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Transfer learning: a Riemannian geometry
framework with applications to Brain-Computer

Interfaces
Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, and Yannick Berthoumieu

Abstract—Objective: This paper tackles the problem of trans-
fer learning in the context of EEG-based Brain Computer
Interface (BCI) classification. In particular the problems of cross-
session and cross-subject classification are considered. These
problems concern the ability to use data from previous sessions
or from a database of past users to calibrate and initialize
the classifier, allowing a calibration-less BCI mode of operation.
Methods: Data are represented using spatial covariance matrices
of the EEG signals, exploiting the recent successful techniques
based on the Riemannian geometry of the manifold of Symmetric
Positive Definite (SPD) matrices. Cross-session and cross-subject
classification can be difficult, due to the many changes intervening
between sessions and between subjects, including physiologi-
cal, environmental, as well as instrumental changes. Here we
propose to affine transform the covariance matrices of every
session/subject in order to center them with respect to a reference
covariance matrix, making data from different sessions/subjects
comparable. Then, classification is performed both using a stan-
dard Minimum Distance to Mean (MDM) classifier, and through
a probabilistic classifier recently developed in the literature,
based on a density function (mixture of Riemannian Gaussian
distributions) defined on the SPD manifold. Results: The im-
provements in terms of classification performances achieved by
introducing the affine transformation are documented with the
analysis of two BCI data sets. Conclusion and significance: Hence,
we make, through the affine transformation proposed, data from
different sessions and subject comparable, providing a significant
improvement in the BCI transfer learning problem.

Index Terms—Brain Computer Interface, electroencephalog-
raphy, covariance matrices, Riemannian geometry, mixtures of
Gaussian.

I. INTRODUCTION

ABrain Computer Interface (BCI) is a system capable of
predicting or classifying cognitive states and intentions

of the user through the analysis of neurophysiological signals
[24], [32]. Historically, BCIs have been developed to allow
severely paralyzed people to communicate or interact with
their environment without relying on the normal muscular
or peripheral nerve outputs [8]. More recently, BCIs have
been proposed also for healthy people, for instance in driving,
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forensics, or gaming applications [11], [20], [29]. Several
neurophysiological signals can be used for a BCI, either
invasive or semi-invasive, like electrodes implanted into the
grey matter or sub-durally. Most BCIs however make use of
non-invasive neuroimaging modalities, such as near-infrared
spectroscopy and, especially, electroencephalography (EEG),
which suit both clinical and healthy populations. In this paper
we focus on EEG-based BCIs.

The standard classification technique consists of two opera-
tional stages [9], [18]. First, EEG signals of a training set are
transformed through frequency and/or spatial filters in order
to extract discriminant features [8], [16]. A very popular filter
in this stage is the Common Spatial Pattern (CSP) [18], [19].
Second, the features enter a machine learning algorithm in
order to compute a decision function for performing classifi-
cation on the test set. This is done by supervised techniques
like, for instance, Linear Discriminant Analysis (LDA) [9].

A different approach was presented in [2], where classi-
fication is performed using the signal covariance matrices
as feature of interest. Covariance matrices do not belong
to an Euclidean space, instead they belong to the smooth
Riemannian manifold of Symmetric Positive Definite (SPD)
matrices [5]. Hence, in [2], the properties of SPD manifold are
used to perform BCI classification directly on the manifold,
as illustrated in subsection II-D. In this paper we consider two
separate improvements with respect to the method described
in [2]. The first improvement relates to the classification
techniques. In [2] the authors used a basic classifier, named
Minimum Distance to Mean (MDM), which takes into account
distances on the manifold between the observations and some
reference points of the classes, known as centers of mass,
means, or barycenters. Here we introduce a probabilistic clas-
sifier, modeling the class probability distributions, exploiting
Riemannian Gaussian and mixture of Gaussian distributions
introduced in [34], and applied to EEG classification in [37].
The second improvement relates to the problem of transfer
learning [30]. In the machine learning field, transfer learning is
defined as the ability to use previous knowledge as features in
a new task/domain related to the previous one. Some examples
of transfer learning applied to BCI problem can be found in
[15], [21], [27] and [36]. In this paper we focus specifically on
the problem of cross-session and cross-subject BCI learning.
A classical BCI requires a calibration stage at each run,
even for a known user. The calibration stage, however short,
is inconvenient both for patients, because it wastes part of
their limited attention, and for the general public, which is
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usually unwilling to undergo repeated calibration sessions.
As proposed in [12] a BCI should be able to calibrate on-
line while it is being used. The problem is then to provide a
workable initialization, that is, one that allows the operation
of the BCI at the very beginning of the session, even if
suboptimal. For a new user, a database of past users can be
considered to initialize the classifier. This form of learning
is referred to as cross-subject learning. From the second
usage on, past data from previous sessions of the user can
be employed. This is referred to as cross-session learning.
Cross-session learning is known to be a difficult task due to
several changes intervening in between the sessions, including
physiological, environmental, as well as instrumental changes
(e.g., electrode positioning and impedance). Even more dif-
ficult is the cross-subject learning, because the spatial and
temporal configuration of brain dipolar sources is subject to
substantial individual variability. In the Riemannian framework
the cross-session and cross-subject changes can be understood
as geometric transformations of the covariance matrices. In
this work we will refer to this geometric transformation as a
“shift”, although we should keep in mind that a transformation
may entail more than a simple displacement on the manifold.

