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Introduction

Data uncertainty can have many origins: measurements approximations, sensor failures, subjective expert assessments, etc. Taking into account this uncertainty to learn a classifier is challenging because of the analytical and computational difficulties to extend standard statistical learning methodologies to uncertain data. However, in the past years, several approaches [START_REF] Périnel | Construire un arbre de discrimination binaire à partir de données imprécises[END_REF][START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF] have been proposed to learn model from uncertain data.

Once a classifier is built from a learning (uncertain) samples, it is usually evaluated by a misclassification or error rate which is computed from test samples. This error rate corresponds to the probability of misclassification and is estimated by the frequency of misclassified test samples. However, even in methods dealing with uncertain data, this misclassification rate is usually computed using precise test samples. This can be explain by the absence of genuine uncertain benchmark datasets, that remain to be built.

Yet, there is no reason to separate the training and the learning data by making only the former uncertain. In practice, one should be able to tackle uncertainty in all the data sets, without distinction. This is the main issue tackled in this paper, in which we propose a means to evaluate classifiers and models from uncertain test data. The uncertain data, from now on called evidential data, will be modelled by the means of belief functions, that offer a flexible framework to model epistemic uncertainty. We will use the evidential likelihood [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF] as a generic tool to learn and to assess probabilistic models from such evidential data.

In addition, we will apply our proposition to the E 2 M decision trees classification model [START_REF] Sutton-Charani | Learning decision trees from uncertain data with an evidential em approach[END_REF], which is a decision tree methodology adapted to uncertain learning data modelled by belief functions. It is learned using the E 2 M algorithm [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF] which is an extension of the well known EM algorithm to evidential data. Our proposal will be applied in two different manners: to prune E 2 M decision trees, and to evaluate the resulting classifiers. Indeed, pruning requires to evaluate the pruned trees performances, hence to potentially evaluate them on evidential data in the case of E 2 M decision trees.

Section 2 introduces the problem of learning under evidential data, and recalls the evidential likelihood approach, together with the E 2 M decision tree approach. In Section 3 we give the details of the evidential error rate estimations and in Section 4 a E 2 M pruning procedure is proposed and some experiments are presented. Apart from solving the evaluation problem with evidential data, it will also provides us with a classification technique able to handle uncertain data at all levels, both in training and in test phases.

Background

This section briefly reminds required elements to understand the paper. Further details can be found in complementary papers [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF][START_REF] Sutton-Charani | Learning decision trees from uncertain data with an evidential em approach[END_REF] 

Classification under evidential data

The goal of a classification technique is to learn a mapping C from J attributes

X = {X 1 , . . . , X J } ∈ Ω 1 × . . . Ω J = Ω X to a class Y ∈ Ω Y = {C 1 , . . . ,C K }.
Classically, this is done using a set of n learning precise data (x, y). In this paper, we consider evidential data, meaning that a datum is modelled by a mass function on Ω X (for the input uncertainty) and Ω Y (for the class uncertainty). Recall that a mass function on a space Ω is a positive mass m : 2 Ω → [0, 1] defined on Ω power set such that

∑ E⊆Ω ,E = / 0 m(E) = 1. The contour function 1 pl : Ω → [0, 1] induced by it is pl(ω) = ∑ ω∈E m(E).
We consider that this classifier C is learned from an evidential learning set of n samples

(m x , m y ) =    m x 1, . . . m x n, m y 1, . . . m y n,   
and is evaluated using an evidential test sample of n samples

(m x t , m y t ) =    m x 1,t . . . m x n ,t m y 1,t . . . m y n ,t    .
While data are assumed to be evidential, we want to learn a probabilistic parametric classifier with parameters θ providing for an (evidential) entry m x a probability P θ (Y |m x ), the decided class then corresponding to

C (m x ) = arg max C i ∈Ω Y P θ (C i |m x ).

