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Abstract: An approach for both stress analysis and fatigue life 

prediction of bonded joints, based on a 1D-beam model, is 

presented. Only the adhesive is supposed to fail. The Goland and 

Reissner framework 
[1]

 is extended to unbalanced laminar or 

monolithic adherends under thermal loads. The J-integral is 

derived and employed in a modified Paris law, leading to fatigue 

lives, which are assessed w.r.t. published experimental results 
[2, 

3]
.  

 

 

INTRODUCTION 
 

In the frame of the structural component design, bonding can be considered as a 

suitable assembly method or an attractive complement to conventional ones as 

mechanical fastening. Bonding offers the possibility of joining without damaging 

various materials, such as plastics or metals, as well as various combinations of 

materials. This first advantage is reinforced by a large choice of adhesive families 

and by the possibility to formulate adhesives to meet at best the joint 

specifications. Compared to bolting, bonding shall allow for mass benefits, since 

the continuous distribution of load transfer all over the overlap implies that 

additional concentrated materials are not required to sustain loads. Nevertheless, 

the main restriction to a more widespread application of bonding could be the lack 

of assessment ability of its reliability. To our knowledge, non destructive test 

methods allow for detecting possible adhesive absences but not the adhesion 

absences. As a result, to control the design of bonded joints, it is necessary to 

predict its strength, including both stress and fracture analyses. In this paper, a 1D-

beam approach, allowing both for stress analysis and fatigue life prediction of 
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bonded joint, is presented. Only the adhesive is supposed to fail. The single-lap 

bonded joint described in [2] (see Figure 1) allows for exemplifying the approach. 

Firstly, a general 1D-beam model for bonded joint stress analysis is presented. The 

model can be related to the Goland and Reissner framework 
[1]

, which is extended 

by considering unbalanced overlaps made of laminated monolithic beams under 

thermal loading (thermal mismatch effect). The computation method 
[4]

, inspired 

by the finite element method (FEM), enables solving the full set of equations. It is 

based on the analytical formulation of macro-element with four nodes, called 

bonded-beams (BB) element, able to simulate an entire bonded overlap. The model 

provides the distribution in the adherends of normal displacements, deflections and 

bending angles and of normal forces, shear forces and bending moments, as well as 

the distribution of adhesive shear and peeling stresses along the overlap. Elements 

of validation are then presented, in order to show that same hypotheses lead to 

same results. Secondly, the presented approach is employed to predict fatigue life 

of bonded joints, through elementary manipulations consisting in the introduction 

of adhesive cracks at both overlap ends. A modified form of Paris law 
[2, 3]

 allows 

for linking the fatigue cycle crack growth rate and the maximum energy release 

rate per cycle. The maximum energy release rate is related to the computation of 

the J-integral, the analytical simplified expression of which is derived, based on [5-

7], in the presented framework. The approach is assessed with regard to 

experimental fatigue test results on isotropic balanced single-lap bonded joints, 

provided in [2, 3]. A way to simply approximate the thermal mismatch effect is 

suggested and remains to be assessed. 

 

 

  
 

Figure 1 – Idealization of a single-lap bonded joint with of beam and BB elements. 

Geometrical and mechanical parameters 
[2]
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1D-BEAM MODEL FOR BONDED JOINT STRESS ANALYSIS 
 

Overview of the approach 
[4]

 

The presented approach allows for the resolution of the set of differential 

equations. The bonded joint is meshed in elements (see Figure 1). While the parts 

outside the bonded overlap are simulated by beam elements, the bonded overlap is 

simulated by a four nodes macro-element, called bonded-beams (BB) element; this 

macro-element is the model core and is specially formulated. After finding the 

stiffness matrices of each element type, the stiffness matrix of the full structure – 

termed K – is assembled. The boundary conditions are then introduced. The vector 

of displacements – termed U –  and the vector of forces – termed F – including the 

thermal equivalent nodal forces – termed FT – are determined; the stiffness matrix 

is updated. The resolution consists then in inverting the linear system F=KU.  