A first attempt to solve the shift problem is described in
[33], however this work does not consider the structure of
the covariance matrix manifold. In [3], instead, the authors
introduce a way to solve the shift problem in a Riemannian
framework, for the cross-session situation, however this ap-
proach depends on the order of the tasks performed during an
experiment and on the (unknown) structure of the classes in
the classification problem. In this paper we develop an idea
similar to the one presented in [33], but in a Riemannian
framework. Our approach does not depend on the (unknown)
label sequence of the observations obtained during the ex-
periment. We assume that different source configurations and
electrode positions induce shifts of covariance matrices with
respect to a reference (resting) state, but that when the brain
is engaged in a specific task, covariance matrices move over
the SPD manifold in the same direction. This assumption
allows a workable model and a simple solution thanks to
the congruence invariance property of SPD matrices (that
we will describe in subsection II-A). We will center the
covariance matrices of every session/subject with respect to
a reference covariance matrix so that what we observe is only
the displacement with respect to the reference state due to
the task. We estimate a reference matrix for every session,
but different between sessions and between subjects. Then,
we perform a congruent transformation of our data using this
reference matrix. In this way observations belonging to the
same session and subject do not change their relative distances
and geometric structure. However, since the reference matrix
varies among sessions and among subjects, these data are
moved in the manifold in different directions and, if the
reference matrix is chosen accurately, data from different
sessions/subjects become comparable. As we will show with
the analysis of two BCI data sets, this procedure provides
an efficient initialization for cross-session and cross-subject
classification problems.

In EEG-based BCI literature, different kinds of tasks can be

used to design a BCI (see [12] for an exhaustive description).
In this work we analyze two different paradigms in order
to widen the scope of our analysis. The first one relates to
a Motor Imagery (MI) paradigm and the second one to an
Event-Related Potential (ERP) paradigm. For the first dataset
we analyze nine subjects, each one performing two sessions,
and we evaluate the accuracy for cross-session and cross-
subject classification. We obtain significant improvements by
using the proposed procedure, especially for the cross-subject
classification, where we can increase the performance by 30%
in some cases. For the second dataset we analyze 17 subjects
and we evaluate the precision for cross-subject classification.
Also in this case we obtain substantial improvements by
introducing our procedure. Furthermore, for both datasets, we
discuss the situations where the introduction of a probabilistic
classifier can result in further improvements.

The paper is organized as it follows. In Section II basic
concepts of Riemannian geometry are introduced. In Section
III the two BCI paradigms are described in details, focusing
in particular on how to build SPD matrices in the two cases to
be used in a Riemannian framework. Then, in Section IV we
describe the proposed Riemannian transfer learning methods.
In Section V we present the results obtained with the two
datasets analyzed. Finally, we conclude our work in Section
VI.

II. ELEMENTS OF RIEMANNIAN GEOMETRY

In this section we present some basic properties of the space
of SPD matrices, introducing a probabilistic distribution on
this space and defining some classification rules to classify
SPD matrices.

A. Manifold of SPD matrices: basic concepts

We start by introducing M(n) and S(n) as the vector space
of n × n square matrices, and the vector space in M(n) of
symmetric n × n square matrices, respectively. Specifically,
M(n) = {M ∈ Rn×n}, while S(n) = {S ∈ M(n), S =
ST }. The set of SPD matrices P (n) = {P ∈ S(n), uTPu >
0 ∀u ∈ Rn,u 6= 0} is an open subset of S(n), in particular
it is an open convex cone of dimension n(n+1)

2 . P (n) is the
space of covariance matrices and it is our space of interest. If
endowed with the Fisher-Rao metrics [5], P (n) turns out to be
a smooth Riemannian manifold with non positive curvature.
This means that for every point P ∈ P (n), in the tangent
space TP (that in this case can be identified with S(n)), we
define a scalar product which varies smoothly with P . The
local inner product and, as a consequence, the local norm, are
defined as

〈U, V 〉P = tr(P−1UP−1V ), (1)
‖U‖2P = 〈U,U〉P ,

respectively, where U, V ∈ S(n). Through the natural metrics
(1), a distance between two points P1, P2 ∈ P (n) can be
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defined as the length of the unique shortest curve (called
geodesic) connecting P1 and P2 [5]

δ(P1, P2) = ‖ log(P−1/21 P2P
−1/2
1 )‖F =

(
n∑

i=1

log2 λi

)1/2

,

(2)
with ‖ · ‖F the Frobenius norm, and λ1, ..., λn the eigenvalues
of P−1/21 P2P

−1/2
1 (or P−11 P2, with the indices 1 and 2 that

can be permuted since δ(·, ·) is symmetric). The Riemannian
distance δ(·, ·) has two important invariances:

i. δ(P−11 , P−12 ) = δ(P1, P2);

ii. δ(CTP1C,C
TP2C) = δ(P1, P2) ∀C ∈ GL(n),

with GL(n) = {C ∈M(n), C invertible} the set of invertible
matrices. Property ii, called congruence invariance, means
that the distance between two SPD matrices is invariant with
respect to a change of reference, i.e., to any linear invertible
transformation in the data (recordings) space. This property
will be particularly important in the following.