Evidential likelihood and E 2 M algorithm

In standard probability theory, the likelihood L(θ ; w) of a parameter θ given a sample w corresponds to the probability P θ (W = w) of observing this sample given that parameter. Maximising this likelihood provides good estimators of the parameter value. Denoeux [START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework[END_REF] has extended this concept to evidential data. When w ∈ A is imprecisely observed, then an imprecise likelihood corresponding to the probability to pick a sample inside A in the population can be computed as

L(θ ; A) = ∑ w∈A L(θ ; w) = P θ (W ∈ A)
If our knowledge about w is not only imprecise but also uncertain and modelled by a mass function m w having A 1 , . . . , A z as focal elements, the evidential likelihood of the parameter becomes

L(θ ; m w ) = z ∑ i=1 m w (A i )L(θ ; A i ). (1) 
In general, finding the (global) value θ maximizing Eq. ( 1) is difficult, as the function is non-convex and complex. However, the E 2 M algorithm provides a means to obtain a local maximum of (1). It is an iterative algorithm very similar to the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], the main difference is the measure used to compute expectations at the E step. In order to take into account both the available knowledge (represented by m w ) and the model aleatory uncertainty, the E step uses the conjunctive combination P(. | θ , m w ) := P θ ∩ m w , which is a probability measure, to compute the expectation. Algorithm 1 summarizes the E 2 M algorithm.

Algorithm 1: Estimation with the E 2 M algorithm

Input: θ (0) , γ Output: final θ 1 r = 1; 2 repeat 3 E-step: Q(θ , θ (r) ) = E[log(L(θ ;W )) | θ (r) , m W ] ; 4 M-step: θ (r+1) = arg max θ ∈Θ Q(θ , θ (r) ) ; 5 r = r + 1; 6 until L(θ (r) ;m w )-L(θ (r-1);m w ) L(θ (r-1) ;m w ) > γ; 7 θ = θ (r) ;

E 2 M decision trees

Decision trees or more precisely classification trees are famous classifiers that provide interpretable outputs [START_REF] Breiman | Classification And Regression Trees[END_REF]. They recursively partition the space Ω X into leaves that contains probabilities over the classes Ω Y .

The purity of a leaf t h (defining a subset of Ω X ) is usually evaluated by some impurity measure such as Shanon entropy i(t

h ) = -∑ K k=1 α k h log(α k h ) where α k h = P(Y = C k | t h ).
The purity gain obtained by splitting t h into t L and t R is computed as

δ i = i(t h ) -π L i(t L ) -π R i(t R ) where π L = P(t L | t h ) and π R = P(t R | t h
) are the probabilities of being in each children leaves. In usual approaches the leaves probabilities π h and the class probabilities inside leaves α k h are estimated by frequencies of learning samples in leaves and of their different class labels inside the leaves:

πh = n(t h ) n αk h = n k (t h ) n(t h )
where n is the number of learning samples, n(t h ) is the number of learning sample in the leaf t h and n k (t h ) is the number of learning samples of class C k inside the leaf t h . E 2 M decision trees [START_REF] Sutton-Charani | Learning decision trees from uncertain data with an evidential em approach[END_REF] are an extension of classical decision trees to evidential data. The main idea is to see the tree as a mixture (the leaves weights π h ) of multinomial distributions (the class probabilities α k h ), and to learn this probabilistic model using the E 2 M. We proposed to estimate the probabilities of leaves and of class in leaves by maximising their likelihood in regard to the uncertain learning sample (m x , m y ). We have:

{ πh , αk h } h,k = θ = arg max θ ∈Θ L(θ ; (m x , m y ))
Within decision trees techniques, pruning is a classical way to avoid over-fitting and that are usually based on a compromise between interpretability and accuracy [START_REF] Breiman | Classification And Regression Trees[END_REF][START_REF] Esposito | A comparative analysis of methods for pruning decision trees[END_REF]. Most of them consider possible sub-trees of the initial learned tree, and pick one satisfying an evaluation criteria always based (at least partially) on classification accuracy. Yet, evidential data do not allow a straightforward computation of accuracy, hence a need of new evaluation techniques to be able to prune.

