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Cripto is essential to capture mouse epiblast stem
cell and human embryonic stem cell pluripotency
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Known molecular determinants of developmental plasticity are mainly transcription factors,

while the extrinsic regulation of this process has been largely unexplored. Here we identify

Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive

and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem

cell (ESC) self-renewal by modulating Wnt/b-catenin, whereas it maintains mouse epiblast

stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide

unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC

transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo,

and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has

earlier functions than previously recognized. All together, our studies provide novel insights

into the current model of mammalian pluripotency and contribute to the understanding of the

extrinsic regulation of the first cell lineage decision in the embryo.
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I
n mammals, pluripotency is maintained in the inner cell mass
(ICM) of early embryo during the formation of epiblast (EPI),
which is shielded from extraembryonic differentiation and

concomitantly gains the capacity to generate all cell types of the
organism. The formation of these lineages results from two
subsequent cell fate decisions. The first, occurring at the 16- to
32-cell stage, determines the specification of trophectoderm (TE)
and ICM; the second cell-fate decision controls the formation of
the primitive endoderm (PrE) and EPI within the ICM. The
emergence of the pluripotent EPI and PrE lineages within the
ICM involves initial co-expression of lineage-associated markers
followed by a salt-and-pepper distribution of lineage-biased cells
until the time of implantation when cell lineages determination is
established1,2. Two distinct states of mouse pluripotency can be
captured in vitro, that is, embryonic stem cells (ESCs) and EPI
stem cells (EpiSCs), which reflect the ground-state naive and the
primed EPI, respectively3. Although ESCs grow as packed domed
colonies and are stabilized by leukemia inhibitory factor (LIF)/
Stat3 signalling, mEpiSCs depend on basic fibroblast growth
factor (bFGF) and transforming growth factor-b (TGFb)/Activin
signalling and are characterized by a flattened morphology4,5.
Mouse EpiSCs can be also generated in vitro from ESCs,
providing a useful model system to study pluripotent state
transition that occurs at implantation6. Unlike mouse ESCs,
human ESCs (hESCs) depend on TGFb/Activin signalling and
share common features of mEpiSCs with respect to growth
requirements, morphology, clonogenicity and gene expression
patterns3. Mouse ESC (mESC) cultures are not homogeneous but
comprise dynamically interchanging subpopulations7,8. This
heterogeneity probably reflects the developmental plasticity of
the early mouse embryo; however, a mechanistic understanding
of this metastability in vitro is still far from complete. Specifically,
which is the precise correlation of these different pluripotency
states with the in vivo equivalents is still a question of debate.
Known molecular markers of such plasticity are mainly
transcription factors operating within a pluripotency gene
regulatory network9. More recently, metabolites are emerging as
key regulators of stem cell plasticity, acting as epigenetic
modifiers10,11; however, much less is known on the role of
microenvironment. Indeed, elucidation of the extrinsic
mechanisms that control stem cell plasticity is crucial for
understanding both early embryo development and controlling
the differentiation potential of pluripotent stem cells12. In the
attempt to shed lights on this issue, we focused on
the glycosylphosphatidylinositol (GPI)-anchored extracellular
protein Cripto. Cripto is a key developmental factor and a
multifunctional signalling molecule13. In the mouse embryo,
Cripto is essential for primitive streak formation and patterning
of the anterior–posterior axis during gastrulation14 and it
negatively regulates ESC neural differentiation while permitting
cardiac differentiation15. Although largely considered as a stem
cell surface marker16, no studies so far have directly investigated
its functional role in pluripotency. In this study, we report the
consequences of genetic and pharmacological modulation of
Cripto signalling on the generation and/or maintenance of
mEpiSCs and hESCs.

Results
Cripto heterogeneity in the early blastocyst and ESCs. In the
pre-implantation embryo (E3.5), Cripto messenger RNA and
protein were present in the blastomeres of the ICM in a salt-and-
pepper pattern (Fig. 1). Indeed, Cripto expression was highly
enriched in Nanog-expressing cells, whereas it was absent in PrE
cells and TE marked by Cdx2 (Fig. 1a,b)17. After cell sorting at
E4.5, Cripto was co-expressed with Pecam1, a membrane EPI

marker, but not Disabled 2, which labels the PrE (Fig. 1c), as was
previously shown18,19. Thus, in situ expression analysis revealed
that Cripto is homogeneously expressed in EPI cells only as early
as EPI versus PrE specification occurs within the ICM, earlier
than previously reported18,19. Cripto remains strongly expressed
in the maturing EPI until gastrulation where it becomes restricted
to the primitive streak14,20.

To assess whether the heterogeneous distribution of Cripto
in vivo was retained in vitro, we analysed Cripto protein
distribution in serum/LIF ESC cultures9. Immunofluorescence
and fluorescence-activated cell sorting (FACS) analysis showed a
heterogeneous pattern of surface Cripto protein expression
(Fig. 2a,b) and revealed that ESCs clearly segregated in two cell
populations of CriptoHigh and CriptoLow, which rapidly returned
to the equilibrium under ESC self-renewing conditions (Fig. 2b).
Interestingly, Cripto expression increased in 2i/LIF culture
conditions (Supplementary Fig. 1a), in which ESCs show lower
expression of lineage-associated genes and are closer to the
pluripotent cells of the ICM6,21. The dynamic equilibrium of
distinct functional states in serum ESCs is characterized by the
heterogeneous expression of different pluripotency transcription
factors, for example, Nanog, Stella (Dppa3) and Esrrb. We thus
evaluated the expression of pluripotency markers in the
CriptoLow and CriptoHigh cell populations and found that it
was significantly reduced in CriptoLow post sorting, whereas it
rapidly returned to the equilibrium after in vitro culture (Fig. 2c).
On the contrary, Oct4, which is homogeneously expressed in
serum/LIF ESCs22, was expressed at comparable levels in the two
subpopulations (Fig. 2c). These data indicated that Cripto protein
levels dynamically fluctuate in ESCs and correlate with the
metastable expression of key pluripotency transcription factors.
A similar heterogeneous and fluctuating expression of Cripto has
been recently described in patient-derived colon cancer stem cells,
where Cripto positivity oscillates in correspondence to increased
stemness states23, and in a human glioblastoma cell line24.
Interestingly, fluctuations of Cripto protein levels occurred on
small variations of the transcript (Fig. 2c), suggesting that
regulation does not primarily occur at a transcriptional level as
described in colon cancer stem cells23.