B. Center of mass of a set of SPD matrices

The simplest statistical descriptor of a set of objects is the
concept of mean value, which is meant to provide a suitable
representative of the set. The most famous mean is the arith-
metic mean. It has an important variational characterization:
given a set P1, ..., PN of SPD matrices, the arithmetic mean
A(P1, ..., PN ) is the point P which minimizes the sum of
squared Euclidian distances de(·, ·)

A(P1, ..., PN ) = arg min
P∈P (n)

N∑
i=1

d2e(Pi, P ), (3)

Similarly, it has been shown that we can use the Riemannian
distance to define a geometric mean, or center of mass, of a
set of SPD matrices, through a variational approach [6]. The
center of mass G(P1, ..., PN ) is defined as the point of the
manifold satisfying

G(P1, ..., PN ) = arg min
P∈P (n)

N∑
i=1

δ2(Pi, P ). (4)

with δ(·, ·) defined in (2). In the literature, (4) is often called
Cartan/Fréchet/Karcher mean [5], [6], [22]. Since P (n) is
a Riemannian manifold of non-positive curvature, existence
and unicity of the Riemannian mean can be proved [1], [28].
However, an explicit solution exists only for N = 2, where
it coincides with the middle point of the geodesic connecting
the two SPD matrices of the set. For N > 2 a solution can
be found iteratively and several algorithms following different
approaches have been developed in the literature [22]. Some
of them try to find the right value through numerical procedure
like deterministic line search [17], [26], simple or stochastic
gradient descent [10], [31]. Other faster and computational
lighter approaches look for some suitable approximation of
the center of mass, see for instance [6], [13], [14].

An important invariance property for the center of mass is:

G(CTP1C, ..., C
TPNC) = CTG(P1, ..., PN )C ∀C ∈ GL(n),

inherited from the congruance invariance of the Riemannian
distance mentioned above. This result means that the center
of gravity is shifted through the same affine transformation as
the matrices of the set.

C. Mixtures of Gaussian distributions on the manifold of SPD
matrices

Distance and center of mass are geometric concepts con-
cerning the properties of the manifold of SPD matrices, but
they do not concern any probabilistic assumptions on a sample
of SPD matrices. To consider a probabilistic model we intro-
duce a class of probability distributions on the space P (n),
called Riemannian Gaussian distributions and defined in [34].
It will be denoted G(P , σ) and depends on two parameters,
P ∈ P (n) and σ > 0. It is defined by its probability density
function

f(P |P , σ) = 1

ζ(σ)
exp

(
−δ

2(P, P )

σ2

)
(5)

where ζ(σ) is a normalization function. In [34] it has been
shown that, given P1, ..., PN i.i.d. from (5), the Maximum
Likelihood Estimator (MLE) of P coincides with the center of
mass (4). For the MLE of σ, instead, an efficient procedure is
presented in [37]. If we consider only Gaussian distribution,
we are not able to describe a wide range of real problems.
In general in the classical Euclidean framework, in order to
include several distribution shapes, mixtures of Gaussians have
been considered [34]. In the Riemannian framework this is also
possible in a straightforward way. A mixture of Riemannian
Gaussian distributions is a distribution on P (n) whose density
function can be written as

f(P ) =

M∑
m=1

wmf(P |Pm, σm), (6)

with w1, ..., wM non-negative weights summing up to 1.
The parameters of (6) can be found, for instance, through
an Expectation-Maximization (EM) algorithm, as described
in [34]. This class of distributions will be used to build a
probabilistic classifier for data in P (n), as described in the
next subsection.

D. Classification techniques in the manifold of SPD matrices

In [2] the authors proposed a classification procedure based
on Minimum Distance to Mean (MDM) classifier, which is
defined as it follows: given K classes and a training phase
where the centers of mass Ĉ(k) of the classes (k = 1, ...,K)
are estimated, a new observation Ci is assigned to the k̂ class
according to the classification rule

k̂ = arg min
k∈{1,...,K}

{dR(Ci, Ĉ(k))}. (7)

This rule takes into consideration the Riemannian distance
of the new observation to the centers of mass, ignoring
information on the dispersion of the groups, encoded by the
parameter σ in the Riemannian Gaussian distribution (5). The
principle of Bayesian classification can be used exploiting such
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a distribution. In this case, the classification rule based on the
a posteriori distribution reads

k̂ = arg min
k∈{1,...,K}

{
log ζ(σ̂(k)) +

d2R(Ci, Ĉ(k))

2σ̂2(k)

}
, (8)

where σ̂(k) is the MLE estimate of the dispersion parameter
of the k-th class [37]. Of course, if the σ̂(k) coincide for all
classes, (8) reduces to (7). In order not to be limited to a simple
class of distributions, we can consider mixtures of Gaussian
(6), updating Bayesian classification rule accordingly. In this
paper we consider a number of mixture components M
varying from 2 to 4.

III. DATA

We analyze two different EEG-based BCI datasets, related
to MI and ERP frameworks. The way to build SPD matrices is
different between the two cases and it is described in subsec-
tion III-A and III-B, respectively. Then, in subsection III-C, we
will show how cross-session and cross-subject classifications
can be problematic, exploiting a visualization technique for
high-dimensional data named t-Stochastic Neighbor Embed-
ding (t-SNE) [35].

A. Motor Imagery: data construction

The analyzed dataset is the one from BCI competition [25],
already analyzed in [2], [18]. It contains EEG data from nine
subjects performing four kinds of motor imagery (right hand,
left hand, foot, and tongue imagined movements). A total of
576 trials per subject are available, each trial corresponding to
a movement (balanced experiment, i.e., 144 trials per class).
Half of the trials (288) are obtained during the first session,
and the other half during a second session. For each trial l we
register the centered EEG signal Xl ∈ Rn×T , where n is the
number of electrodes and T the number of sample points of
the time window considered to evaluate sample covariance, in
this case from 0.5 to 2.5 seconds after the stimulus. Then we
use for the analysis the empirical covariance matrix defined as

CXl
=

1

T − 1
XlX

T
l .

In this experiment signals are recorded using 22 electrodes
(n = 22), hence covariance matrices here belong to P (22). As
usual with motor imagery data, before computing covariance
matrices, EEG signals are bandpass filtered by a 5-th order
Butterworth filter in the frequency band of 8 – 30 Hz.