3 Uncertain classifiers evaluation with the E 2 M algorithm: evidential error rates estimation

While techniques introduced in the previous sections allow to learn from evidential data (see also [START_REF] Masson | Ecm: An evidential version of the fuzzy c-means algorithm[END_REF]), the problem of evaluating classifiers with an evidential test data set (m x t , m y t ) remains. This section proposes a solution also exploiting the evidential likelihood and E 2 M algorithm.

Let E in{0, 1} be an aleatory variable representing the misclassification of C , equal to 1 in case of misclassification, 0 in case of good classification. We have E ∼ Ber(ε) where ε is the misclassification rate, i.e., P(Y = C (x)|x).

With precise data, ε, whose estimation ε is the frequency of misclassified examples in the learning test and corresponds to maximising its likelihood L(θ ; e = {e 1 , . . . , e n })with e i = 0 if C (x i,t ) = y i,t , 1 otherwise. We therefore get ε = n 1/n where n 1 is and the number of 1 in e.

In practice, when one has evidential data, the E 2 M model still provides a unique prediction C (m x i,t ), which has to be compared to an evidential output m y i,t . In practice, each m y i,t can be mapped to a mass function m e i over {0, 1} such that

m e i ({0}) = m y i,t (C (m x i,t )) (2) 
m e i ({1}) = ∑ E⊆Ω y ,C (m x i,t ) ∈E m y i,t (E) (3) 
m e i ({0, 1}) = ∑ E⊆Ω y ,C (m x i,t )∈E,|E|>1 m y i,t (E) (4) 
Given this sample, the evidential accuracy can be computed as follows:

L(ε; m e ) = n ∏ i=1 [(1 -ε)pl i (0) + ε pl i (1)] (5) 
Q(ε; ε(q) ) = nlog(1 -ε) + log( ε 1 -ε ) n ∑ i=1 ξ (q) i (6) ε(r+1) = argmax ε∈[0,1] Q(ε; ε(q) ) = 1 N N ∑ i=1 ξ (q) i ( 7 
)
where As an illustration, Figure 1 represents the variation of the evidential error rate in function of m e i ({0, 1}) = γ for n = 100 samples, and where the proportion of samples where m e i ({1}) = 1γ versus samples where m e i ({0}) = 1γ is given by the precise error rates ε 0.4 and 0.6. Interestingly we can see that the estimation, by privileging the most present observation, tends to accentuate either the quality of accurate models (ε < 0.5) or the unreliability of inaccurate ones. We can therefore expect this evidential accuracy to provide reliable choices.

ξ (q) i = E[E i | ε(q) ; m e i ] = ε(q) pl i (1) (1 -ε(q) )pl i (0) + ε(q) pl i (1)
with pl i (0) = Pl({e i = 0}) = m e i ( 

Application: pruning of E 2 M decision trees

This section illustrates the evidential error rate to the pruning of E 2 M decision trees. Considering the sequence of sub-trees induced by successive splits, we simply pick the one that obtains the smallest evidential error rate on a pruning sample (different from the initial learning sample). Indeed, our goal is not to define optimal pruning criterion, but simply to illustrate the use of evidential error rates.

