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A B S T R A C T

Polymers such as polyethylene (PE) and ethylene vinyl alcohol (EVOH) are primary constituents of single
use plastic systems in the biopharmaceutical and biotechnology industries. These devices are sterilized
by gamma-irradiation prior to be used, the usual dose being between 25 and 45 kGy. Optical
spectroscopies are of great interest for chemical analysis and are used to obtain information on the
composition of materials such as polymers. Raman spectroscopy provides information on the
fundamental vibrations of molecules, using excitation in the visible wavelength range. The purpose
of this study is to unveil the impact of gamma-sterilization on polymers in industry-like experimental
conditions. Cross-sections of films are analyzed before and after sterilization using different radiation
doses: their compositions and chemical evolution of the material are examined using micro-Raman
spectroscopy. As the chemical composition of the layers is complex, due to the presence of additive
compounds, there is considerable overlap between the spectral data. In this case, the use of spectral curve
resolution chemometric methods is unique for unravelling the complex identification of the layers and to
study the degree of chemical modifications.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The preparation, storage, mixing, freezing, transportation,
formulation, and filling of biopharmaceutical solutions are per-
formed in sterile single-use plastic bags. The sterility is achieved
through gamma-irradiation, which generates material modifica-
tions, as reported in the literature [1]. The integrity and security of
packages rely on the appropriate flexibility and barrier property of
polymeric materials such as polyethylene and polyethylene-co-vinyl
alcohol, respectively [2]. Gamma-sterilization of single-use systems
initiates chemical reactions inside the plastic material, leading to
either an increase ora decrease in the molecular weights of polymers
[3,4]. In our work, we focus on the effects of gamma-irradiation on
the solid state of a multilayer polymer film (PE/EVOH/PE), made of
polyethylene (PE) – a polymer with interesting water barrier
properties and mechanical properties [5] – and ethylene vinyl
* Corresponding authors at: Sartorius Stedim FMT S.A.S, Z.I. Les Paluds, Avenue de
Jouques CS91051, 13781 Aubagne Cedex, France.
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alcohol (EVOH) – remarkable for its barrier properties to CO2 and O2

molecules [2].
Gamma-sterilization of these systems affords complex mod-

ifications inside the material, leading to the modifications of
additive compounds or to the damage of the polymers themselves
[6–8]. Irradiation of polymeric materials has been proven to
initiate radical chemical reactions inside the polymeric material
[9] leading to either an increase or a decrease in the polymer
molecular weight [3,4]. The effects of gamma-irradiation on
polymers are well known [6–8,10–12], whereas the effects of
gamma-irradiation on multilayer films have been little investigat-
ed [2]. The Scheme 1 displays the generation of first and second
generation radicals upon gamma-irradiation.

Nevertheless, we expect that the initial reaction will be the
same in multilayer film than in PE and EVOH monolayer film.
Moreover, very similar chemistry is also expected for the decay of
first and second generation of radical species as cross-linking and
scission (bond breaking) induce modifications to the matrix
environment by introducing connections or branching in the
polymer chains (decrease in ��CH2� groups) and breaking
polymer chains (increase in ��CH3 end groups), respectively.
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Scheme 1. First and second generation of radicals upon gamma-irradiation of PE and EVOH.

Fig. 1. Molecular structure of PE-film. The internal layer is the side of the film in
contact with the solution when the bag is filled. The external layer is the side of the
film in contact with air. The tie layer is used to glue PE and EVOH layers together.
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Modifications in polymers can be observed by spectroscopic
methods and especially Raman spectroscopy, which is a powerful
optical technique spectroscopy with several advantages to
investigate the molecular deformations behavior of opaque and
thick polymeric material samples [13–20]. Raman spectroscopy
provides a complementary approach to infrared absorption
spectroscopy for which transparent and very thin films are
required. Micro-Raman spectroscopy makes possible to reach
the intercalated layer with a better resolution than m-ATR
(Attenuated Total Reflectance) infrared spectroscopy, and offers
the possibility to observe the vibrations of the C��C bond skeleton
in the main chains [16,21,22], with a better signal than in FTIR. As
the C��C bond stretching vibration is strongly Raman active,
microenvironments of the polymer chains are probed by the
wavelength shifts [23–25]. Degradation of polymers under
gamma-irradiation investigated by Raman spectroscopy is well
known [26,27]. However, the degradation of multilayer films has
been little investigated and even less using chemometric methods
[28,29]. Thus it is possible to perform a mapping of three layers
film using Raman spectroscopy and to identify the modification in
each layer with the help of chemometrics

