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Training and evaluating classifiers from
evidential data: application to E2M tree pruning

Nicolas Sutton-Charani and Sébastien Destercke and Thierry Denœux

Abstract In many application data are imperfect, imprecise or more generally un-
certain. Many classification methods have been presented that can handle data in
some parts of the learning or the inference process, yet seldom in the whole pro-
cess. Also, most of the proposed approach still evaluate their results on precisely
known data. However, there are no reason to assume the existence of such data in
applications, hence the need for assessment method working for uncertain data. We
propose such an approach here, and apply it to the pruning of E2M decision trees.
This results in an approach that can handle data uncertainty wherever it is, be it in
input or output variables, in training or in test samples.

Key words: classification; uncertain data; E2M algorithm; error rate; belief func-
tions; E2M decision trees; pruning;

1 Introduction

Data uncertainty can have many origins: measurements approximations, sensor fail-
ures, subjective expert assessments, etc. Taking into account this uncertainty to learn
a classifier is challenging because of the analytical and computational difficulties to
extend standard statistical learning methodologies to uncertain data. However, in
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the past years, several approaches [6, 3] have been proposed to learn model from
uncertain data.

Once a classifier is built from a learning (uncertain) samples, it is usually evalu-
ated by a misclassification or error rate which is computed from test samples. This
error rate corresponds to the probability of misclassification and is estimated by
the frequency of misclassified test samples. However, even in methods dealing with
uncertain data, this misclassification rate is usually computed using precise test sam-
ples. This can be explain by the absence of genuine uncertain benchmark datasets,
that remain to be built.

Yet, there is no reason to separate the training and the learning data by making
only the former uncertain. In practice, one should be able to tackle uncertainty in
all the data sets, without distinction. This is the main issue tackled in this paper, in
which we propose a means to evaluate classifiers and models from uncertain test
data. The uncertain data, from now on called evidential data, will be modelled by
the means of belief functions, that offer a flexible framework to model epistemic
uncertainty. We will use the evidential likelihood [3] as a generic tool to learn and
to assess probabilistic models from such evidential data.

In addition, we will apply our proposition to the E2M decision trees classifica-
tion model [8], which is a decision tree methodology adapted to uncertain learning
data modelled by belief functions. It is learned using the E2M algorithm [3] which
is an extension of the well known EM algorithm to evidential data. Our proposal
will be applied in two different manners: to prune E2M decision trees, and to eval-
uate the resulting classifiers. Indeed, pruning requires to evaluate the pruned trees
performances, hence to potentially evaluate them on evidential data in the case of
E2M decision trees.

Section 2 introduces the problem of learning under evidential data, and recalls
the evidential likelihood approach, together with the E2M decision tree approach.
In Section 3 we give the details of the evidential error rate estimations and in Section
4 a E2M pruning procedure is proposed and some experiments are presented. Apart
from solving the evaluation problem with evidential data, it will also provides us
with a classification technique able to handle uncertain data at all levels, both in
training and in test phases.

2 Background

This section briefly reminds required elements to understand the paper. Further de-
tails can be found in complementary papers [3, 8]
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2.1 Classification under evidential data

The goal of a classification technique is to learn a mapping C from J attributes
X = {X1, . . . ,XJ} ∈Ω1× . . .ΩJ = ΩX to a class Y ∈ΩY = {C1, . . . ,CK}. Classically,
this is done using a set of n learning precise data (x,y). In this paper, we consider
evidential data, meaning that a datum is modelled by a mass function on ΩX (for
the input uncertainty) and ΩY (for the class uncertainty). Recall that a mass function
on a space Ω is a positive mass m : 2Ω → [0,1] defined on Ω power set such that
∑E⊆Ω ,E 6= /0 m(E) = 1. The contour function1 pl : Ω → [0,1] induced by it is pl(ω) =

∑ω∈E m(E).
We consider that this classifier C is learned from an evidential learning set of n
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While data are assumed to be evidential, we want to learn a probabilistic paramet-
ric classifier with parameters θ providing for an (evidential) entry mx a probability
Pθ (Y |mx), the decided class then corresponding to C (mx)= argmaxCi∈ΩY Pθ (Ci|mx).