Our experiments concern five precise benchmark datasets (coming from UCI) sin which we artificially injected uncertainty. For each observation w i (attribute and class) of the precise datasets, a noise level γ i was uniformly sampled in [0, 1]. A number u was then uniformly sampled on [0, 1], if u < γ i then the (noised) value w i is replaced by another value w * i drawn uniformly from Ω W (either attribute or class spaces), otherwise w * i = w i . Obtained evidential data are m(w

* i ) = 1 -γ i and m(Ω W ) = γ i .
We learnt simultaneously standard CART decision trees and E 2 M ones and compared their error rates. For each test we learnt the trees on one third of the datasets, pruned them on another third and test them on the left third by computing standard error rates and evidential ones. All computations are achieved on noised data (considering crisp replacements for CART and evidential ones for E 2 M) The stopping criteria were composed of a maximum of 10 leaves and a relative minimum purity gain of 5%. 1 summarizes the means of error rates obtained for 100 tests for each dataset. For each methodology the error rate are compared before the learning (the naive error rate is obtained by predicting systematicaly the class the most frequent in the learning sample), once the trees are learnt but before pruning and after pruning. The high error rates are due to noise both in the learning and in the testing phases.

Both evidential and classical error rates appear to be smaller for E 2 M trees than for CART ones. If this is not surprising for the evidential error rate after pruning (as it is the minimized criterion), the other better scores confirm the interest of using evidential approaches. The pruning strategy also increases accuracy for the balance and glass datasets, despite the small size of the learnt trees. E 2 M trees appear to be naturally smaller than CART ones but can still be pruned thank to the evidential error rates computations.

Table 2 compares the size of the CART and E 2 M trees before and after pruning. A learning failure occurs when the noised dataset does not enable any first split in regards to the stopping criteria. CART trees appears to be bigger than E 2 M ones before and after pruning. We can interpret this as an impact of the data uncertainty on the complexity of the learnt model. In deed, it not necessary to have a complex model with partially unreliable data. 

Conclusions

We have introduced a way, through the notion of evidential likelihood, to evaluate classifier in presence of uncertain (evidential) data. Such a technique appears as essential and necessary if we want to fully tackle the problem of uncertain data, as assuming uncertain learning data and certain test data (at least in the output), if valid on benchmark data sets, seems unrealistic in practical applications. We have also tested our approach on the E 2 M decision trees, and doing so have proposed, to our knowledge, the first method that is able to handle data uncertainty in attributes and classes, both in learning and testing. As perspective, it would be interesting to compare our study to other approaches, both from a theoretical and practical standpoint. For example, we could compare ourselves to the strategy consisting of transforming evidential data into probabilistic one through the pignistic transform [START_REF] Smets | Belief induced by the partial knowledge of the probabilities[END_REF].
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 61 Fig. 1 Variations of the evidential error rate ε with the uncertainty level γ when ε = 0.4 and 0.6

Table 1

 1 Comparison of CART and E 2 M decision trees efficiency before and after pruning Table

			classical error rate			evidential error rate
	data set	naive	CART unpruned pruned unpruned pruned E 2 M	naive	CART unpruned pruned unpruned pruned E 2 M
	iris	0.67	0.60	0.60	0.57	0.58 0.79	0.65	0.66	0.59	0.60
	balance scale 0.60	0.60	0.60	0.58	0.58 0.63	0.62	0.62	0.51	0.51
	wine	0.65	0.61	0.62	0.60	0.60 0.75	0.64	0.67	0.64	0.64
	glass	0.68	0.69	0.68	0.68	0.67 0.74	0.73	0.73	0.67	0.67
	e.coli	0.72	0.73	0.72	0.74	0.73 0.75	0.74	0.74	0.71	0.70

Table 2

 2 Comparison of CART and E 2 M decision trees sizes before and after pruning

			CART				E 2 M		
	data set	before pruning	after pruning	before pruning	after pruning
		# failures # leaves # failures # leaves # failures # leaves # failures # leaves
	iris	3	9.57	13	4.57	0	4.36	6	3.39
	balance scale	99	1.01	99	1.01	0	7.01	0	5.21
	wine	0	10	15	4.79	0	4.05	10	3.06
	glass	52	5.26	70	2.08	0	6.92	14	4.46
	e.coli	52	5.26	70	2.08	0	6.92	14	4.46

no other notions will be needed in this paper