Gamma-irradiation on multilayer films leads to Raman spectra
variations, which are highlighted using chemometric methods. The
chemometric tool used in this study and applied to Raman spectra
is a curve resolution method named SIMPLISMA (SIMPLe-to-use
Interactive Self Modeling Analysis). The SIMPLISMA approach [30]
is used to define chemical species rising during gamma-irradiation
and to monitor their evolution. Retrieving reconstructed Raman
spectra may afford identification of the compounds present in the
polymer film before and after irradiation. The concentration
profiles give relative quantitative information highlighting the
variation in polymer modification after the different gamma-
doses. The classical gamma-irradiation dose range used in
biopharmaceutical industries is 25–45 kGy [31]. The gamma-
irradiation doses investigated in this study are up to 270 kGy in
order to increase and exaggerate the gamma-irradiation effect and
thus to better emphasize and to investigate the gamma-ray
induced modifications. Briefly, the most significant changes are
observed on the stabilizer and on the tie layer, which corresponds
to the interface between the EVOH layer and the PE layer and
which allows bonding between these two layers.

2. Materials and methods

2.1. PE-film

The structure of the multilayer PE-film, provided by Sartorius
Stedim FMT (Aubagne, France), is depicted in Fig. 1. This film was
prepared by extrusion.

The different layers in this film contain additive compounds
including antioxidants (especially phenol, phosphite [32–34], and
other aromatic compounds), antiblocking agents and plasticizers.
The corresponding molecules cannot be disclosed here due to
protection by confidentiality agreement. The EVOH and PE layers
contain additive compounds for their stabilization during the
manufacturing process and during their shelf life. In this article, we
distinguish the PE or EVOH polymer alone and the PE or EVOH
resin, which is the mixture of the PE or EVOH polymer plus the
additives. The different layers are necessarily made of the resin.
The two PE layers which constitute the internal and external layers
of PE-film are both LDPE and differ in their branching degree. The
internal layer is the side of the film in contact with the solution
when the bag is filled with biological solution, and the external
layer is the side of the film in contact with air. There is a tie layer
between EVOH and the internal and external PE layers (bold lines
in Fig. 1). This tie layer is made of maleic anhydride-PE modified.
The anhydride function grafted on PE reacts with the EVOH
hydroxyl group to generate an ester function that ties the two
layers together (Scheme 2). The proportion of maleic anhydride is
<1% in the tie layer and should not be detectable by Raman
spectroscopy.

The Raman analyses were performed on four batches of PE-film,
to check if there are changes between the different manufacturing
batches. After processing of data, there is no difference between
each batch, thus for the sake of simplicity, only results of one batch
are discussed hereafter.

2.2. Gamma irradiation

Sheets of film (thickness of about 400 mm) were packed and
wrapped in specific packaging (PE) and irradiated at room
temperature in a 60Co gamma-source. The 60Co gamma-source
provides a dose rate of 8–13 kGy/h, as given by the Synergy Health
company (Marseille, France), affording doses at 30 (�1), 50 (�1),
115 (�2) and 270 (�5) kGy. A sterilization cycle corresponds
approximately to 25 kGy. To obtain the targeted dose, it is
necessary to perform several sterilization cycles, including non-
controlled waiting time between cycles under non-controlled
storage conditions. Two irradiation campaigns were performed
with four batches each to check whether the irradiation has an
impact on our results. The Raman spectroscopy analyses of the film
samples obtained during the two campaigns of irradiation lead to
similar results which are thus not affected by these non-controlled
conditions. The samples were analyzed by Raman about 10 days
after gamma-irradiation and the recording of the large number of



Scheme 2. Reaction at the level of the tie layer.
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spectra (about 300 spectra on average) lasted several days as one
mapping needs around four hours.

2.3. Raman spectroscopy

Spectra were collected with an Almega (Thermo-Fisher
Scientific Nicolet, Omnic 8.3 software) Raman spectrometer
equipped with a Nd: YVO4 diode-pumped solid-state (DPSS) laser
(532 nm), through an Olympus high stability BX 51 microscope
coupled in confocal. The detector was a charge coupled device
(CCD). A 100 mm slit provided sufficient resolution, which is
exactly 2 cm�1. Spectra were recorded with two expositions of 10s
each, at 150mW laser power in the spectral range 90–4245 cm�1.
The backscattered radiation was collected with the same micro-
scope objective: Olympus objective of �20. The spot size of the
laser focused by the �20 (NA 0.4) objective at the sample was
estimated to be approximately 2 mm in diameter. The spectrome-
ter calibration was checked using the Raman line of silicon at
520.7 cm�1. A color camera was used to feed a signal to a video
monitor, and thus provided an optical view of the sample. The
microscope stage was XY motorized and computer controlled for
spot-by-spot scanner imaging. Raman data sets were collected by
point-by-point scanning, with a scanning step of 10 mm. Synchro-
nization of stage, movement, data collection and conventional data
Fig. 2. Picture of PE-film cross-section. The red rectangle corresponds to the area ana
acquisition. (For interpretation of the references to colour in this figure legend, the rea
processing for mapping was performed with the Omnic 8.3
software. Spectra were collected and then analyzed using chemo-
metric methods.