Decreased self-renewal properties of Cripto KO ESCs. To assess
the relevance of the correlation between Cripto and the expression
of pluripotency genes to potency and fate choice, we analysed two
independent Cripto Knock Out (KO) ESC (KO.1 and KO.2)
clones. Similar to that observed in CriptoLow and CriptoHigh cell
populations, the pluripotency genes were downregulated in both
Cripto KO ESC clones compared with Control (Fig. 2d). Despite
this molecular signature, Cripto KO ESCs propagated at high
density retained the capacity to form tightly packed dome-shaped
colonies. Nevertheless, when Cripto KO ESCs were plated at low
density in a colony-formation assay, the colonies with a flat
morphology and a partial/low alkaline phosphate (AP) staining
significantly increased, at the expense of the typical dome-like
APþ ESC colonies (Fig. 2e). Interestingly, this phenotype was
rescued by the addition of either recombinant Wnt3a (Fig. 2e),
which is a key regulator of ESC self-renewal25, or the glycogen
synthase kinase 3 inhibitor CHIR99021, a selective inhibitor of
b-catenin degradation, as well as in 2i/LIF culture conditions
(Fig. 2e and Supplementary Fig. 1b). We thus reasoned that
Cripto deficiency might affect sensitivity to Wnt signalling and
eventually ESC self-renewal in vitro. We thus measured Wnt/b-
catenin activity in wild-type (WT) and Cripto KO ESCs using the
TOP flash/luciferase reporter construct. Cripto KO ESCs showed
reduced luciferase activity already at baseline conditions, which
persisted on stimulation with increasing doses (5–10 ngml� 1) of
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Wnt3a. On the contrary, addition of high doses of Wnt3a
(50 ngml� 1) to WT and Cripto KO ESCs resulted in similar
activation of the reporter (Fig. 2f). In line with these findings,
Cripto KO ESCs showed decreased levels of nuclear b-catenin,
which increased on chemical activation of Wnt/b-catenin
pathway (Supplementary Fig. 1c). Accordingly, expression of
the Wnt target gene Lef1 was downregulated in two independent
Cripto KO ESC clones (Supplementary Fig. 1d). Interestingly,
Cripto is able to positively modulate Wnt signalling in human
mammary epithelial and mouse teratocarcinoma cells, but only
on Wnt administration26. Maintenance of ESCs in vitro also
depends on extracellular signalling by LIF and Bmp4. Stimulation
of WT and Cripto KO ESCs with either LIF or Bmp4 resulted in
similar increase of the phosphorylation of the intracellular
effectors Stat3 and Smad1/5, respectively (Supplementary
Fig. 1e). All together, these findings indicate that Cripto genetic
ablation reduced ESC self-renewal efficiency in fetal bovine serum
(FBS)/LIF but not in 2i/LIF culture conditions27 and suggest that
Cripto KO specifically altered Wnt response in ESCs. In line with
the idea that Cripto KO reduced ESC self-renewal properties, we
found substantial differences in the efficiency and latency of
Cripto KO ESC-derived teratomas (Fig. 2g) but not in their histo-
logical composition (Supplementary Fig. 1f) as previously
reported28.

Cripto controls the metabolic switch in ESC-EpiSC transition.
Our in vivo and in vitro findings led us to hypothesize that Cripto
may have a functional role in the narrow window in which the
cells within the ICM are primed to become EpiSCs. To assess this
issue directly, WT and Cripto KO ESCs were treated with bFGF
(F) and Activin (A), previously shown to permit in vitro EpiSC
derivation and maintenance6. Control cells developed EpiSCs-like
flat-shaped colonies with tightly packed cells and highly positive
for the tight-junction protein Claudin6 (ref. 29) (Fig. 3a,b).
Conversely, Cripto KO ESCs developed less compacted and

morphologically highly heterogeneous colonies showing large
areas of Claudin6-negative cells and increased proliferation
(Fig. 3a–c and Supplementary Fig. 2a). Interestingly, surface
Cripto protein was expressed at higher levels in WT EpiSCs than
in serum/LIF ESCs (Supplementary Fig. 2b) consistent with its
in vivo expression, which is higher in late blastocyst (Fig. 1b,c).
We first verified that Activin and/or FGF signalling were
efficiently induced in Cripto KO ESCs (Fig. 3d and
Supplementary Fig. 2c) and then performed RNA-sequencing
(RNA-Seq) transcriptome profiling of WT and Cripto KO ESC-
EpiSC transition. As expected, culture conditions of EpiSC
induction (F/A) extensively modified the transcriptome of both
WT and Cripto KO ESCs, deregulating B3,000 protein-coding
genes (Z2-fold, posterior probability (PP)Z0.95; Supplementary
Data 1,2). However, F/A-treated Cripto KO ESCs showed
downregulation of both EpiSCs markers (Fgf5, Otx2, Cerberus,
Brachyury (Bra), Sox17 and Foxa2) and the pluripotency genes
(Oct4 and Nanog)30 (Fig. 3e). These results were further validated
by quantitative PCR (qPCR) analysis using two independent
Cripto KO ESC clones, showing that this set of genes were
significantly downregulated in both biological replicates (Fig. 3f
and Supplementary Fig. 2d). Consistent with these findings,
Cripto complementary DNA (cDNA) overexpression was able to
fully rescue EpiSCs markers’ expression in Cripto KO ESC-
EpiSC transition (Supplementary Fig. 2e,f). Remarkably,
immunofluorescence analysis revealed that the number of
Nanog-, Oct4-, Otx2-, Foxa2- and Sox17-positive cells were all
severely reduced in F/A Cripto KO cells (Fig. 3g and
Supplementary Fig. 2g), thus further supporting the idea that
ESC-EpiSC transition was impaired. Interestingly, besides a set
of B2,300 (B70%) common genes deregulated in both WT and
Cripto KO ESC-EpiSC transition, we identified two different
sets of genes that were uniquely deregulated (Fig. 4a and
Supplementary Data 3). Specifically, Gene Ontology (GO)
analysis showed that a large cluster of genes coding for

Cripto

Cripto

E
3.

5 
(R

N
A

)
E

3.
5

E
4.

5

Cripto

Cripto Nanog

Cripto Nanog Cdx2

Nanog

Nanog

DAPI

Cdx2 DAPI

Cripto Dab2 Cripto Pecam Cripto Dab2 DAPI

a

b

c

Figure 1 | Cripto is specifically expressed in EPI cells. (a) FISH and (b) immunofluorescence analyses of Cripto expression at E3.5. Both Cripto RNA

and protein are present in Nanog-expressing cells. (c) By E4.5, Cripto remains expressed in the EPI, labelled by Pecam1 and is absent from the PrE

revealed by Disabled 2 (Dab2) and the TE.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12589 ARTICLE

NATURE COMMUNICATIONS | 7:12589 | DOI: 10.1038/ncomms12589 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


components of the five respiratory electron transport complexes,
which are involved in mitochondrial oxidative phosphorylation,
were downregulated only in WT ESC-EpiSC transition (P-
value¼ 1.2� 10–19), whereas their expression was unvaried in

Cripto KO (Fig. 4b,c). Interestingly, one of the earliest events in
the ESC-EpiSC transition is a dramatic metabolic switch, which
converts a bivalent ESC metabolism to an exclusively glycolytic
EpiSC metabolism31. To assess whether this metabolic
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reprogramming was affected in Cripto KO ESC-EpiSC
transition, we measured lactate production as an indicator of
the glycolytic activity in F/A WT and Cripto KO cells, from two
independent Cripto KO ESC clones (KO.1 and KO.2), and found
that it was significantly reduced in Cripto KO compared with
Control (Fig. 4d). To evaluate whether this failure to undergo
metabolic reprogramming leads to the mutant phenotype, we

asked whether inhibition of oxidative phosphorylation by the
mitochondrial ATP synthase inhibitor oligomycin32 could rescue
F/A-induced Cripto KO EpiSCs (Fig. 4e–i). Interestingly, F/A-
treated Cripto KO ESCs generated tightly packed EpiSCs-like
colonies in the presence of oligomycin, with reduced proliferation
rates and large areas of Claudin6-positive cells (Fig. 4e–g).
Furthermore, oligomycin treatment fully rescued lactate
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production (Fig. 4i) and induced the expression of EpiSCs
markers (Fig. 4f,h), thus demonstrating that Cripto-dependent
metabolic reprogramming is crucial to induce an EpiSC state. To
get mechanistic insights into how Cripto acts to regulate this
metabolic reprogramming, we focused on the Activin/Nodal/Pgcb
axis, which has been recently identified as key regulator of this
metabolic switch31. Specifically, Activin/Nodal signalling actively
represses mitochondrial genes’ expression/activity through

inhibition of Pgc-1b31,33. Given the key role of Cripto as
positive Nodal co-receptor34, we hypothesized that a Cripto/
Nodal/Pgcb axis may control mitochondrial gene expression/
activity and eventually regulate the metabolic reprogramming in
ESC-EpiSC transition. In line with this hypothesis, Smad2
phosphorylation was reduced in F/A Cripto KO cells compared
with Control (Fig. 4j), whereas Pgc-1b expression was significantly
upregulated (Fig. 4k). We then went on and knocked down