 

Hypotheses 

The model is based on the following hypotheses: (i) the thickness of the adhesive 

layer is constant along the overlap, (ii) the adherends are considered as linear 

elastic Euler-Bernoulli laminated or monolithic beams, (iii) the adhesive layer is 

simulated by a linear two-parameter uncoupled elastic foundation and consists thus 

in a continuously distributed layer of shear and transverse normal springs, (iv) the 

temperature is uniformly distributed on the adherends. In particular, the hypothesis 

(iii) implies that the adhesive stress field is reduced to the shear and peeling stress 

only, constant in the adhesive thickness. A quasi-static analysis is considered. 

 

Formulation of BB element 

Governing equations. The subscript i refers to the i
th

 adherend; i=1,2. Each 

adherend is associated to a local referential x, yi, zi (see Figure 1); the origin of 

which is located at its neutral line; the neutral line is oriented according to an x-

axis, while the y-axis is defined according to its thickness. 

In the frame of the classical Euler-Bernoulli model of beams, the assumed 

displacement field is under the shape: 

 

   xwy,x'w;yu
dx

dw
y)0,x(u)y,x('u ijiiii

i
iiji                          

(1) 

 

where ui’ and wi’ are the displacement of any points of the i
th

 adherend cross-

section according to the x- and yi-axis, respectively; ui and wi are the displacement 

of points located at the i
th

 adherend neural line according to the x- and yi-axis, 

respectively; i is the bending angle. By taking into account the thermal strain due 

to a variation of temperature T, the tensile stress can be expressed as: 
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where Ei is the Young’s modulus and i the thermal expansion coefficient.  

The integration on the cross-section of tensile stresses and elementary bending 

moments induced by these tensile stresses allows for the computation of the 

normal force Ni and bending moment Mi: 
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where Ai is the extensional stiffness, Di is the bending stiffness, Bi the extension 

bending coupling stiffness, NTi is the thermal force per °K, and MTi is the bending 

moment per °K, i=AiDi-Bi² 0.  

 

The local equilibrium of adherends is performed according to [1] (see Figure 2):  

 

    0bT
2

e
V

dx

dM
;S1

bdx

dV
;T1

bdx

dN i
i

i1iiii 


                                    (4) 

 

where b is the overlap width and Vi is the shear force.  

 

 

 
Figure 2 – Free body diagrams of infinitesimal adherend elements of the overlap 

 

The adhesive shear stress T and the adhesive peeling stress S are then given by: 

 

 211
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where G and E are the adhesive Coulomb’s and Young’s moduli. In the case of an 

enclosed adhesive layer, the effective Young’s modulus could be used instead of 

the Young’s modulus. 

 

System of differential equations in terms of adhesive stresses. By combining Eqn. 

3, Eqn. 4 and Eqn. 5, the following differential equation system is obtained in 

terms of adhesive stresses: 

 

dx

dT
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k
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where the constants are: 
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This system of differential equations in terms of adhesive stresses can be 

uncoupled by consecutive differentiations and combinations as:  
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(8) 

 

The Cardan’s method is employed to solve the characteristic equation of the 

differential equation system in Eqn. 8 (see Appendix A) and find its root r² and 

(sit)² – r, s and t are positive real numbers – so that the adhesive shear and peeling 

stress are given by:  
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(9) 

Nodal displacements and forces. The computation of the BB element stiffness 

matrix takes place through the determination of nodal displacements and forces 

(see Figure 3). The second term of equivalency in Eqn. 3, together with Eqn. 4, 

allows uncoupling the expressions of derivatives of u1, u2, w1 and w2 (and then 1 

and 2) as a function of linear combinations of adhesive stress derivatives and 

polynomial expressions; following the resolution scheme in [8], the total number 

of independent integration constants can be reduced to 12:  
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with: 