The cross sections of sample were prepared with a surgical
scalpel to be subsequently analyzed by Raman spectroscopic
mapping.

Five mappings were performed: one for each irradiation dose.
408, 415, 239, 151 and 362 spectra were recorded for irradiation at
0 (not sterilized), 30, 50, 115 and 270 kGy, respectively. The step
size between two analytical points was 10 mm. The dimensions of
the manually-drawn maps varied between samples implying then
a different number of spectra among the mappings.

2.4. Curve resolution method

The method used for self-modeling mixture analysis is the
SIMPLISMA method described in the literature [29,35–39]. This
interactive method is used for self-modeling mixture analysis by
resolving mixture data into pure component spectra and
concentration profiles without the help of prior information about
the mixture. In the case of plastics it is always a mixture of polymer
and additives (mineral and organic). SIMPLISMA will consider as
“pure” either a mono-material or a mixture which evolve in the
same way during irradiation. When overlapping spectral features
lyzed. The step size is 10 mm between dots, each dot corresponds to a spectrum
der is referred to the web version of this article.)
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are present in spectroscopic data, this tool is unable to resolve
broad spectral components and separate spectral absorption bands
characterizing one component. Its concept is based on the
determination of pure variables (e.g., a wavelength or a wave-
number in spectroscopic terms) that have received the contribu-
tions from only one component and an optimization using least-
square method [40].

In order to obtain the proper resolution of the mixture data,
user interaction is required to deal properly with features such as
noise, peak shift, and instrument drift [41]. Some applications of
SIMPLISMA have already been reported in the literature, e.g., on
Fourier transform Raman spectra for the time resolved activation
of hydrogen peroxide by a nitrile [30], analysis of oil petroleum
[42], FT-IR microscopy spectra of a polymer laminate, and pyrolysis
mass spectra of biomaterials (feedstock) [35,40]. The fitting of the
SIMPLISMA results is calculated using the Relative Residual Sum of
Squares (RRSSQ), square sum between the calculated and the
original spectra. The SIMPLISMA data treatments were performed
with Matlab 7.14 software. The up-ward shift of the baseline due to
the fluorescence is corrected with Savitzky Golay derivative pre-
processing.

3. Results and discussion

3.1. Characterization of PE-film by Raman spectroscopy

The optical picture of the PE-film cross-section, which
corresponds to the film irradiated at 30 kGy (Fig. 2), shows the
PE/EVOH/PE layer structure.

The Raman assignments for the three layers and tie layer are
listed in Table 1, according to the literature [13,21,23,25,43–48]. In
Table 1, most of peaks are assigned to skeletal C��C bond of
polymers, as this bond stretching vibration is strongly Raman
active [22]. The spectra for the layers at 0 kGy, are displayed in
Fig. 3.

Fig. 3a) displays the Raman spectrum for the non-sterilized
internal PE layer of films and the Raman spectrum of the non-
sterilized external PE layer of films. Fig. 3b) shows the Raman
spectrum for the non-sterilized EVOH layer. These spectra show
the bands characterizing bond vibrations in the PE and EVOH
polymers.

Internal and external PE layer differ in their branching (they are
manufactured using different resins) and in their slightly different
Table 1
Raman assignments of bands for spectra of each layer of PE-film.

Wavenumber (cm�1) functional groups Type of vibration 

3400 n-OH Stretching 

3050–3060 n-CH¼CH�� Stretching in aromatic com
3010 n-CH¼CH�� Stretching in non-aromatic
2907 n-CH2� 

2876–2878 n-CH2� Antisymmetric stretching 

2840–2851 n-CH2� Symmetric stretching 

2721 n-CH3 terminal Stretching 

1595–1601 n-C¼C conjugated or benzene
rings

Stretching 

1460 d-CH2� Rocking (Antisymmetric in 

1438–1412 d-CH2� Bending (Symmetric in plan
1365 v-CH2� Wagging (Symmetric out of
1292 t-(CH2)n� Twisting (Antisymmetric ou

deformation)
1167 d-CH2� Rocking (Antisymmetric in 

1125 n-CH2-CH2� Symmetric stretching 

1060 n-CH2-CH2� Asymmetric stretching back
1028 n-C¼C aromatic ring breathing Stretching 