Complex (III)

WT 979

*deregulated ≥ 2-fold

WT
KO

Oligomycin

Day 0 2 4 6

WT

D
A

P
I C

la
ud

in
6

D
A

P
I O

tx
2

KO KO oligomycin 0.5

WT 1
0.8
0.6

*

** *

*

* * *

0.4

0.2

F
ol

d 
ch

an
ge

 in
 g

en
e 

ex
pr

es
si

on

0

N
an

og

F
gf

5

O
tx

2

C
er

be
ru

s

S
ox

17

D
nm

t3
b

F
ox

a2 B
ra

KO
KO + olig.

WT
KO
KO + olig.

0.4

0.3

0.2

0.1

0

Cripto

KO
WT

0 1 2 3 4
Fold change in gene expression

pSmad2

Smad2

Gapdh

18
2

1

0

W
T

K
O

K
O

/S
cr

.
K

O
/P

gc
b

R
el

at
iv

e 
R

N
A

 le
ve

l60

60

36

*

P
gc-1b

Pgc-1b Cox7a1WT KO kDa

kDa
113

10

8

6

4

2

0

6

4

5

3

1La
ct

at
e 

pr
od

uc
tio

n 
(n

M
ol

)

2

0

R
el

at
iv

e 
R

N
A

 le
ve

l

36

*

*

*

*

*

*

0 1 2 3
ADU

KO/Pgcb

K
O

/P
gc

b

K
O

/P
gc

b

Pgc-1b

Gapdh

KO/Scr.

K
O

/S
cr

.

K
O

/S
cr

.

K
O

si
R

N
A

 s
cr

.
K

O
si

R
N

A
P

gc
-1

b

KO

K
O

WT

W
T

W
T

W
T

0 2 4 6 8

**

Lactate production (nMol)

*
*

C
el

l p
ro

lif
er

at
io

n 
(R

F
U

)

2282*
(70%)

692 KO

Uniquitinol-cytochrome c –
reductase

Cytochrome c
oxidase

Succinate
dehydrogenase

Up-regulated Down-regulated

Unvaried

F0/F1 ATPase
H +transportingNADH dehydrogenase

Complex (I)

Complex (II) Complex (IV)

Complex (IV)

Oxidative phosphorylation

Parkinson’s disease

Huntington’s disease

Alzheimer’s disease

Ribosome

1.0–20 1.0–12 1.0–4

5

A
tp12a

A
tp5c1
A

tp5e
A

tp5h
A

tp5j2
A

tp5k
A

tp5o
C

ox4i1
C

ox5b
C

ox6a1
C

ox6c
C

ox7a1
C

ox7b
C

ox7c
C

ox8a
C

ox14
C

oa6
U

qcr10
U

qcr11
U

qcrc1
U

qcrq
P

pa2
S

dhb
S

dhc
N

dufa1
N

dufa7
N

dufa10
N

dufa11
N

dufb2

N
dufb4

N
dufb3

N
dufb6

N
dufb8

N
dufb9

N
dufb10
N

dufc1
N

dufs2
N

dufs5
N

dufs6
N

dufs8
N

dufv3
P

dha2
M

ct4
S

lc44a5
S

lc39a2

4

3

2

1

0

**
* WT

KO.1
KO.2

La
ct

at
e 

pr
od

uc
tio

n 
(n

M
ol

)

40

39

44

38

17

G
en

e 
N

°

a b

c d

e

f

g h

i

j

k

l m n o

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12589

6 NATURE COMMUNICATIONS | 7:12589 | DOI: 10.1038/ncomms12589 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Pgc-1b expression in Cripto KO ESC-EpiSC transition by
transient transfection of small interfering RNAs at the same time
point as in oligomycin treatment (Fig. 4e). Remarkably, Pgc-1b
downregulation (Fig. 4l,m) repressed Cox7a1 mitochondrial gene
expression (Fig. 4n) and increased lactate production (Fig. 4o).
All together, these results provide unprecedented evidence that
Cripto regulates the metabolic reprogramming that is crucial for
ESC to EpiSC conversion and suggest that it occurs, at least in
part, through activation of the Nodal/Pgc-1b/mitochondrial genes
axis.

Cripto deficiency attenuates ESC lineage restriction. Our
findings that Cripto is required for ESC-EpiSC transition leave
open the question of the fate of F/A-induced Cripto KO ESCs. To
address this issue, we first analysed the B700 genes that were
uniquely deregulated in Cripto KO ESC-EpiSC transition
(Fig. 4a). Interestingly, GO analysis revealed a consistent over-
representation of genes in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway related to pattern specification pro-
cesses/formation (Supplementary Fig. 3a). Strikingly, this includes
a large set of Hox genes that were uniquely upregulated in Cripto
KO (Supplementary Fig. 3b,c), indicating cell differentiation.
Furthermore, we focused our attention on Cdx2 and Hand1 genes
(Fig. 3e), which are involved in trophoblast lineage specification
and differentiation with Msx2 (ref. 17), and first confirmed that
they were all significantly upregulated in Cripto KO transition by
qPCR analysis (Fig. 5a)17. In line with RNA expression data, the
percentage of Cdx2-positive cells almost doubled in F/A Cripto
KO cells compared with Control as indicated by FACS analysis
(Cdx2þ cells 2.6±0.9% WT versus 14.5±3.1% KO; Supplemen-
tary Fig. 3d). To further characterize these Cdx2-positive cell
population, we performed double staining with Cdx2 and various
markers on two independent Cripto KO ESC clones (KO.1 and
KO.2). First, consistent with the idea that Cdx2 plays a central
role in blastocyst development by repressing the pluripotency
gene Oct4 (ref. 17), Cdx2-positive cells did not express Oct4
(Fig. 5b and Supplementary Fig. 3e). To assess whether Cdx2 was
labelling posterior mesoderm rather than TE35, we performed
double staining with Cdx2 and Brachyury (Fig. 5b and
Supplementary Fig. 3e). Interestingly, quantification of Cdx2þ /
Brachyury± cells showed that the majority of Cdx2-positive cells
did not express Brachyury (Fig. 5c). Finally, consistent with the
idea that Cripto deficiency was promoting an extraembryonic
fate, we found that Cdx2-positive cells also expressed the
trophoblast marker Gata3 (ref. 36, Fig. 5b and Supplementary
Fig. 3e). Interestingly, it has been recently shown that Smad2