 



Simplified Approach for Stress and Fatigue Analyses of Bonded Joints 

 

7 











































































































7

2

2

1

1
21

21

3

0

3241

6
4

3241

5
3

3241

120220
6

3241

320420
6

3241

110210
5

3241

310410
5

3241

120220
2

3241

320420
2

3241

110210
1

3241

310410
1

K

A

B

A

B
6)ee(3

A

1

A

1
bL

J

kkkk

~
~

;
kkkk

~
~

kkkk

kBkA
;

kkkk

kBkA~

kkkk

kBkA
;

kkkk

kBkA~

kkkk

kDkC
;

kkkk

kDkC~

kkkk

kDkC
;

kkkk

kDkC~















 

 

 

 

 


























2

2
20222

2
20

1

1
10111

1
10

2

2
20222

2
20

1

1
10111

1
10

bB
D;D2Be

2

b
C

bB
D;D2Be

2

b
C

bA
B;AeB2

2

b
A

bA
B;AeB2

2

b
A









    (11) 

 

The 12 nodal displacements are then the values at x=0 and x=L of the previous 

expressions of displacements, as a function of 12 integration constants. The 

relationship U=MC can be written in the form of a matrix, where C is the 

integration constant vector. By introducing Eqn. 10 in Eqn 3 and with Eqn. 4, the 

normal and shear forces and the bending moment in both adherends can be 

computed as a function of the 12 integration constants (Eqn. 12), leading to the 

expressions of nodal forces (see Figure 3), which can be written F=NC at T=0°K. 
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with: 

 



Simplified Approach for Stress and Fatigue Analyses of Bonded Joints 

 

8 






















6222462224

5111351113

6222262222

5111151111

DBa;
~

D
~

Ba~

DBa;
~

D
~

Ba~

BAa;
~

B
~

Aa~

BAa;
~

B
~

Aa~









                             

(13) 
 

 
Figure 3 – Bonded-beams element: a four-nodes macro-element with three degrees 

of freedom per node (u, w, )=i,j,k,l. 

Stiffness matrix of BB element. The coefficients of the stiffness matrix are 

obtained by differentiating each nodal force by each nodal displacement. Of 

course, the stiffness matrix is not modified by the consideration of a thermal load: 
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(14) 

 

The twelve nodal displacements (u,  = 1:12) and the twelve nodal forces (Q,  = 

1:12) are expressed as functions of the twelve independent integration constants 

(C,  = 1:12) at T=0°K. The nodal forces depend linearly on integration 

constants as well as the nodal displacements. Thus, the integration constants 

depend linearly on the nodal displacements (Eqn. 15), enabling the determination 

of 144 coefficients of KBB (Eqn. 16): 
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But:         
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The coefficients of KBB are thus obtained through: 
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(18)  

 

Practically, C(0…0,u=1,0…0) is automatically generated by looping on the 

twelve canonical vectors of displacement, through the following inversion 

C(0…0,u=1,0…0)]=M
-1
(0…0,u=1,0…0). 

In other words, the stiffness matrix of the BB element KBB is such that F=KBBU. 

With U=MC, this becomes F=KBBMC; thus KBB=NM
-1

, since F=NC at T=0°K. 

 

Resolution 

Stiffness matrix of the single-lap bonded joint. The single-lap bonded joint (for 

example) stiffness matrix is then assembled, using the FEM conventional assembly 

rules. The beam stiffness matrix is provided in Appendix B. The total number of 

nodes is 6, resulting in a total number of 6*3=18 degrees of freedom (DoF). 