2.2 Evidential likelihood and E2M algorithm

In standard probability theory, the likelihood L(θ ;w) of a parameter θ given a sam-
ple w corresponds to the probability Pθ (W = w) of observing this sample given that
parameter. Maximising this likelihood provides good estimators of the parameter
value. Denoeux [3] has extended this concept to evidential data.

When w∈ A is imprecisely observed, then an imprecise likelihood corresponding
to the probability to pick a sample inside A in the population can be computed as

L(θ ;A) = ∑
w∈A

L(θ ;w) = Pθ (W ∈ A)

If our knowledge about w is not only imprecise but also uncertain and modelled by
a mass function mw having A1, . . . ,Az as focal elements, the evidential likelihood of
the parameter becomes

1 no other notions will be needed in this paper
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L(θ ;mw) =
z

∑
i=1

mw(Ai)L(θ ;Ai). (1)

In general, finding the (global) value θ maximizing Eq. (1) is difficult, as the func-
tion is non-convex and complex. However, the E2M algorithm provides a means to
obtain a local maximum of (1). It is an iterative algorithm very similar to the EM
algorithm [2], the main difference is the measure used to compute expectations at
the E step. In order to take into account both the available knowledge (represented
by mw) and the model aleatory uncertainty, the E step uses the conjunctive com-
bination P(. | θ ,mw) := Pθ ∩©mw, which is a probability measure, to compute the
expectation. Algorithm 1 summarizes the E2M algorithm.

Algorithm 1: Estimation with the E2M algorithm
Input: θ (0),γ
Output: final θ

1 r = 1;
2 repeat
3 E-step: Q(θ ,θ (r)) = E[log(L(θ ;W )) |θ (r),mW ] ;
4 M-step: θ (r+1) = argmax

θ∈Θ

Q(θ ,θ (r)) ;

5 r = r+1;

6 until L(θ (r);mw)−L(θ (r−1);mw)

L(θ (r−1);mw)
> γ;

7 θ = θ (r);

2.3 E2M decision trees

Decision trees or more precisely classification trees are famous classifiers that pro-
vide interpretable outputs [1]. They recursively partition the space ΩX into leaves
that contains probabilities over the classes ΩY .

The purity of a leaf th (defining a subset of ΩX ) is usually evaluated by some
impurity measure such as Shanon entropy i(th) = −∑

K
k=1 αk

h log(αk
h) where αk

h =
P(Y = Ck | th). The purity gain obtained by splitting th into tL and tR is computed
as δ i = i(th)− πLi(tL)− πRi(tR) where πL = P(tL | th) and πR = P(tR | th) are the
probabilities of being in each children leaves. In usual approaches the leaves proba-
bilities πh and the class probabilities inside leaves αk

h are estimated by frequencies
of learning samples in leaves and of their different class labels inside the leaves:

π̃h =
n(th)

n
α̃k

h =
nk(th)
n(th)
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where n is the number of learning samples, n(th) is the number of learning sample
in the leaf th and nk(th) is the number of learning samples of class Ck inside the leaf
th.

E2M decision trees [8] are an extension of classical decision trees to evidential
data. The main idea is to see the tree as a mixture (the leaves weights πh) of multino-
mial distributions (the class probabilities αk

h ), and to learn this probabilistic model
using the E2M. We proposed to estimate the probabilities of leaves and of class in
leaves by maximising their likelihood in regard to the uncertain learning sample
(mx

`,m
y
`). We have:

{π̂h, α̂
k
h}h,k = θ̂ = argmax

θ∈Θ

L(θ ;(mx
`,m

y
`))

Within decision trees techniques, pruning is a classical way to avoid over-fitting
and that are usually based on a compromise between interpretability and accuracy
[1, 4]. Most of them consider possible sub-trees of the initial learned tree, and pick
one satisfying an evaluation criteria always based (at least partially) on classifica-
tion accuracy. Yet, evidential data do not allow a straightforward computation of
accuracy, hence a need of new evaluation techniques to be able to prune.