represses autocrine bone morphogenetic protein (BMP)
signalling, which eventually leads to TE differentiation37.
Remarkably, while Smad2 phosphorylation was reduced in F/A
Cripto KO cells compared with Control (Fig. 4j), BMP-dependent
Smad1/5 phosphorylation was induced (Fig. 5d), suggesting that
this is the mechanism underlying Cripto deficiency-induced TE
differentiation. On the contrary, extracellular signal-regulated
kinase (ERK) signalling was unaffected (Fig. 5d). To further
determine the differentiation capacities of Cripto KO ESCs
towards the trophoblast lineage, we subjected WT and Cripto KO
ESCs to culture conditions that favour trophoblast stem cell
(TSC) differentiation38. Both WT and Cripto KO ESCs developed
dense undifferentiated colonies (Fig. 5e) and expression analysis
revealed a strong upregulation of trophoblast lineage
determinants Cdx2, Gata3, Eomes, Tead4 and Elf5, which were
significantly higher in Cripto KO versus WT TSC cultures.
Conversely, expression of the pluripotency genes Cripto, Oct4 and
Nanog was strongly reduced (Fig. 5f and Supplementary Fig. 3f).
The upregulation of Cdx2 and Eomes in Cripto KO cultures was
confirmed by immunofluorescence (Fig. 5e and Supplementary
Fig. 3g) and FACS analysis (Cdx2þ cells 8.9±0.2% WT versus
28.8±3.7% KO; Fig. 5g). All together, these results indicated that
TSC differentiation was induced more efficiently in Cripto KO
ESCs. Intriguingly, cells with a morphology characteristic of
trophoblast giant cells were observed in Cripto KO but not in WT
cultures (Fig. 5e), leading to speculate that these cells were
undergoing spontaneous trophoblast differentiation.
Interestingly, this is consistent with previous findings that
Nodal is required to sustain the TSC stemness and inhibit their
precocious differentiation in vivo39.

To further explore this phenotype, we assessed the capacity of
Cripto KO ESCs to contribute to TE in vivo. To this end, green
fluorescent protein (GFP)-labelled WT and Cripto KO ESCs were
microinjected into morulas and the resulting blastocysts were
examined. Both WT and Cripto KO ESCs efficiently contributed
to the ICM. Interestingly, Cripto KO ESCs also colonized the
TE40, whereas, as expected, WT ESCs did not contribute to this
extraembryonic lineage (Fig. 6a,b). Accordingly, whole-mount
immunostaining for the trophoblast marker Cdx2 and the ICM
marker Oct4 showed that Cripto KO-GFP ESCs in the TE
expressed Cdx2, whereas GFP co-localized with Oct4 in the ICM
of both WT and Cripto KO chimeric blastocysts (Fig. 6a). To
further assess the developmental plasticity of Cripto KO ESCs in
the embryonic context and evaluate their contribution to the
extraembryonic tissue, injected morulas were implanted into
foster mothers and chimeric embryos were analysed at E6.5
(Fig. 6c). None of the scored Cripto KO-GFP chimeric embryos

Figure 4 | Cripto controls the metabolic reprogramming in ESC-EpiSC transition. (a) Venn diagram of genes differentially expressed (Z2-fold) or

uniquely deregulated in Cripto KO versus WT ESC-EpiSC transition. (b) GO analysis (http://david.abcc.ncifcrf.gov) of protein coding genes (979)

uniquely deregulated in WT ESC-EpiSC showing gene enrichment in KEGG Pathway. (c) Heatmap of genes involved in oxidative phosphorylation in WT

and Cripto KO ESC-EpiSC transition. (d) Lactate concentration of F/AWTand Cripto KO cells. Two independent Cripto KO ESCs (KO.1 and KO.2) were

used. Data are mean±s.e.m. (n¼ 3; *Po0.01 and **Po0.005). (e) Schematic representation of the experimental procedure. (f) Representative

immunofluorescence of Claudin6 and Otx2 in F/AWT, Cripto KO and Cripto KOþ oligomycin colonies and cytospinned cells (scale bar, 75 mm). Inserts are

higher magnification images of selected areas. (g) Proliferation of F/A WT, Cripto KO and Cripto KOþ oligomycin cells measured by the CyQuant assay

and expressed as relative fluorescence units (RFU). Data are mean±s.e.m. (n¼ 3; *Po0.01). (h) qPCR of selected markers in F/A WT, Cripto KO and

Cripto KOþ oligomycin. Relative RNA level was normalized to Gapdh; data are mean±s.e.m. (n¼ 3; *Po0.01). (i) Lactate concentration of F/AWT, Cripto

KO and Cripto KOþ oligomycin cells. Data are mean±s.e.m. (n¼ 3; **Po0.005). (j) Western blot analysis of Cripto and p-Smad2 in F/AWTand Cripto

KO cells. Smad2 and Gapdh were loading controls. (k) qPCR of Pgc-1b. Data are fold induction of Cripto KO versus WT F/A after normalization to Gapdh

and are mean±s.e.m. (n¼ 3; *Po0.01). (l) qPCR of Pgc-1b on F/AWTand Cripto KO cells transfected with two independent Pgc-1b small interfering RNAs

(siRNAs) (KO/siPgcb) or control siRNA (KO/Scr.) at day 3 during ESC-EpiSC. Data are fold induction of Cripto KO versus WT and KO/Scr. versus

KO/Pgcb after normalization to Gapdh and are mean±s.e.m. (n¼ 3; *Po0.01). (m) Western blot analysis of Pgc-1b in F/AWT, Cripto KO, Cripto KO/Scr.

and Cripto KO/siPgc-1b (KO/Pgcb). Gapdh were loading controls. The densitometric analysis is expressed in arbitrary unit (ADU) as the Pgc-1b/Gadph

ratio. Data are mean±s.e.m. (n¼ 2). (n) qPCR of Cox7a1 and (o) lactate concentration in culture medium of F/AWT, Cripto KO/Scr and Cripto KO/Pgcb.

Relative RNA level was normalized to Gapdh. Data are mean±s.e.m. (n¼ 3; *Po0.01).
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(n¼ 25) showed contribution to the extraembryonic ectoderm or
to the ectoplacental cone; however, they showed contribution to
the EPI and were phenotypically WT (Fig. 6c). Of note, we
hypothesized that Cripto KO cells have a propensity to rapidly

differentiate into giant cells (Fig. 5e) and this could explain why
these cells cannot be maintained within the chimeras. This result
can also be explained by a non-cell autonomous contribution of
Cripto in the WT environment41. To address this hypothesis, WT
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Figure 5 | Cripto depletion attenuates ESC differentiation potential towards embryonic lineages in vitro. (a) qPCR analysis of Cdx2, Msx2 and Hand1

trophoblast markers in WTand Cripto KO ESC-EpiSC transition (day 6). Data are shown as fold change compared with ESCs after normalization to Gapdh

and are mean±s.e.m. (n¼ 3; *Po0.01). (b) Representative pictures of Oct4/Cdx2, Bra/Cdx2 and Gata3/Cdx2 double immunostaining of F/A WT and

Cripto KO (clone KO.1) cytospinned cells. Inserts are higher magnification images of selected areas. Nuclei were stained with 4,6-diamidino-2-phenylindole

(DAPI). Scale bar, 75mm. (c) Quantification of Cdx2þ /Brachyury± cells distribution. Data are expressed as percentage over total number of Cdx2þ cells