B. ERP: data construction

This dataset cames from a Brain Invaders experiment car-
ried out at GIPSA-lab in Grenoble, France [11]. Subjects
watch a screen with 36 aliens flashing alternatively. They are
requested to mentally count the number of specific (known)
target alien flashes. This experiment generates in the EEG
signals an Event-Related Potential (ERP) named P300 when-
ever the target alien flashes [11]. The main goal is to detect
the target trials from the EEG signals. Thus, we have two
classes in this experiment, P300 signals (target class) and

normal signals (non target class). In this framework we cannot
simply consider the covariance matrices CXl

. Indeed, if we
randomly shuffle the time instants for a specific trial, the
estimate of its covariance matrix does not change, and thus the
classification result. Since temporal information are essential
to detect ERP, we augmented the vector by integrating a
component related to the temporal profile of the ERP event
considered, following the procedure described in [4] and [23].
Specifically, we considered the average ERP response

E =
1

|K+|
∑
l∈K+

Xl ∈ Rn×T ,

where K+ is the group of target trials (ERP in this case). Then
we built an augmented trial signal matrix X̃l, defined as

X̃l =

[
E
Xl

]
∈ R2n×T ,

and then we considered an augmented covariance matrix C̃X̃l

of dimension 2n× 2n:

C̃X̃l
=

[
CE CEXl

CXlE CXl

]
.

Relevant information for distinguishing a target from a non-
target trial is embedded in the block CEXl

(and in its transpose
CXlE). In these blocks, entries will be far from zero only
for target trials, since only the time series of target trials are
correlated to the average ERP E. Thus, on the SPD manifold
augmented covariance matrices for target trials will be far
from the augmented covariance matrices for non-target trials.
Notice that if we randomly shuffle the time instants for a
specific trials, the augmented covariance matrix does change,
which means that we have effectively embedded the temporal
information into these matrices. A training-phase is needed
to build the average ERP response. In this experiment we
consider 17 subjects, with a number of trials different from
one subject to another, ranging from 500 to 750. EEG signals
are recorded at a frequency of 512 Hz using 13 electrodes
(i.e. n = 13), hence covariance matrices here belong to P (26).
Every trial is registered for a period of time of one second after
the stimulus (the flash). Thus, augmented covariance matrices
are estimated using 512 observations.

C. Data visualization using t-SNE

The visualization technique called t-SNE [35], visualizes
high-dimensional data by mapping each point to a location
in a 2- or 3-dimensional space, while optimizing the pairwise
distances in the reduced space with respect to the distances in
the original manifold. In our case we aim to represent each
covariance matrix as a point in a 2 dimensional space in order
to appreciate the effect of cross-session and cross-subject shift.

In Figure 1 and 5 the data from the MI experiment are
shown. In each plot of Figure 1, data for the two sessions
are depicted (circles for session 1 and crosses for session 2),
with colors identifying the classes. In Figure 5 a more detailed
representation of subject 9 is depicted, with plots divided by
class. We can observe that data relative to session 2 are shifted
with respect to session 1, for every subject. This means that, in
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Fig. 1. Motor Imagery dataset: for every subject the original covariance
matrices for session 1 (circles) and 2 (crosses) are depicted. Data from
different sessions are well separated. Data are also colored by classes (right
hand, left hand, foot, and tongue imagined movements). Visualization obtained
through t-SNE method using the Riemannian distance (2).

Fig. 2. Motor Imagery dataset: original covariance matrices of all subjects.
There are two data groups for each subject, related to session 1 and 2.
Visualization obtained through t-SNE method using the Riemannian distance
(2).

Fig. 3. P300 dataset: original covariance matrices of some subjects. Data
are colored by classes (target and non-target). Visualization obtained through
t-SNE method using the Riemannian distance (2).

the original space, the two groups (session 1 and session 2) are
well separated, and that the cross-session classification is not a
trivial problem. In Figure 2, instead, the data of all subjects are
depicted together, showing an even worse separation among
subjects.

Regarding the P300 experiment, we have one session per
subject, thus we focus only on the cross-subject transfer
learning. The augmented covariance matrices for four subjects
are depicted in Figure 3. Even in this case it is clear that
data related to different subjects are far away from each other,
making cross-subject classification in the original data space
hopeless.

IV. METHODS

From the visualization analysis of section III-C, it is clear
that a data transformation is needed in order to make cross-
session and cross-subject classification efficient. If we consider
again Figure 1 (and Figure 5 for more detailed pictures,
separated by class, related to subject 9), apart from the shift,
data coming from different sessions present a similar shape.
We assume that from one session to another, what it is
changing can be captured in a “reference state”, whereas
covariance matrices move in a consistent direction according
to the task performed by the subject. This assumption leads
to the idea introduced in [33], which we here translate in the
Riemannian framework: let R

(1)
and R

(2)
be the centers of

mass (unknown in principle) of the reference state for session
1 and 2, respectively. Let {C(1)

1 , ..., C
(1)
N1
} and {C(2)

1 , ..., C
(2)
N2
}

be the covariance matrices observed in session 1 and 2,
respectively. Let us align the two datasets from sessions 1
and 2 by transformation:

C
(j)
i ⇒ (R

(j)
)−1/2C

(j)
i (R

(j)
)−1/2 i = 1, ..., Nj j = 1, 2

(9)
As a consequence, due to the congruence invariance property
of the Riemannian distance, while the distances between points
of the same session remain unchanged, the reference state of



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 65(5), 1107-1116 6

Fig. 4. Motor Imagery dataset: for every subject the affine-transformed
covariance matrices for session 1 (circles) and 2 (crosses) are depicted. Data
from different sessions in this case are grouped togheter. Data are also colored
by classes (right hand, left hand, foot, and tongue imagined movements).
Visualization obtained through t-SNE method using the Riemannian distance
(2).

both sessions is centered at the identity matrix. Hence, if the
assumption holds, the data points relative to a specific task
move from the identity in the same way along the manifold
for all session. This procedure can be followed also to make
data relative to different subjects comparable, both for the MI
and the P300 analysis. We simply need to define a reference
matrix and a suitable procedure to implement transformation
(9) online.