 

Equivalent thermal nodal forces for the BB element. The thermal load is classically 

transformed in terms of equivalent thermal nodal forces, resulting in the same 

displacements caused by the actual thermal loads. This does not change the 

element stiffness matrices. In the case of the BB element, the equivalent thermal 

nodal force vector can be computed as (without any transverse temperature 

gradient): 
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Boundary conditions. The stiffness matrix is then classically reduced by removing 

rows and lines, which correspond to fixed – thus known – DoF. Various boundary 

conditions can be easily applied, such as those for the simply supported (u=w=0 at 

one joint end and w=0 at the other joint end, leading to a total number of 15 DoF; 

see Figure 4) or clamped (u=w==0 at one joint end and w==0 at the other joint 

end, leading to a total number of 13 DoF). The vector of nodal force is then 

constructed taking into account the applied mechanical forces and replacing the 

thermal load by the equivalent nodal thermal forces. 

 

 

 
 

Figure 4 – Simply supported boundary conditions and applied loads. 

 

Computation. A computer programme, implemented in SCILAB [9], was produced 

to solve the analysis. The resolution consists simply in the computation of the 

nodal displacement vector U=K
-1

F, allowing for the determination of the 

integration constant vector. The adherend displacements, rotations, forces and 

moments, and adhesive shear and peeling stresses can be then deduced at any 

abscissa.  

 

Elements of validation 

Goland and Reissner. The adhesive stress distribution predicted by the Goland and 

Reissner theory [1] are compared to the model predictions for the single-lap 

bonded joint defined in Figure 1 and Table I. In order to perform a comparison on 

exactly the same hypotheses, the length outside the overlap is chosen equal to 

59.66 mm, resulting in a same bending factor of 0.9038 (for a beam approach) at 

an applied force of 1 kN and simply supported boundary conditions. The 

f 
u=w=0 

w=0 


T 
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superimposition of curves shown in Figure 5 allows for the conclusion that the 

same hypotheses lead to the same results. 

 

Thermal loading. In order to evaluate the adhesive stress distributions predicted by 

the present model under a pure thermal loading, a FE model of a single-lap bonded 

joint is developed using the SAMCEF FE code [10] to be as close as possible to 

the present model. Indeed, the adherends are simulated by beam elements; in the 

overlap region, they are connected through springs working in shear and transverse 

tensile mode in order to simulate the adhesive layer; both stiffnesses of these 

springs are assessed according to [11]. The computation is linear (geometry and 

materials). The simply supported boundary conditions are chosen. The geometrical 

and mechanical parameters are given in Table I, some of which are replaced by 

E1=72 GPa and 1=0.33; moreover: 1=24.10
-6

 °K
-1

 and 2=12.10
-6

 °K
-1

. A very 

good agreement is shown. 

 

 

 
Figure 5 – Comparison of adhesive stresses predicted by Goland and Reissner 

theory by the present model under a pure mechanical loading (f=1 kN; T=0°K). 
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Figure 6 – Comparison of adhesive stresses predicted by a FE model and by the 

present model under a pure thermal loading (T=100°K; f=0 N). 

 

 

FATIGUE LIFE PREDICTION 
 

Method for crack growth prediction under fatigue load cycle 

The presentation of the method is performed on a single-lap bonded joint 

configuration, for which a crack in the adhesive of length is present at both ends of 

the adhesive. The idealization of this balanced cracked single-lap bonded joint is 

illustrated in Figure 7: the bonded overlap length is reduced of 2a and each length 

outside the overlap is increased of a. Elementary modifications of the structure 

stiffness matrix are thus involved. 

 

 

 
 

Figure 7 – Idealization of a single-lap bonded joint, cracked at both overlap ends 
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Modified Paris law 

The fatigue cycle crack growth rate is related to the maximum energy release rate, 

through the modified Paris law employed in [2, 3] (Eqn. 21). D, n1, n2, n are 

material parameters, Gth is the threshold strain energy release rate, Gc is the critical 

strain energy release rate, a0 is the Griffith flaw size, af is the crack length at the 

final failure, Nf is the number of cycles at failure and Gmax is the maximum strain 

energy release rate applied in a fatigue cycle. If Gmax is known, the fatigue life can 

be computed by numerical integration (e.g. rectangle method). 
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Computation of J-integral 