(nE300) on two independent Cripto KO ESC clones (KO.1 and KO.2) and are mean±s.e.m. (n¼ 3). (d) Western blot analysis of pSmad1/5 and pErk1/2

protein levels in F/A WT and Cripto KO cells. Smad1/5, Erk1/2 were used as loading controls. (e) Photomicrographs of TSC colonies (top panels) and
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giant cell (scale bar, 100mm). (f) qPCR analysis of TE and pluripotency markers at different time points of WTand Cripto KO TSC differentiation. Relative

RNA level was normalised to Gapdh; data are mean±s.e.m. (n¼ 3; P*o0.01). (g) FACS-based quantification of Cdx2-positive cells at 2 weeks of ESC to

TSC differentiation. Data are mean±s.e.m. (n¼ 3).
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ESCs were mixed at different ratios with Cripto KO-GFP ESCs
(1:1 and 3:1). Interestingly, at each ratio F/A-treated Cripto KO
ESCs generated tightly packed EpiSCs-like colonies similar to that
of WT F/A EpiSCs, suggesting that co-culture with WT ESCs
rescued the mutant phenotype (Fig. 6d). To further explore this
phenotype, F/A Cripto KO–GFP cells were flow-sorted by using
the GFP reporter (Supplementary Fig. 4) and assayed separately
for EpiSC and TE factors. In line with our hypothesis, expression
of EpiSC markers was induced in a dose-dependent manner,

concomitant with a downregulation of Cdx2 expression (Fig. 6e),
which was confirmed by immunofluorescence (Fig. 6f). All
together, our data support a model wherein Cripto deficiency
affects ESC-EpiSC transition and attenuates the normal
restriction of ESCs towards embryonic tissue.

Cripto/Nodal sustains mEpiSC and hESC self-renewal. To get
further mechanistic insights into the role of Cripto in the
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establishment of primed pluripotency, we exploited the activity of
a Cripto/ALK-4 blocking peptide (BP), which binds Cripto
and antagonizes Cripto/ALK-4 interaction42 (Fig. 7a). Although
control peptide (CP)-treated F/A ESCs developed EpiSCs-like
colonies, Cripto BP-treated cells raised colonies containing highly
proliferating and morphologically heterogeneous cell populations
(Fig. 7b). As expected, Smad2 phosphorylation was reduced
in Cripto BP-treated cells (Fig. 7c), concomitant with the
downregulation of EpiSC markers and the pluripotency genes
(Fig. 7c,d), as well as upregulation of TE markers (Supplementary
Fig. 3h). Furthermore, similar to that observed in F/A-induced
Cripto KO cells, Cdx2-positive cells strongly increased in the

presence of Cripto BP (Fig. 7e,f). Interestingly, these Cdx2-
positive cells did not express Oct4 and Nanog, and few of them
stained positive for the mesoderm marker Brachyury, which in
turn was downregulated (Fig. 7f). Finally, we found co-expression
of Cdx2 with the trophoblast marker Gata3. All together, these
data demonstrate that Cripto/ALK-4/Nodal signalling is required
for ESC-EpiSC transition and to restrict ESC differentiation
potential towards embryonic tissues.

We then asked whether Cripto signalling was required to
maintain EpiSC self-renewal. To this end, F/A WT EpiSCs were
analysed after subsequent passages in culture in the presence of
Cripto CP or BP (Fig. 8a). Although CP-treated EpiSCs developed
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hESCs. Nuclei were stained with DAPI. Scale bars, 100mm. (g) Clonogenic assay of hESCs treated with CP and BP for two passages on Matrigel-coated

plates. Representative pictures of CP- and BP-treated hESC colonies, stained with crystal violet (top panels). Scale bar, 200mm. Colony number (bottom

left panel) and phenotype frequency (bottom right panel). Data are mean±s.e.m. (E100 colonies scored/condition; *Po0.01). (h) Representative

photomicrographs of hESC colonies derived from shNT Control and sh4889 CRIPTO KD hESCs, and stained for AP (top panels; scale bar, 200mm) or OCT4

(bottom panels; scale bar, 100 mm). (i) Quantification of APþ (top panel) and OCT4þ (bottom panel) colonies. The number of APþ and OCT4þ
colonies is shown as percentage over shNT hESCs. Data are mean±s.e.m. (n¼ 3; **Po0.005).
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homogeneous cell colonies with a typical flat morphology, Cripto
BP-treated EpiSCs colonies progressively lose their characteristic
morphological appearance and become differentiated (Fig. 8b).
Accordingly, EpiSCs markers were strongly downregulated,
whereas expression of the neuronal differentiation marker
bIII-tubulin was induced (Fig. 8,c). Interestingly, Cdx2 expression
was also strongly induced in BP-treated EpiSCs and the majority
of Cdx2þ cells did not express Brachyury (Fig. 8b,c). Together,
these findings indicated that Cripto-dependent Nodal signalling is
required to sustain EpiSCs pluripotency/self-renewal and
prompted us to extend the analysis to hESCs, which are similar
to mEpiSCs. Consistent with what was previously reported43,
surface CRIPTO protein was highly expressed in hESCs
(Supplementary Fig. 5a). To investigate whether CRIPTO is
required to maintain hESC pluripotency, we evaluated the effect
of blocking CRIPTO signalling. To this end, hESCs were grown
on feeders in the presence of either Cripto BP or CP and analysed
after two passages (Fig. 8d). Similar to that observed in F/A
EpiSCs, SMAD2 phosphorylation was strongly inhibited in
Cripto BP-hESCs, already after the first passage in culture,
thereby proving the activity of the BP (Fig. 8e). Interestingly,
although CP-hESCs maintained their undifferentiated
morphology, Cripto BP-hESC colonies appeared heterogeneous
and clearly showed areas of differentiated cells that stained
positive for CDX2 (Fig. 8f). Consistent with the idea that SMAD2
represses autocrine BMP signalling, which in turn induces
CDX2-positive trophoblast committed cells37,44, and in line
with our findings on mEpiSCs (Fig. 5d), BMP-dependent

SMAD1/5 phosphorylation was induced in Cripto BP-hESCs
(Supplementary Fig. 5b). To rule out the possibility that these
cells may represent a subpopulation of mesodermal cells that go
through a BRACHYURY-positive state45, we performed
double CDX2/BRACHYURY staining and found only few
BRACHYURY/CDX2 double-positive cells (Supplementary
Fig. 5c). We thus went on and evaluated the biological effect of
Cripto BP on hESC self-renewal. Remarkably, we found a
dramatic decrease of the colony-formation capacity of Cripto
BP-hESCs compared with CP in semisolid cultures (Fig. 8g).
Moreover, Cripto BP-hESC colonies were significantly smaller in
size (Fig. 8g), thus indicating that blocking CRIPTO signalling
affected hESC self-renewal potential. Furthermore, poly (ADP-
ribose) polymerase (PARP) activation was detected in Cripto BP-
hESCs, suggesting increased cell death (Supplementary Fig. 5d).
All together, these data point to a key role of CRIPTO signalling
in sustaining hESC pluripotency and self-renewal, and preventing
their transdifferentiation into extraembryonic derivatives. To
validate the findings obtained by pharmacological inhibition of
CRIPTO, we assessed the effect of CRIPTO silencing using
lentiviral vectors containing two different short hairpin (shRNA)
sequences targeting the 30-untranslated region and the coding
sequence of CRIPTO, respectively23. Silencing of CRIPTO by
lentiviral shRNA knockdown (KD) resulted in a strong reduction
of CRIPTO protein expression (Supplementary Fig. 5e). CRIPTO
KD and Control hESCs were then subjected to a matrigel
clonogenic assay and the resulting colonies were analysed by
immunofluorescence for the pluripotency markers OCT4 and
NANOG, and AP staining. The quantification analysis of either
OCT4-, NANOG- or AP-positive colonies showed a dramatic
reduction of colony number in both CRIPTO KD hESC clones,
which were also significantly smaller in size compared with
Control (Fig. 8h,i and Supplementary Fig. 5f–h), thus providing
evidence that CRIPTO KD strongly affected the clonogenic
potential of hESCs.