In the MI dataset, reference EEG signals are directly
available. Indeed, between the different trials, there are time
windows of 1.5 seconds where the subject is not perform-
ing any task. If we call these matrices {R(1)

1 , ..., R
(1)
N1
} and

{R(2)
1 , ..., R

(2)
N2
} for the two sessions, we can use these samples

to obtain the estimates of the center of mass of the reference
state R

(1)
and R

(2)
. Then, we can perform the affine trans-

formation described above. We depict in Figure 4 and 5 the
projection in the 2-dimensional space of covariance matrices
after the affine transformation. It is quite apparent that the shift
between two different sessions has been removed. The same
procedure can be applied in the cross-subjects classification.

However we have to take into account that in a real situation
we have to implement this affine transformation online. If we
consider, for instance, the cross-session classification using
session 1 as training set and session 2 as test set, the reference
state matrices of session 2 are not available at the beginning,
but we observe them one at a time. Hence, we propose an
online estimate of R

(2)
(or R

(1)
if we consider session 1 as

test set). Specifically, at observation j, we evaluate a weighted
center of mass modifying (4) such as

R
(2)

j = argmin
R

j∑
t=1

t

j
d2(R

(2)
t , R) (10)

Thus, we can use this online affine transformation strategy to
perform cross-session and cross-subject classification.

For the P300 analysis we need to apply further care. Indeed
a separated resting-state signal is not available during the
experiment, since flashes occur one after the other and the
associated ERP overlap. However, the non-target trials can
be considered as resting state, or reference events. Then,
we build the reference matrix R using the elements C̃X̃l

belonging to the non-target group. We use the true labels,
because this experiment can be done in a supervised setting,
since classification is used in the game to destroy the aliens,
but the true labels can be controlled online. More generally,
random epochs bootstrapped from the incoming flow of EEG
can be used to define the resting state. Then, for the online
affine transformation strategy, we use equation (10).

V. RESULTS

In this section we firstly present, in subsection V-A, the re-
sults obtained for cross-session and cross-subject classification
of MI data. Then, in subsection V-B, we present cross-subject
classification results related to the P300 problem. In both
cases the classification methods considered are the Minimum
Distance to Mean (MDM) and the Bayesian classifiers with
Gaussian distribution (GM) and with mixtures of Gaussian
distributions with M components (GM-M ). The best results
obtained using mixtures of Gaussians is also reported (GM-b).

A. Motor Imagery

The BCI competition dataset for Motor Imagery has already
been analyzed using MDM in [2], and with a first attempt to
introduce Riemannian mixtures of Gaussians in [37]. In [2],
[12], [15] a comparison of Riemannian techniques to other
standard methods, like Common Spatial Pattern (CSP) and
Linear Discriminant Analysis (LDA), is presented. Here the
focus is on the cross-session and cross-subject extensions,
analyzing the strength of our proposal based on an affine trans-
formation of the covariance matrix. This makes our procedure
suitable to deal with Riemannian methods, but not directly
relevant for other standard methods like LDA or CSP. In table
I the accuracies, that is the proportion of correctly classified
observations, for cross-session classification are shown. For
every method and for every subject we report the mean
accuracy using session 1 as training set and session 2 as
test set, and vice versa, and we compare these means before
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Fig. 5. Motor Imagery dataset: comparison class by class for subject 9. For every class original data (on the top) and affine-transformed data (on the bottom)
are shown. Visualization obtained through t-SNE method using the Riemannian distance (2).

Subject MDM GM GM-2 GM-3 GM-4 GM-b
1 79.2 | 79.4 76.6 | 79.2 73.1 | 77.3 71.5 | 79.6 72.6 | 73.6 73.1 | 79.6
3 72.8 | 76.7 72.6 | 76.9 71.6 | 80.1 71.4 | 81.5 73.8 | 78.2 73.8 | 81.5
7 64.4 | 76.1 61.2 | 75.9 69.8 | 75.2 64.6 | 72.6 66.5 | 73.6 69.8 | 75.2
8 73.1 | 79.3 72.6 | 79.2 73.1 | 81.6 72.4 | 81.1 70.0 | 82.1 73.1 | 82.1
9 74.3 | 74.7 74.5 | 75.2 76.4 | 81.8 77.3 | 78.6 77.3 | 78.3 77.3 | 81.8

Mean 72.8 | 77.2 71.5 | 77.3 72.8 | 79.2 71.4 | 78.7 72.0 | 77.2 73.4 | 80.0

2 51.9 | 53.7 51.4 | 52.1 40.1 | 49.7 35.1 | 48.9 36.3 | 50.6 40.1 | 50.6
4 55.8 | 53.8 52.3 | 53.1 46.4 | 51.6 44.6 | 49.7 45.5 | 48.8 46.4 | 51.6
5 42.2 | 46.0 36.3 | 45.2 32.7 | 43.2 31.1 | 42.2 30.1 | 41.0 32.7 | 43.2
6 44.1 | 45.3 44.6 | 45.3 42.4 | 43.4 38.8 | 40.5 42.9 | 44.6 42.9 | 44.6

Mean 48.5 | 49.7 46.2 | 48.9 40.4 | 46.9 37.4 | 45.3 38.7 | 46.3 40.5 | 47.5

TABLE I
MOTOR IMAGERY DATASET: MEAN CLASSIFICATION ACCURACY USING SESSION 1 AS TRAINING SET AND SESSION 2 AS TEST SET, AND VICEVERSA.
SUBJECTS ARE DIVIDED ACCORDING TO THEIR PERFORMANCES IN GOOD SUBJECTS (5 OF THEM, SHOWN IN THE TOP PART OF THE TABLE) AND BAD

SUBJECTS (4 OF THEM, SHOWN IN THE BOTTOM PART OF THE TABLE). THE RESULTS ARE RELATIVE TO ORIGINAL COVARIANCE MATRICES (IN BLACK) |
AFFINE-TRANSFORMED COVARIANCE MATRICES (IN BOLD GREEN).