998 n-CH of benzene rings Bending (deformation in th

a These peaks probably correspond also to the additive compounds. Lot of noise in a
additive compound compositions. Peaks displayed in Fig. 3a) are
all assigned to PE signal (Table 1) whatever it is internal or external
layer. However, the differences observed between signals of
internal and external PE layers (see insert Fig. 3a)) are not
significant enough to be pinpointed even by ACP due to the high
variance induced by the presence of EVOH (see Fig. 1 SI) and do not
deserve more discussion presently. The EVOH (polyethylene-co-
vinyl alcohol) and PE (polyethylene) have in common all the PE
bands and spectra display therefore some similarities, as they
contain peaks typical of alkanes. Except for peaks at 3051 cm�1,
1597 cm�1, 1028 cm�1, 995 cm�1, other peaks are ascribed to PE
and the peak at 3373 cm�1 is typical of hydroxyl moiety and
ascribed to EVOH (Table 1). Four peaks in the EVOH layer spectrum
at 3051 cm�1, 1597 cm�1, 1028 cm�1 and 995 cm�1 should then
correspond to the additive compounds. Other peaks of additives
are also common with those of PE and EVOH and cannot be used as
material discrimination in that case.

The large number of data and the weak intensity of changes
concerning the peaks induced by the gamma irradiation could not
give obvious results and conclusion with manual calculations
leading to use a curve resolution method (SIMPLISMA method).

3.2. SIMPLISMA

To assess the variability in polymer fingerprints induced by
gamma-irradiation, the SIMPLISMA treatment was then applied to
the 1575 spectra recorded for non-irradiated and irradiated
samples. Three reconstructed spectra of main species are then
obtained and associated to: one for the PE layer (Fig. 4a)), one for
the EVOH layer (Fig. 4b)), and another one for the additive
compounds contained in the EVOH layer (Fig. 4c)). Sum of spectra
corresponding to Fig. 4b) and c) correspond to the spectrum
displayed on Fig. 3b). The spectra reconstructed and associated to
the PE and EVOH layers show wavenumbers identical to those
listed in the Table 1. It shows thus that the PE and EVOH underwent
no detectable modification after the different gamma irradiation
doses. The SIMPLISMA treatment allows us obtaining in parallel the
spectra of the main additive compounds in the EVOH layer
confirming peaks deduced from those not assessed to the EVOH in
Fig. 3b).

Three reconstructed signals are enough to account for the
variation in the data set (RRSSQ is <0.05). Processing data does not
reveal any difference between the external PE layer and the
PE EVOH Additive
compounds

Tie
layer

X [48]
pounds X [43,47]

 compounds X [43]
X [49]

X X X X [13,23,43]
X X X X [13,23,43]
X X X [47]

X X [47]

plane deformation) X Xa X [21,43,44,46]
e deformation) X X Xa [21,23,43–46]

 plane deformation) X X Xa [23,43,44,46]
t of plane X X Xa X [21,23,43,45–

47]
plane deformation) X Xa [21,23,43,46]

X X Xa X [21,23,25,43]
bone stretching X X Xa X [21,23,43]

X [43,47]
e plane) X [43]

rea of ��CH fingerprint.



Fig. 3. Raman spectra of non-sterilized films of internal and external PE bag layer (a); EVOH layer and additives (b). The stars stand for the fingerprints of the additives.

Fig. 4. Spectra obtained after SIMPLISMA treatment: a) PE polymer, b) EVOH polymer including additive by-products, c) additive compounds contained in the EVOH layer.
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internal PE layer, as it is expected to get an identical spectrum for
PE only slightly differing by their branching. The differentiation of
both PE’s by Simplisma is not possible due to the presence of the
EVOH spectra in the data matrix inducing an important variance.
The difference between the two PEs is then hidden by the variance
EVOH|PE. Even by PCA, shown now in Fig. 1 SI, the differentiation
between the two PEs is not possible. The concentration profiles of
PE layer, EVOH layer and main additive compounds were obtained
for each gamma-dose after processing data with SIMPLISMA
(Fig. 5). Because of focusing lens adjustment during Raman spectra
acquisition the signal/noise ratio is too low for quantitative
conclusions to be drawn, hence only trends observed in the
concentration profiles are discussed.