All together, these findings indicate that CRIPTO sustains
hESC self-renewal, at least in part, through activation of NODAL
signalling.

Discussion
This work shows that the membrane protein Cripto is
essential for mouse EpiSC and hESC pluripotency, and provides
mechanistic insights into how the extracellular environment
controls early cell-fate decisions in the embryo (Fig. 9). We
demonstrate that Cripto is one of the earliest EPI markers and
provide unprecedented evidence that it plays a pivotal functional
role in the acquisition/maintenance of mouse and human
pluripotency. Consistent with the salt-and-pepper distribution
of Cripto within the ICM of the pre-implantation blastocyst,
which underlies the emergence of EPI and PrE lineages1, surface
Cripto protein is heterogeneous and highly dynamic in serum/LIF
ESCs and positively correlates with the expression of the
pluripotency factors. Heterogeneity and fluctuations in the
expression of pluripotency markers in ESCs may be considered
as culture-induced perturbations and their relevance to
pluripotency and cell-fate decision is still a matter of debates46.
Our in vivo and in vitro results challenge the idea of a functional
role of Cripto heterogeneity in pluripotency. Indeed, Cripto
genetic ablation facilitates the exit from naive pluripotency
in vitro and affects both the efficiency and latency of ESC-derived
teratomas formation. At mechanistic level, Cripto regulates
mouse ESC self-renewal by positively modulating the canonical
Wnt/b-catenin pathway. Despite the fact that Cripto deficiency
facilitates the exit from naive pluripotency in FBS/LIF ESCs, this
effect does not accelerate the transition to the primed state, but
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Figure 9 | Schematic summary of Cripto activity in naive and primed

pluripotent stem cell states. Cripto is one of the earliest EPI markers.

Cripto-positive cells display a salt-and-pepper distribution and co-localize

with Nanog-positive cells (light green) within the ICM of the

pre-implantation blastocyst (E3.5). Next, Cripto expression becomes

homogeneous in the late blastocyst (E4.5), marking all the cells of the EPI

(dark green), whereas it is absent in both the TE (dark blue) and in the PrE

(light blue). In mouse ESCs, surface Cripto is heterogeneous and highly

dynamic and correlates with high levels of pluripotency markers. Moreover,

Cripto regulates mouse ESC self-renewal by positively modulating the

canonical Wnt/b-catenin pathway. Conversely, Cripto regulates the

metabolic reprogramming that occurs in the transition from ESCs to

EpiSCs, at least in part through the Nodal/Smad2/Pgc-1b axis. Finally,

Cripto/Nodal/Smad2 sustains mouse EpiSC/hESC self-renewal and

prevents transdifferentiation towards the trophoblast lineage, by repressing

BMP/Smad1-5 signalling. Our findings place Cripto at the interface of the

mouse and human pluripotency networks, and provide unprecedented

evidence that it restricts ESC differentiation potential towards embryonic

tissue.
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rather affects the conversion of ESCs to EpiSCs. Remarkably, this
Cripto KO mutant phenotype is due to impaired metabolic switch
from OXPHOS to aerobic glycolysis, which is required to convert
ESCs to EpiSCs31. Indeed, while mouse ESCs are bivalent in their
energy production, dynamically switching from glycolysis to
mitochondria respiration, both mEpiSCs and hESCs are highly
glycolytic31. Our findings point to a functional link between
Cripto and glycolytic metabolism in vitro and raise the intriguing
possibility that it may play a similar role in vivo. Indeed, it has
been recently proposed that Activin/Nodal controls the proper
metabolic switch in early embryo by repressing mitochondrial
activity through inhibition of PGC-1b31. In line with this idea and
according to the key role of Cripto as Nodal coreceptor, Pgc-1b is
upregulated in F/A Cripto KO cells and its downregulation is able
to increase lactate production. Although additional experiments
are needed to get further insights into the mechanism, our data
suggest that Cripto controls the metabolic reprogramming, at
least in part, through the Nodal/Pgcb axis. Consistent with the
idea that this metabolic switch is a key event in ESC-EpiSC
transition31, we demonstrate that Cripto is required to generate/
maintain FGF/Activin (F/A) EpiSCs. Indeed, we cannot rule out
the possibility that Cripto KO F/A EpiSCs form but rapidly and
continuously get lost from the cultures and/or differentiate.
However, quite unexpectedly, we find that Cripto deficiency
skews ESC differentiation towards TE in vitro. Several data
support this intriguing idea. TE markers are induced at RNA and
protein level; specifically, Cdx2 significantly increased in F/A
Cripto KO cells and does not co-localize with Brachyury, thus
ruling out the possibility that Cdx2-expressing cells identify
posterior mesoderm rather than TE. Furthermore, Cdx2 does not
co-localize with Oct4, consistent with the mutually exclusive
expression of these genes during embryogenesis17. Finally,
Cdx2-positive cells also express the TE maker Gata3 (ref. 36).
Concomitant to induction of TE markers, expression of the DNA
methyltransferase Dnmt3b is reduced in F/A Cripto KO cells.
Interestingly, Dnmt-deficient and therefore hypomethylated
ESCs/embryos show transdifferentiation to the extraembryonic
trophoblast lineage47. In line with these findings, morphological
and molecular analyses indicate that Cripto KO ESCs facilitate
the generation of TSCs in vitro. Interestingly, several evidence
indicate that BMP signalling pathway plays a crucial role in TE
differentiation of pluripotent stem cells. Specifically, Cdx2
expression is directly regulated by the BMP–Smad1/5
pathway48, which in turn is repressed by Smad2 (ref. 37).
Accordingly, Cripto KO inhibits Smad2 activation and conversely
induces BMP-dependent Smad1/5 phosphorylation, suggesting
that derepression of BMP signalling may account for TE
differentiation of F/A-induced Cripto KO cells. Most
remarkably, according to the idea that Cripto deficiency
attenuates the normal restriction of mouse ESCs to embryonic
lineages, Cripto KO ESCs gain the unique property to colonize TE
in blastocyst chimera, which is absent in WT ESCs40. However,
analysis of E6.5 chimeric embryos generated with Cripto KO
ESCs indicates that these cells efficiently contribute to the
embryonic but not to the ectoplacental cone. Although we cannot
rule out the possibility that Cripto KO ESCs that colonize the TE
fail to differentiate properly and thus to efficiently contribute to
the trophoblast derivatives, we speculate that a non-cell
autonomous activity of Cripto in the WT environment may
rescue, at least in part, the mutant phenotype. Although further
investigations are required to directly address this issue, this
hypothesis is consistent with co-culture data showing that non-
cell autonomous Cripto is able to rescue F/A Cripto KO EpiSCs.
Intriguingly, to date, no defects in EPI specification/maintenance
have been reported in Cripto-null mutants that indeed are
defective in anterior–posterior axis formation14. Of note, data in

different mutant context indicate that embryo can tolerate a
significant loss of EPI cells1, thus suggesting that a mild
phenotype, such as a smaller EPI, could be rescued by the
plasticity of the embryo. In this respect, embryonic development
might be less vulnerable than ESC differentiation, as it relies on a
more complex network of signals easier to compensate than in
ESCs, which may reconcile the apparent discrepancy. Moreover,
Cripto overlooked function(s) in vivo can be also explained by the
activity of the epidermal growth factor (EGF)-CFC Cryptic.
Indeed, Cryptic promotes EPI maintenance in the absence of
Cripto presumably through a non-cell-autonomous activity, as it
is only expressed in the visceral endoderm19. Finally, we speculate
that a maternal contribution of Cripto may also compensate for
the absence of Cripto in the early embryo. Accordingly, recent
findings report Cripto expression in the endometrium during
pregnancy, and in the mouse uterus49.