Test Subj. MDM GM-1 GM-2 GM-3 GM-4
1 46.8 (14.6) | 60.4 (7.9) 48.3 (15.7) | 61.0 (8.5) 46.1 (14.0) | 61.0 (8.4) 41.9 (13.4) | 59.2 (8.7) 40.7 (14.6) | 61.9 (8.0)
3 47.2 (15.6) | 69.4 (3.5) 45.8 (14.6) | 69.0 (2.5) 47.0 (15.5) | 71.5 (3.0) 44.4 (12.4) | 71.7 (2.9) 52.6 (5.1) | 70.2 (6.5)
7 35.2 (7.9) | 57.0 (8.9) 35.2 (9.2) | 56.1 (8.3) 34.9 (9.1) | 55.9 (8.2) 37.6 (12.9) | 55.8 (8.7) 37.6 (13.9) | 56.1 (9.0)
8 35.0 (9.5) | 63.2 (6.7) 34.5 (9.5) | 63.2 (6.9) 36.7 (6.0) | 65.3 (7.9) 33.9 (7.8) | 63.5 (8.5) 40.9 (13.6) | 66.0 (8.4)
9 30.0 (5.8) | 68.8 (6.1) 28.7 (3.1) | 68.9 (5.9) 30.1 (7.8) | 67.8 (7.0) 28.6 (6.9) | 67.9 (6.4) 36.1 (8.3) | 66.7 (8.1)

TABLE II
MOTOR IMAGERY DATASET: CLASSIFICATION ACCURACY FOR THE CROSS-SUBJECT GENERALIZATION. FOR EVERY TEST SUBJECT, THE OTHER GOOD

SUBJECTS ARE USED ONE AT EACH TIME AS TRAINING SUBJECT. IN THE TABLE WE REPORT MEAN, WITH STANDARD DEVIATION IN BRACES. THE
RESULTS ARE RELATIVE TO ORIGINAL COVARIANCE MATRICES (IN BLACK) | AFFINE-TRANSFORMED COVARIANCE MATRICES (IN BOLD GREEN).

and after the online affine transformation described in section
IV. We separate in the table subjects with a higher accuracy
(good subjects), shown in the top of Table I, with subject
with lower accuracy, because the results appear to depend
upon the level of the performances. In Figure 6 (top panel),
a scatter plot for the MDM classifier accuracies is shown.
The affine transformation provides significant improvements
for all subjects: a t-test on the difference between before and
after the affine transformation, considering the values relative
to MDM method, provides a p-value of 0.03, despite the low
power of the test having only 9 observations. The comparison
between the methods confirms what was observed in [37], with
Bayesian classifiers displaying better performances for good

subjects.

We now consider cross-subject classification results. Since
cross-subject generalization is even more tangled than cross-
session, we focus only on the good subjects, in order to
avoid that bad accuracies due to the subjects could affect
the interpretation of the results. In Table II we can compare
accuracies before and after the affine transformation of a cross-
subject classification where each subject is alternatively used
as test set, with the others, one at the time, used as training
set. Mean and standard deviation accuracies are reported in
the Table. Here the benefits due to affine transformation are
even stronger. Specifically, in Table III, we can look in details
at the confusion matrices relative to the third row of Table II,
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k = 1 k = 2 k = 3 k = 4

k̂ = 1 11 0 1 0

k̂ = 2 4 11 8 1

k̂ = 3 26 4 26 0

k̂ = 4 59 85 65 99

Tot. (%) 100 100 100 100

k = 1 k = 2 k = 3 k = 4

k̂ = 1 70 9 18 1

k̂ = 2 0 56 1 0

k̂ = 3 19 4 45 3

k̂ = 4 11 31 36 96

Tot. (%) 100 100 100 100
TABLE III

MOTOR IMAGERY DATASET: CONFUSION MATRIX (WITH PERCENTAGES REPORTED) FOR MDM CLASSIFICATION METHOD WITH ORIGINAL (ON THE
LEFT) AND AFFINE-TRANSFORMED (ON THE RIGHT) COVARIANCE MATRICES. SUBJECTS 3 IS USED AS TRAINING SET, WHILE SUBJECT 8 AS TEST SET.

Subject MDM GM-1 GM-2 GM-3 GM-4 GM-b
1 94.0 94.6 94.9 95.5 96.6 96.6
2 85.7 86.2 87.5 87.1 88.0 88.0
3 84.6 84.0 83.8 85.2 88.1 88.1
5 83.7 83.9 84.6 85.5 86.9 86.9
6 79.1 78.7 84.1 86.5 86.4 86.5
7 79.5 78.8 77.4 80.6 75.6 80.6
10 84.4 84.4 83.8 88.1 90.5 90.5
11 80.7 80.5 80.7 83.0 85.8 85.8
12 93.2 93.0 92.8 95.2 94.7 95.2
13 84.8 84.6 85.2 86.3 84.2 86.3
14 92.1 92.2 93.6 91.3 93.4 93.6
17 77.2 77.5 76.5 79.7 79.5 79.7