3 Uncertain classifiers evaluation with the E2M algorithm:
evidential error rates estimation

While techniques introduced in the previous sections allow to learn from evidential
data (see also [5]), the problem of evaluating classifiers with an evidential test data
set (mx

t ,m
y
t ) remains. This section proposes a solution also exploiting the evidential

likelihood and E2M algorithm.
Let E in{0,1} be an aleatory variable representing the misclassification of C ,

equal to 1 in case of misclassification, 0 in case of good classification. We have
E ∼ Ber(ε) where ε is the misclassification rate, i.e., P(Y 6= C (x)|x).

With precise data, ε , whose estimation ε̃ is the frequency of misclassified ex-
amples in the learning test and corresponds to maximising its likelihood L(θ ;e =
{e1, . . . ,en′})with ei = 0 if C (xi,t) 6= yi,t , 1 otherwise. We therefore get ε̃ = n1/n′

where n1 is and the number of 1 in e.
In practice, when one has evidential data, the E2M model still provides a unique

prediction C (mx
i,t), which has to be compared to an evidential output my

i,t . In prac-
tice, each my

i,t can be mapped to a mass function me
i over {0,1} such that

me
i ({0}) = my

i,t(C (mx
i,t)) (2)

me
i ({1}) = ∑

E⊆Ωy,C (mx
i,t )6∈E

my
i,t(E) (3)

me
i ({0,1}) = ∑

E⊆Ωy,C (mx
i,t )∈E,|E|>1

my
i,t(E) (4)



6 Nicolas Sutton-Charani and Sébastien Destercke and Thierry Denœux

Given this sample, the evidential accuracy can be computed as follows:

L(ε;me) =
n

∏
i=1

[(1− ε)pli(0)+ ε pli(1)] (5)

Q(ε; ε̂
(q)) = nlog(1− ε)+ log(

ε

1− ε
)

n

∑
i=1

ξ
(q)
i (6)

ε̂
(r+1) = argmax

ε∈[0,1]
Q(ε; ε̂

(q)) =
1
N

N

∑
i=1

ξ
(q)
i (7)

where

ξ
(q)
i = E[Ei | ε̂(q);me

i ] =
ε̂(q)pli(1)

(1− ε̂(q))pli(0)+ ε̂(q)pli(1)

with pli(0) = Pl({ei = 0}) = me
i ({0})+me

i ({1,0}) and pli(1) = Pl({ei = 1}) =
me

i ({1})+me
i ({1,0})

ε̂ = 0.4 ε̂ = 0.6

Fig. 1 Variations of the evidential error rate ε̂ with the uncertainty level γ when ε̃ = 0.4 and 0.6

As an illustration, Figure 1 represents the variation of the evidential error rate
in function of me

i ({0,1}) = γ for n′ = 100 samples, and where the proportion of
samples where me

i ({1}) = 1− γ versus samples where me
i ({0}) = 1− γ is given by

the precise error rates ε̂ 0.4 and 0.6. Interestingly we can see that the estimation,
by privileging the most present observation, tends to accentuate either the quality of
accurate models (ε̂ < 0.5) or the unreliability of inaccurate ones. We can therefore
expect this evidential accuracy to provide reliable choices.

4 Application: pruning of E2M decision trees

This section illustrates the evidential error rate to the pruning of E2M decision trees.
Considering the sequence of sub-trees induced by successive splits, we simply pick
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the one that obtains the smallest evidential error rate on a pruning sample (different
from the initial learning sample). Indeed, our goal is not to define optimal pruning
criterion, but simply to illustrate the use of evidential error rates.

