (group h can
not defeat those bids). The first n components of Ch (which
group h will pay) are in {RK+1, ..., R2k} because they are
defeated bids and by definition since Ch is composed by the
highest K bids of other groups, the first n components of Ch

must be the first n bids in {RK+1, ..., R2k} proposed by other
groups.

In the following proposition, we establish some revenue
guarantee for OS-LSA and C-LSA.

Proposition 5. The revenue of OS-LSA is in [
2K∑

i=K+1

Ri,K ×

RK+1]

Proof. Clearly for each group, the facing vector can not have a
component lower than R2K hence the revenue from each block
is higher than R2K , also the first K components {R1, ..., Rk}
are the winning bids thus the maximum revenue from each
block is RK+1.
• Upper bound: The best case in terms of revenue is when all
blocks are allocated to K different groups (here we suppose
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that M higher than K) and RK+1 is a bid from another group
who does not get any block, in this situation the revenue is
K ×RK+1

• Lower bound: Suppose that the revenue could be lower than
2K∑

i=K+1

Ri, this means that it exist at least Rj which will be

not paid and at least a component Bi lower than Rj which
will be paid at least twice by a group h and another group h′.
We can distinguish two cases:

1) Rj is not a bid of group h: in this situation and using
lemma 3, since group h pays Ri then he must pay Rj .

2) Rj is a bid of group h′: in this situation and using lemma
3, since group h′ pays Ri then he must pay Rj .

Thus, Rj must be paid by some group. Hence the revenue can

not be lower than
2K∑

i=K+1

Ri

VI. RESULTS AND ANALYSIS

In the following we compare UCE and C-LSA mechanisms
in terms of social welfare and revenue by comparing OS-LSA
and VCG, their equivalent one-shot versions that are easier to
simulate. We denote by:
• Rev1: The average revenue of VCG. For each instance,

the VCG revenue is defined as
M∑
h=1

|gh|∑
i=1

nh∑
j=1

[CVCG
h,j − (BVCG

h,j − bi,j)]+

where nh is the number of blocks obtained by gh,

BVCG
h,j =

|gh|∑
i=1

bi,j and CVCG
h is the vector of competing

bids facing group h when VCG is applied.
• Rev2: The average revenue of OS-LSA. The revenue of

OS-LSA is defined as:
M∑
h=1

nh∑
j=1

Ch,j (10)

• SWN : The average normalized social welfare,
the normalized social welfare is defined as
social welfare of OS−LSA

social welfare of VCG

A. Simulation settings

For our simulation we go through the following steps:
1) Fix the number of blocks K and the number of groups

M .
2) The number of players is chosen randomly from the

discrete uniform distribution [1 ; 30]
3) For each player i we create the bid vector bi which is

composed by K elements: the first bid is drawn from
the uniform distribution over the interval [0, 100] and
the n-th element (n > 1) is drawn from the uniform
distribution [0, bi,n−1]

For each number of blocks and number of groups, the average
revenue and social welfare are computed over 10 000 draws.
A draw means that we generate the number of player for each
group then we generates vector bid of each player.

K 1 2 4 8 50 100
SWN 0.86 0.878 0.91 0.939 0.992 0.9997
Rev1 179.5 220.34 230.42 263.16 74.9 3.82
Rev2 726.75 1275.3 1970.93 2448.5 580.16 26.84

TABLE IV: Average normalized social welfare as a function
of the number of blocks for M = 10

0 0.5 1

0

0.5

1 K = 1

K = 2

K = 4

K = 8

K = 16

Fig. 6: Cumulative density function of SWN as a function of
the number of blocks for M = 10

M 2 5 10 20 40
SWN 0.944 0.885 0.86 0.847 0.839
Rev1 30.29 105.2 187.31 280.8 372.72
Rev1 308.87 817.23 724.96 821.63 898.9

TABLE V: Average normalized social welfare as a function
of the number of groups for K = 1

0 0.5 1

0

0.5

1 N = 2

N = 5

N = 10

N = 20

N = 40

Fig. 7: Cumulative density function of SWN as a function of
the number of groups for K = 1

B. Simulation results

In terms of Social welfare, Table IV shows that the clinching
approach converges to the optimal social welfare as we keep
increasing the number of blocks which can be justified as
follows: we can see from Fig 1 that if we keep moving on
to the right side by adding blocks, the value of an extra block
is very small. i.e., adding a block has a very low impact on
social welfare. In terms of revenue, we can see that the revenue
achieves its maximum for a value of K ∈ [8, 16]. However,
if we keep increasing K, the revenue converges to zero, this
is can be explained from Proposition 5, as we increase the
number of blocks BK converges to zero, which justifies the
low revenue.

VII. CONCLUSION

In this paper, we have adapted UCE auction to the LSA
context, since the allocatilon my be an NP-hard problem,
we have designed another ascending mechanism, based on
the clinching approach, with a simple allocation. We have
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proposed its equivalent one-shot auction and we have de-
rived some revenue guarantee. We have proven that truthfull
telling is a dominant strategy for OS-LSA and an ex-post
Nash Equilibrium for C-LSA.We have easily evaluate through
simulations the performance of the proposed mechanism with
respect to UCE in terms of social welfare and revenue, thanks
to their one-shot equivalent mechanisms. Simlation results sug-
gests that the revenue generated by the proposed mechanism is
much larger than the UCE revenue with a multiplicative factor
between 5 and 10 for a very limited cost in terms of resource
usage efficiency (around 4%). Hence we think our proposed
mechanism C-LSA is a viable candidate for LSA spectrum
allocation and pricing.

REFERENCES

[1] J. Khun-Jush, P. Bender, B. Deschamps, and M. Gundlach, “Licensed
shared access as complementary approach to meet spectrum demands:
Benefits for next generation cellular systems,” in ETSI Workshop on
reconfigurable radio systems, 2012.

[2] M. Matinmikko, H. Okkonen, M. Malola, S. Yrjola, P. Ahokangas,
and M. Mustonen, “Spectrum sharing using licensed shared access: the
concept and its workflow for LTE-advanced networks,” IEEE Wireless
Communications, vol. 21, pp. 72–79, May 2014.

[3] Y. Chen, J. Zhang, K. Wu, and Q. Zhang, “Tames: A truthful auction
mechanism for heterogeneous spectrum allocation,” in Proc. of IEEE
INFOCOM, pp. 180–184, May 2013.

[4] X. Zhou and H. Zheng, “Trust: A general framework for truthful double
spectrum access,” in Proc. of IEEE INFOCOM, 2009.

[5] R. Zhu, F. Wu, and G. Chen, “Stamp: A strategy-proof approximation
auction mechanism for spatially reusable items in wireless networks,”
in Proc. of IEEE GLOBECOM, (Atlanta, GA, USA), pp. 3048–3053,
2013.

[6] A. Chouayakh, A. Bechler, I. Amigo, L. Nuaymi, and P. Maillé, “PAM:
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