The concentration profiles obtained for PE and EVOH are
constant under gamma-irradiation, meaning that the degradation
under gamma-irradiation is not significant enough to be detected
by Raman spectroscopy. The fingerprints of PE and EVOH in Raman
spectroscopy listed in Table 1 are not modified. The difference of



Fig. 5. Concentration profiles for PE, EVOH and additive compounds (from top to bottom) during gamma-irradiation (0, 30, 50,115 and 270 kGy from left to right). The number
of spectra is different from one gamma-dose to another, because the mapping size is not the same for all gamma-doses. In figure b) �30 kGy, the dashed line represents the
staircase profile as a concentration profile fitting example; in that example of figure b) �30 kGy, the steps linked to the tie layer correspond to spectra number �110–125 and
�150–165.
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the relative intensities and position of the bands observed between
PE and EVOH spectra in Fig. 3 are conserved in the SIMPLISMA
calculations.

The concentration profiles display an evolution of the additive
compounds in the EVOH layer for an irradiation dose ranging from
0 to 270 kGy (Fig. 5c)). This evolution is due to an intensity
decrease of the fingerprint peaks of the additive compounds (3051,
1597,1028, 995 cm�1). Other additive peaks of the additive package
can be in common with the PE and EVOH peaks and cannot be thus
monitored. Whatever the gamma-doses, the additive compounds
are impacted while there is no linearity of the gamma-dose impact.
The modification induced by gamma irradiation reveals in parallel
a contribution of the fluorescence, which is visible through a drift
of the baseline, meaning that species with high e (molar extinction
coefficient) are generated. The fluorescence is due to several minor
non-identified compounds in term on concentration which exhibit
fluorescence. However, they are not concentrated enough to
present detectable bands by Raman spectroscopy. Indeed, during
gamma-irradiation, molecules are formed from the additive
molecules [50], which can be at the origin of the fluorescence.

The concentration profile appearances for PE and EVOH are
irregular whatever the dose, due to the tie layer used between
these two layers. The use of tie layer is mandatory to glue
incompatible materials such as PE and EVOH. As the Raman
resolution spot is 2.1 mm, the measurement in the interface tie
layer/EVOH will result in combined spectrum signal of PE and
spectrum signal of EVOH. This accounts the appearance of a
staircase curve in concentration profiles such as Fig. 5b) –30 kGy.
However, SIMPLISMA cannot provide a reconstructed signal for the
tie layer as C��O bonds are weakly observed in Raman, present in
less than 1% of maleic moieties in recipe. The staircase curve signal
width remains stable whatever the gamma irradiation dose
applied from 30 to 270 kGy letting us to presume the tie layer is
not impacted during the irradiation process. The concentration
profile in staircase curve varies as well from one sample to another
showing tie layer thickness variations occurring during the
manufacturing process without necessarily informing us about
the interpenetration depth between the PE layer and the tie layer.

4. Conclusion

This work aims at revealing the impact of gamma-irradiation at
different doses (0, 30, 50, 115 and 270 kGy) on a multilayer PE-film
(PE/EVOH/PE) observed by Raman spectroscopy. The large number
of data and the weak intensity of changes concerning the peaks
induced by the gamma irradiation could not give obvious
interpretations with manual calculations leading us to use a curve
resolution method (SIMPLISMA method).

Applying the SIMPLISMA method to PE-film Raman spectra
enables us to reconstruct the pure spectra and the concentration
profiles for each species: PE layer, EVOH layer and additive
compounds. The constant concentration profiles for the PE and
EVOH layers point out that these layers are not impacted by
gamma-irradiation, while the variations of concentration profiles



58 F. Gaston et al. / Vibrational Spectroscopy 96 (2018) 52–59
for the additive compounds in the EVOH layer show the impact of
the gamma-irradiation.

The Raman PE and EVOH fingerprints are unchanged whatever
the gamma irradiation dose, showing there is no detectable
degradation of the PE or EVOH polymers. These observations mean
that the integrity of polymer is preserved.

Additives compounds present in the EVOH layer are impacted
by gamma-irradiation. Nevertheless, the exact chemical structure
of the additive compounds cannot be determined, as only the more
intense bands can be observed. It is interesting to note that the
decrease in the content in additive compounds is regular for all
gamma-doses. The new compounds that can be formed are
extremely numerous. So if their structures are different we cannot
detect them considering their low concentration. We can only
argue that the additives are degraded into byproducts.

Although SIMPLISMA treatment cannot provide a reconstructed
signal for the tie layer, the staircase curve signal remains stable
within the gamma irradiation range applied (0–270 kGy) allowing
us presuming the tie layer is not impacted by the irradiation
process.

The whole structure of the PE-film is thus not destroyed during
the gamma irradiation as modifications took place at the additive
package level without necessarily losing their functional attrib-
utes.
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