Our experiments concern five precise benchmark datasets (coming from UCI)
sin which we artificially injected uncertainty. For each observation wi (attribute and
class) of the precise datasets, a noise level γi was uniformly sampled in [0,1]. A
number u was then uniformly sampled on [0,1], if u < γi then the (noised) value
wi is replaced by another value w∗i drawn uniformly from ΩW (either attribute or
class spaces), otherwise w∗i = wi. Obtained evidential data are m(w∗i ) = 1− γi and
m(ΩW ) = γi.

We learnt simultaneously standard CART decision trees and E2M ones and com-
pared their error rates. For each test we learnt the trees on one third of the datasets,
pruned them on another third and test them on the left third by computing standard
error rates and evidential ones. All computations are achieved on noised data (con-
sidering crisp replacements for CART and evidential ones for E2M) The stopping
criteria were composed of a maximum of 10 leaves and a relative minimum purity
gain of 5%.

data set
classical error rate evidential error rate

naive CART E2M naive CART E2M
unpruned pruned unpruned pruned unpruned pruned unpruned pruned

iris 0.67 0.60 0.60 0.57 0.58 0.79 0.65 0.66 0.59 0.60
balance scale 0.60 0.60 0.60 0.58 0.58 0.63 0.62 0.62 0.51 0.51

wine 0.65 0.61 0.62 0.60 0.60 0.75 0.64 0.67 0.64 0.64
glass 0.68 0.69 0.68 0.68 0.67 0.74 0.73 0.73 0.67 0.67
e.coli 0.72 0.73 0.72 0.74 0.73 0.75 0.74 0.74 0.71 0.70

Table 1 Comparison of CART and E2M decision trees efficiency before and after pruning

Table 1 summarizes the means of error rates obtained for 100 tests for each
dataset. For each methodology the error rate are compared before the learning (the
naive error rate is obtained by predicting systematicaly the class the most frequent in
the learning sample), once the trees are learnt but before pruning and after pruning.
The high error rates are due to noise both in the learning and in the testing phases.

Both evidential and classical error rates appear to be smaller for E2M trees than
for CART ones. If this is not surprising for the evidential error rate after pruning (as
it is the minimized criterion), the other better scores confirm the interest of using
evidential approaches. The pruning strategy also increases accuracy for the balance
and glass datasets, despite the small size of the learnt trees. E2M trees appear to
be naturally smaller than CART ones but can still be pruned thank to the evidential
error rates computations.

Table 2 compares the size of the CART and E2M trees before and after pruning.
A learning failure occurs when the noised dataset does not enable any first split in
regards to the stopping criteria. CART trees appears to be bigger than E2M ones
before and after pruning. We can interpret this as an impact of the data uncertainty
on the complexity of the learnt model. In deed, it not necessary to have a complex
model with partially unreliable data.
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data set
CART E2M

before pruning after pruning before pruning after pruning
# failures # leaves # failures # leaves # failures # leaves # failures # leaves

iris 3 9.57 13 4.57 0 4.36 6 3.39
balance scale 99 1.01 99 1.01 0 7.01 0 5.21

wine 0 10 15 4.79 0 4.05 10 3.06
glass 52 5.26 70 2.08 0 6.92 14 4.46
e.coli 52 5.26 70 2.08 0 6.92 14 4.46

Table 2 Comparison of CART and E2M decision trees sizes before and after pruning

5 Conclusions

We have introduced a way, through the notion of evidential likelihood, to evaluate
classifier in presence of uncertain (evidential) data. Such a technique appears as
essential and necessary if we want to fully tackle the problem of uncertain data,
as assuming uncertain learning data and certain test data (at least in the output), if
valid on benchmark data sets, seems unrealistic in practical applications. We have
also tested our approach on the E2M decision trees, and doing so have proposed, to
our knowledge, the first method that is able to handle data uncertainty in attributes
and classes, both in learning and testing.

As perspective, it would be interesting to compare our study to other approaches,
both from a theoretical and practical standpoint. For example, we could compare
ourselves to the strategy consisting of transforming evidential data into probabilistic
one through the pignistic transform [7].
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