All together, our findings have important implications for stem
cell biology and for our understanding of the mechanisms that
regulate TE segregation from the ICM. First, existing models
that Activin/Nodal signalling sustains mEpiSC generation/self-
renewal mainly rely on the effect of the small molecule SB431542
(ref. 31), which however is a general antagonist of the TGFb
pathway50. Here we overcome this limitation and provide
evidence that Cripto/Nodal/Smad2 is required for mEpiSC
generation and self-renewal, and moreover that it is
functionally conserved in human pluripotent stem cells. Indeed,
consistent with the idea that SMAD2 represses autocrine BMP
signalling, which conversely induces TE differentiation in
hESCs37,44, pharmacological blocking of Cripto/SMAD2 results
in increased BMP-dependent SMAD1/5 signalling and TE
differentiation.

In summary, our studies provide unprecedented evidence that
Cripto is a major determinant of mEpiSCs/hESCs pluripotency
and add novel important elements to the current model of
mammalian pluripotency. Moreover, our findings suggest that
Cripto may have earlier functions than previously recognized, in
the very first lineage decision made by the early embryo.

Methods
Blastocyst collection and whole-mount in situ labelling. Embryos were
produced by natural matings of CD1 mice. For immunostaining, embryos were
fixed with 4% paraformaldehyde (PFA) in PBS overnight at 4 �C, permeabilized
with 0.5% Triton X-100 in PBS for 15min and blocked in 10% FBS in PBS-0.1%
Triton for 1 h51. Fluorescent in situ hybridization was described in ref. 52.
Experiments were performed in accordance with French and EU guidelines for the
care and use of laboratory animals. List of antibodies are in Supplementary Table 1.

Mouse ESC culture and EpiSC generation and maintenance. WT and Cripto
KO R1 mESCs were cultured in high glucose DMEM medium (Invitrogen, Life
Technologies) supplemented with 15% ES-screened FBS (Euroclone), 0.1mM
b-mercaptoethanol (Sigma-Aldrich), 1mM sodium pyruvate, 2mM glutamine,
100Uml� 1 penicillin/streptomycin (all from Gibco) and 1,000Uml� 1

recombinant LIF (ESGRO, Millipore)15. 2i Medium was supplemented with
PD0325901 (1 mM) and CHIR99021 (3 mM)6. Two independent Cripto KO ESC
clones, that is, DE7 and DE14 (named KO.1 and KO.2), were used throughout the
study and were previously described15,28. For stimulation with bFGF, Activin A
and Bmp4, 2� 106 ESCs were plated in N2B27 on serum-coated dishes and
incubated (150) with bFGF (12 ngml� 1, Provitro) or Bmp4 (50 ngml� 1, R&D).
Cells were LIF starved (6 h) before stimulation with LIF.

EpiSCs were generated from ESCs as described5. Briefly, WT and Cripto KO
ESCs were seeded at low density (3� 103 cells per cm2) in N2B27 supplemented
with Activin A (20 ngml� 1, Invitrogen) and bFGF, and cultured for 6 days.

Cripto BP and CP were dissolved in dimethylsulfoxide and media with peptides
were refreshed every other day during ESC to EpiSC transition.

Colony-forming assay. For colony assay, ESCs were trypsinized to obtain a
single-cell suspension and plated at low density (100 cells per cm2) in the culture
conditions described. After 6 days, colonies were fixed in 4% PFA and stained with
crystal violet. Briefly, cells were washed twice with PBS and fixed/stained with a
solution of 6% glutaraldehyde and crystal violet. After 30min at room temperature,
cells were carefully washed with tap water and dried for further analysis.
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Images were collected on a DMI6000B microscope (Leica Microsystems).
The morphological classification (domed/flat) was performed blinded by two
investigators. Experiments were performed in triplicate.

Proliferation assays and viable cell count. Cell proliferation was measured using
the colorimetric CyQuant cell proliferation assay (Invitrogen), following the
manufacturer’s instructions. Absorbance was analysed at 480–520 nm, using the
Fluoroskan Ascent FL Microplate Fluorometer and Luminometer (Thermo Fisher
Scientific, Waltham, MA, USA).

Trophoblast stem cell (TSC) culture. To generate TSCs, ESCs were cultured in
TCS medium containing RPMI 1640, 20% FBS (Thermo Scientific), 25 ngml� 1

FGF-4 (Invitrogen), 1 ngml� 1 Heparin (Sigma-Aldrich), 2mM L-glutamine,
0.1mM b-mercaptoethanol, 1mM sodium pyruvate and 50 units per ml1 Peni-
cillin/Streptomycin (Invitrogen), with 70% feeder conditioned media38. ESCs were
plated in TSC medium on gelatin-coated plates in the absence of feeders and
passaged every 3 days, and the medium changed every 2 days.

hESC culture and self-renewal assay. The hESC line CSES7 (NIH registration
number: 0107) was used throughout the study and was kindly provided by
Professor Nissim Benvenisty (The Hebrew University, Israel). Undifferentiated
hESCs were maintained in culture either on feeder layer or under feeder-free
conditions, using standard procedures. For culture on feeder layer, hESCs were
grown in Knockout DMEM (Gibco), supplemented with 20% Knockout Serum
Replacement (Gibco), 2mM glutamine, 1� non essential amino acids (NEAAs),
100Uml� 1 Penicillin/Streptomycin, 0.1mM 2-Mercaptoethanol, 10 ngml� 1 bFgf
(Gibco). For growth under feeder-free conditions, hESCs were cultured on Matrigel
(BD Bioscience)-coated plates, using mTeSR medium (Stem Cell Technologies).
hESCs were passaged every 5/6 days. Cells were incubated with TrypleSelect
1� (Gibco) for 2/3min and scraped gently with a tip.

For clonogenic assay, hESCs were dissociated with TrypleSelect 1� , for 5min
at 37 �C. Dissociated cells were plated on Matrigel and cultured in mTeSR medium
in the different conditions. After 6 days in culture, colonies were dissociated and
replated at low density in the same conditions. After 4 days, colonies were fixed and
stained either with crystal violet (see above for details) or with the Alkaline
Phosphatase kit (System Biosciences) to determine AP activity, following the
manufacturer’s instructions. The colony number and size were analysed, using
ImageJ software. Colonies were classified on the basis of the diameter, as follows:
micro o0.2mm, small 0.2–0.4mm, medium 0.4–0.7mm and large 40.7mm.