Mean 84.9 84.9 85.4 87.0 87.5 88.2

4 72.6 72.7 71.7 68.9 67.9 71.7
8 73.2 73.0 73.2 74.8 72.1 74.8
9 42.8 41.6 36.1 37.3 38.3 38.3
15 66.7 66.2 65.5 61.6 62.9 65.5
16 49.3 49.5 44.5 43.3 45.3 45.3

Mean 60.9 60.6 58.2 57.2 57.3 59.1
TABLE IV

P300 DATASET: MEAN CLASSIFICATION PRECISION FOR THE SUBJECTS USING 30% OF DATA AS TRAINING SET. TRAINING SET IS CHOSEN AT RANDOM,
AND THE PROCEDURE IS REPEATED 25 TIMES. SUBJECTS ARE DIVIDED ACCORDING TO THEIR PERFORMANCES IN GOOD SUBJECTS (12 OF THEM,

SHOWN IN THE TOP PART OF THE TABLE) AND BAD SUBJECTS (5 OF THEM, SHOWN IN THE BOTTOM PART OF THE TABLE).

when subject 3 is used as training set and subject 8 is used
as test set. Table III refers to the MDM algorithm, and on the
left we can observe that, without any transformation, a lot of
trails are assigned to the class number 4, with an accuracy
equal to 36.8%. After the affine transformation, instead, the
classification is significantly better, with an accuracy equal
to 66.5%. In particular, elements of the classes 1 and 4 are
very well predicted, as shown on the right of Table III. In
Figure 6 (bottom panel), a scatter plot for the MDM classifier
accuracies is shown.

B. ERP

In this section we consider the results of the ERP P300
experiment. First of all we point out that since the two classes
are strongly unbalanced (1/6th of target elements), accuracy is
not a suitable index of classification performance (a classifier
which assigns every element to the non-target class will have
an accuracy of 0.83). For this reason we consider the precision
index pr, defined as

pr =
TP

TP + FP
(11)

where TP (True Positive) is the number of elements correctly
classified as target, while FP (False Positive) is the number
of elements wrongly classified as target.

First of all, we analyze each subject separately, in order
to understand how the different classification methods work
in this framework and how performances vary between the
subjects. To do that, for each subject, we evaluate the precision
using the 30% of the data (randomly chosen) as training
set, and the other part as test set. We repeat this procedure
25 times, evaluating the mean value. Results are reported in
Table IV, where once again we separated good subjects (those
with a precision higher than 0.75) from subjects with lower
performances.

Second, to make a comparison between algorithms we can
observe that the introduction of Riemannian mixtures provides
significant improvements in the group of the good subjects,
while this is not true for the subjects with lower performances.
If we consider the 12 good subjects, a paired t-test between
MDM and GM-4 provides a p-value around 10−4.

Next, we analyze the cross-subject classification problem.
Also in this case we focus on the good subjects. In Table V we
compare precisions before and after the affine transformation.
Every good subject is alternatively used as test set, with
the others, one at the time, used as training set. Mean and
standard deviation accuracies are reported in the Table. The
results obtained after the affine transformation are very good,
similar to those obtained for the classical training/test cross-
validation procedure, even if in this case there is not a large
difference in the performance between the different methods.
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Test Subj. MDM GM-1 GM-2 GM-3 GM-4
1 64.4 (16.4) | 91.8 (3.5) 64.4 (21.0) | 92.1 (3.2) 59.1 (19.4) | 88.4 (4.7) 59.9 (23.5) | 88.2 (6.3) 59.1 (24.1) | 90.4 (4.2)
2 39.4 (32.4) | 86.3 (3.8) 41.8 (20.9) | 86.4 (3.9) 46.7 (26.3) | 84.0 (6.0) 29.9 (16.7) | 82.5 (4.6) 39.3 (28.5) | 83.3 (6.9)
3 30.1 (12.4) | 87.6 (6.1) 29.8 (15.4) | 88.1 (5.9) 25.5 (11.1) | 85.7 (7.2) 31.3 (12.8) | 84.7 (6.4) 22.9 (12.6) | 87.5 (4.3)
5 69.1 (31.1) | 80.8 (5.1) 71.1 (24.7) | 81.1 (5.5) 68.5 (28.8) | 79.7 (6.1) 67.5 (31.6) | 78.6 (7.6) 45.2 (39.3) | 79.9 (8.6)
6 49.2 (21.9) | 84.6 (6.2) 45.8 (19.8) | 83.1 (8.0) 50.6 (26.0) | 79.8 (9.5) 39.0 (23.7) | 83.7 (11.8) 41.3 (18.6) | 84.5 (8.4)
7 24.1 (22.7) | 85.8 (5.4) 27.7 (29.4) | 85.5 (6.6) 33.6 (26.6) | 81.9 (8.3) 27.2 (19.9) | 85.5 (6.2) 17.8 (17.7) | 82.6 (7.7)
10 55.1 (24.7) | 84.8 (3.8) 52.7 (15.0) | 84.9 (4.4) 51.0 (21.3) | 84.3 (4.5) 47.7 (12.4) | 80.8 (7.5) 53.4 (20.5) | 84.0 (6.5)
11 63.2 (14.5) | 86.7 (4.3) 61.2 (19.1) | 87.9 (4.0) 54.6 (22.9) | 85.8 (6.4) 59.7 (20.5) | 84.8 (5.9) 60.0 (19.7) | 87.1 (5.8)
12 59.3 (24.6) | 91.1 (3.6) 59.9 (19.5) | 92.2 (3.3) 61.9 (22.9) | 89.8 (4.8) 67.1 (26.8) | 89.8 (4.9) 60.5 (22.2) | 91.0 (3.8)
13 46.2 (22.5) | 91.7 (4.3) 48.2 (25.9) | 93.3 (4.3) 36.7 (32.8) | 90.9 (4.3) 35.4 (28.4) | 89.5 (5.1) 46.1 (32.0) | 90.7 (5.1)
14 77.2 (18.8) | 89.6 (3.7) 76.2 (23.6) | 89.9 (3.9) 62.6 (26.5) | 87.0 (6.1) 71.4 (27.4) | 86.2 (5.2) 69.5 (31.0) | 86.4 (6.1)
17 39.9 (18.3) | 89.0 (2.8) 39.6 (11.3) | 89.1 (2.9) 43.8 (24.0) | 84.9 (8.0) 31.7 (19.1) | 86.2 (4.3) 36.8 (19.2) | 86.8 (3.6)