According to [5], in the Goland and Reissner framework, if the adherends are 

considered as beams subjected to low levels of rotation, the adhesive stress field is 

assumed constant in the thickness and the adhesive constitutive law are explicit 

without any dependence on loading history, then the J-integral is nearly path-

independent. Moreover, the J-integral is equal to the product of the joint thickness 

by the energy density at bond termination, so that the mode I and mode II 

components, where J=JI+JII, can be approximated by: 
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The J-integral parameters are then computed, based on [6, 7], in the frame of the 

previous set of governing equations (Eqn. 3 to Eqn. 5) without any thermal strain 

contributions. The slope of  with respect to x and the shear force contributions are 

then neglected. JI and JII are then approximated, as a function of loading 

conditions, through the computer programme output data: 
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The last term of the right hand side of Eqn. 23 represents the contribution when the 

joint is unbalanced; it appears difficult to express without any simplifying 

hypotheses. For balanced cases and B=0, the previous approximations are not 

required to obtain simple expressions of JI and JII: 
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Gmax is then computed as J at the crack tip at the maximal load in a fatigue cycle. 

The thermal mismatch effect could be related to the thermal loading application, as 

mechanical loading conditions, through the equivalent thermal nodal forces; in this 

way, the simulated thermal mismatch effect is seen as external mechanical work. 

 

Results 

The model predictions are compared (see Figure 8) to experimental fatigue test 

result on single-lap-bonded joints (see Figure 1), provided in [2, 3], as well as the 

Paris law parameters and the Griffith flaw size required (see Table I). J is 

computed with Eqn. 21 and Eqn. 22. An encouraging correlation is then shown. 

 

Gc Gth D n n1 n2 a0 

450  

J.m
-2

 

85 

J.m
-2

 

3.64.10
-20 

m²/N cycle 
5.61 3.20 9.34 

85 

µm 

 

Table I – Paris law parameters and Griffith flaw size employed 
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Figure 8 – Comparison of fatigue life predicted by the model (Eqn. 25 and Eqn. 

26) with experimental test data extracted from [2, 3] 

 

 

CONCLUSION 
 

A 1D-beam approach for both stress analysis and fatigue life prediction of bonded 

joints is presented. Only the adhesive is supposed to fail. The 1D-beam model is 

developed in an extended Goland and Reissner framework 
[1]

 by considering 

unbalanced laminated or monolithic beams under thermal loading. The method 

employed 
[4]

 takes benefit of the flexibility of FE method, since it allows, thanks to 

a computer programme, both for the resolution of the entire set of equations and 

for the simple simulation of crack propagation in the adhesive layer through simple 

manipulations. It is underlined that one macro-element is enough to simulate a full 

bonded overlap. Simplified expressions of the J-integral parameters are expressed 

as a function of the load conditions and employed as a fracture criterion. This is 

then introduced through a modified Paris law for the crack propagation simulation. 

An encouraging correlation with published 
[2, 3]

 experimental results is shown. The 

thermal mismatch effect could be simply approximated by applying the equivalent 

thermal nodal forces; it remains to be assessed. 
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APPENDIX  A 
 

This appendix details the resolution of the differential in Eqn. 8, which is identical 

for both adhesive stresses. The characteristic polynomial expression is: 
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           (27) 

 

To determine these roots, the Cardan’s method is employed. Then, Eqn 25 is 

modified as: 
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where: 
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k
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                                              (29) 

 

and the determinant is: 
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By defining: 
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The roots of the reduced equation are written as: 
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Consequently, the roots of the characteristic equation (Eqn 25) are given by: 
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                (33) 

 

Finally, the adhesive stresses have to be determined through Eqn. 29 where: 
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APPENDIX  B 
 

The stiffness matrix of a beam element KB can be expressed in the base u, w, 
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