For generating CRIPTO KD hESCs, lentiviral pLKO.1 vectors containing either
a non-targeting sequence or the shRNA4889 and the shRNA4890 (ref. 23) were
used. Cells were plated on Matrigel and cultured in mTeSR medium in the different
conditions. Colonies were fixed and stained either with AP (System Biosciences) or
Oct4 and Nanog antibodies. The colony number was analysed, using ImageJ
software.

Cripto BP and CP were used at 10 and 20 mM in hESC passages and clonogenic
assay, respectively.

Flow cytometry and cell sorting. Single-cell suspensions of EpiSCs and hESCs
were obtained using either trypsin-EDTA or TrypleSelect 1� (Gibco), fixed,
stained with the appropriated primary and secondary antibodies according to the
manufacturer’s protocols and were either analysed with a FACS Canto (Becton
Dickinson) or sorted with a FACSAria (Becton Dickinson).

Western blotting. Whole-cell lysates were prepared with ice-cold immuno-
precipitation assay (RIPA) lysis buffer. For b-catenin localization, subcellular
fractionation was performed as described53. Detection was performed with ECL
reagents (Amersham Biosciences). Densitometric analysis was carried out using the
software GelEval 1.35. List of antibodies is in Supplementary Table 1. Full blots are
in Supplementary Fig. 6.

Immunohistochemistry. Samples were processed with the standard streptavidin–
biotin–immunoperoxidase method (DAKO Universal Kit, DAKO Corp.,
Carpinteria, CA, USA). Diaminobenzidine was used as the final chromogen and
haematoxylin as the nuclear counter stain. Details and list of antibodies are in
Supplementary Table 1.

Immunofluorescence and cytospin samples preparation. Cells were fixed
(4% PFA) and permeabilized (0.1% Triton X-100), where necessary, at room
temperature. After incubation with primary antibodies, cells were incubated (1 h)
with the appropriate secondary antibodies (Alexa Fluor 488, 594 1:200; Molecular
Probes). For preparation of cytospin samples, cells (1–1.5� 104) were dissociated
with accutase for 5min at 37 �C and resuspended in 15% FBS/1� PBS. Samples
were centrifuged at 900 r.p.m. for 15min onto glass slides (2 spots, 1� 105 cells
each) using a Thermo Shandon Cytocentrifuge (CytoSpin 4, Thermo Fisher
Scientific). Specimens were directly analysed or fixed for further analysis. Details
and list of antibodies are in Supplementary Table 1.

RNA extraction and quantitative reverse transcriptase–PCR. Total RNAs were
isolated using RNeasy mini kit and reverse transcribed using QuantiTect Reverse
Transcription kit (Qiagen). qPCR was performed using SYBR Green PCR master
mix (FluoCycle II SYBR, EuroClone). Details and list of primers are in
Supplementary Table 2.

Whole-genome expression analysis. RNA-seq was performed at the Institute
for Applied Genomics using the Illumina HiSeq 2500 platform (http://www.
igatechnology.com/). Gene expression analysis was obtained by counting reads
mapped on gene features, by using htseq-count54 and the statistical analysis was
performed by using RNASeqGUI55. In detail, paired-end fastq files were first
aligned on the mouse genome version mm9 (downloaded from http://
hgdownload.cse.ucsc.edu/goldenPath/mm9/chromosomes) by using TopHat2
(version tophat-2.0.13)56 with -G option and using as gene annotation file the
release 67 of NCBIM37, downloaded from ftp://ftp.ensembl.org/pub/release-67/gtf/
mus_musculus/ repository; all other parameters were set as default. HTSeq54

(version 0.6.1p1) was used to obtain raw counts on intersection non-empty mode
by using the same gene annotation file. Next, raw counts were processed by
using the RNSeqGUI (version 0.99.3)55. In particular, the ‘normalize.quantiles’
normalization function of the preprocessCore R package (Bolstad B.M.
preprocessCore: A collection of pre-processing functions; version
preprocessCore_1.28.0) was used to normalize the gene expression values. Those
genes with low expressions in all samples were filtered out by using the ‘Proportion
test’ of NOISeq57 (version NOISeq_2.8.0). In the filtering step we used cpm¼ 1.
Finally, we used full quantile-normalized and filtered counts to perform
differentially expression analysis. For such purpose, we used NOISeq (version
2.8.0) with posterior probability set to 0.95. As NOISeq test has a stochastic
component, for each comparison we launched NOISeq ten times, each time setting
a different seed. Hence, for each gene we calculated the mean of the ten posterior
probabilities obtained so far. We considered a gene as differentially expressed
across the samples if the mean of the ten posterior probabilities was Z0.95.
A sketch of the code used for carrying out the statistical analysis is given in
Supplementary Data 4. Despite the fact that we have applied a stringent procedure,
the absence of replicates does not allow us to define significance in a rigorous
statistical sense. Yet, the RNA-Seq results were validated by independent
experiments.

Genes were classified according to their known or predicted biological
functions based on GO terms (DAVID Bioinformatics Resources; http://
david.abcc.ncifcrf.gov).

Luciferase reporter assay. ESCs were transfected with the Super8xTOPFlash
and the Renilla-TK mutant plasmids using Lipofectamine, according to the
manufacturer’s protocol (Invitrogen). At 24 h after transfection, ESCs were treated
with Wnt3a (R&D Systems, 5–50 ngml� 1) for 24 h58, and Luciferase activity was
measured by using a dual Luciferase assay kit (Promega) according to the
manufacturer’s instructions.

Lactate activity assay. Lactate was measured using the colorimetric L-Lactate
Assay Kit (Abcam, Cambridge, MA, USA; ab65331) according to the
manufacturer’s instructions. Data were normalized to total cell number.

Teratoma assay. ESCs were trypsinized into single-cell suspension and
resuspended in PBS. ESCs (3� 106) were injected subcutaneously into hind limbs
of severe combined immunodeficiency mice. Teratomas were collected, fixed in
4% PFA, sectioned and stained with haematoxylin/eosin or subjected to
immunohistochemistry for the histological analysis.

Experiments were done in accordance to the law on animal experimentation
(article 7; D.L. 116/92) under the Animal Protocol approved by the Italian Ministry
of Health.

GFP-labelled ESCs and TE lineage contribution. GFP was inserted in both WT
and Cripto KO ESCs at the Rosa26 locus by using the R26P-SA-EGFPpuro plasmid
(Addgene). Ten days after transfection, puromycin-selected clones were verified for
correct self-renewal and differentiation properties.

Chimeras were obtained by injecting WT and Cripto KO GFP-labelled ESCs
(13–16) into 4- to 8-cell-stage embryos using standard techniques. Morulas were
incubated 48 h in KSOM (Chemical International) and observed under the
confocal microscope (Zeiss LSM700). Chimeric mouse generation was performed
by morula injection of WT and Cripto KO GFP-labelled ESCs. Resultant embryos
were cultured for 48 h in vitro and implanted by uterus transfer into
pseudopregnant foster mothers using standard methods. Pregnant mice were killed
at day E6.5 and whole embryos were photographed with ApoTome fluorescence
microscope. Experiments were done in accordance to the law on animal
experimentation (article 7; D.L. 116/92) under the Animal Protocol approved by
the Italian Ministry of Health.
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Statistical analysis. Statistical significance was determined by a two-tailed paired
Student’s t-test. P-values o0.05 were considered as statistically significant. Error
bars represent s.e.m.

Data availability. Sequence data that support the findings of this study have been
deposited to the GEO database with the accession code GSE79796. The authors
confirm that all other data appears in the article and Supplementary Information.
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