TABLE V
P300 DATASET: CLASSIFICATION PRECISION FOR THE CROSS-SUBJECT GENERALIZATION. FOR EVERY TEST SUBJECT, THE OTHER SUBJECTS ARE USED

ONE AT EACH TIME AS TRAINING SUBJECT. IN THE TABLE WE REPORT MEAN, WITH STANDARD DEVIATION IN BRACES. THE RESULTS ARE RELATIVE TO
ORIGINAL COVARIANCE MATRICES (IN BLACK) | AFFINE-TRANSFORMED COVARIANCE MATRICES (IN BOLD GREEN).

Before affine transformation After affine transformation Before affine transformation After affine transformation
k = 0 k = 1

k̂ = 0 100 97

k̂ = 1 0 3

Tot. (%) 100 100

k = 0 k = 1

k̂ = 0 97 7

k̂ = 1 3 93

Tot. (%) 100 100

k = 0 k = 1

k̂ = 0 100 100

k̂ = 1 0 0

Tot. (%) 100 100

k = 0 k = 1

k̂ = 0 98 37

k̂ = 1 2 63

Tot. (%) 100 100
TABLE VI

P300 DATASET: CONFUSION MATRICES (WITH PERCENTAGES REPORTED) FOR MDM CLASSIFICATION METHOD. ON THE LEFT, CONFUSION MATRICES
TO COMPARE THE CROSS-SUBJECT CLASSIFICATION WITH SUBJECT 14 USED AS TEST SET AND SUBJECT 3 AS TRAINING SET, BEFORE AND AFTER AFFINE
TRANSFORMATION. ON THE RIGHT CONFUSION MATRICES ARE RELATED TO THE CROSS-SUBJECT CLASSIFICATION WITH SUBJECT 7 USED AS TEST SET

AND SUBJECT 5 AS TRAINING SET.

Fig. 6. MI example: scatter plot to compare classification results for cross-
session (on the top) and cross-subject (on the bottom) for MDM classifier
before (x-axis) and after (y-axis) affine transformation.

Fig. 7. P300 example: scatter plot to compare classification results for
cross-subject for MDM classifier before (x-axis) and after (y-axis) affine
transformation.

The results obtained without transforming data, as expected,
are very poor. In Figure 7, a scatter plot for the MDM classifier
averaged precisions shows the gain achieved by using the
affine transformation. This result is even strenghtened by the
fact that, for the evaluation of the means before the affine
transformation, we did not consider the cases where all the
observations are assigned to the non target class. Indeed
this results in a NaN , since formula (11) corresponds to
a 0

0 if no observations are classified as target. Furthermore,
the high standard deviation is caused by some situations
with a precision of 100%, but that do not represent a good
classification, since they correspond to situation where almost
every observation is classified as non-target, and only few
observations are (correctly) classified as target. This provides
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a 100% precision, but the classification cannot be considered
satisfactory. To clarify these two situations, in Table VI we
compare confusion matrices related to MDM algorithm before
and after the affine transformation. On the left, subject 14 is
used as test set and subject 3 as training set and we can observe
that, before the affine transformation, only 3 observations are
classified as target. These observations are true target objects,
resulting in a 100% precision evaluation, but the classification
obtained after data are affine-transformed is clearly better. On
the right, subject 7 is used as test set and subject 5 as training
set. In this case, before applying the affine transformation, no
observations are assigned to the target class.

VI. CONCLUSION

In this paper we present an approach based on Riemannian
geometry to deal with cross-session and cross-subject classifi-
cation in BCI applications. These problems are part of a wider
issue known as transfer learning, defined as the ability to use
knowledge acquired previously in a new task related to the
first. Here we propose to affine transform the spatial covari-
ance matrices of the EEG signals of every session/subject to
make data comparable. We assumed that, from one session
(subject) to another, covariance matrices related to a specific
task performed by the subject move with a similar relocation
from a reference state, different between sessions or subjects.
Hence, the idea is to center covariance matrices with respect
to a reference matrix. Under our assumption, Riemannian
geometry offers an optimal procedure for tackling the transfer
learning problem due to the affine invariance property of the
Riemannian distance and Riemannian mean. We considered
two kinds of datasets, one related to a MI paradigm, and the
second one to an ERP, P300 specifically, paradigm. We defined
a suitable reference state proposing a way to estimate online
the reference matrix, to make the procedure useful in a real-
time application.

Then we have tested the proposed procedure in a classifi-
cation problem, where data from different sessions (subjects)
are used to estimate the class parameters needed to classify
new observations.

We analyzed the improvements due to the affine transfor-
mation in the cross-session and cross-subject classification,
observing that, while in the original data space often results
are poor, in general the affine transformation allows much
better classification accuracies and precisions. This illustrates
the goodness of the affine transformation through the reference
matrix, which we proposed here, to obtain satisfactory results
in cross-session and cross-subject classification.
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