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1 INTRODUCTION                                                                     

He Riemann hypothesis is one of the most important    
Hilbert mathematical problems. It concerns the non-trivial 
zeros of zeta function in a complex plane. He announced 

that the real part of non-trivial zeros of zeta function is exactly 
equal to 0.5. 

We will prove that his hypothesis is true using complex 
numbers properties. 

2 FUNCTIONAL EQUATION 

We won’t demonstrate the functional equation but use his 
result. With Euler’s function  we get: 
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Through the functional, if s is a non-trivial zero of zeta then  
1-s is also a non-trivial zero. 

3 DEMONSTRATION 

A simple demonstration of Riemann hypothesis. It is based on 
the fact that is a complex number iba   is equal to null then 

iba  , is also equal to null. 
 

3.1 Generalization 

Let iyxs  be a zero of the zeta function then we have: 
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We have: 
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Now we sum lines obtained after simplification on both sides 
of equalities. Then we have: 
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And: 
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Then we get   0s . We derive the following propositions. 

Proposition 1. If s is a non-trivial (resp. trivial) zeta function 
zero then s is also a zero (resp. trivial). 

Proposition 2. If s  is a non-trivial (resp. trivial) zeta function 
zero then s is also a zero (resp. trivial). 

Proposition 3. Let s  be a complex number not equal to 1.                                 
Then     00  ss   

Proof. This a consequence of the first and the second proposition. 

 

3.2 Non Trivial Zero 

Let iyxs  be a non-trivial zero of the zeta function then 
we have: 

      01  sss  (R) 
 
Let us find conditions that satisfies s from (R). 
Then    ss  1  if only: 
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Which gives us: 
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Then 2/1x . The relation (R) established is verified (i.e. we 
get the three equalization) if only the real part of s is equal to ½. 
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We get the following theorem. 

Theorem 1. Let s  be a complex number not equal to 1. Then if s is a 
non-trivial zero of zeta function then his real part is exactly equal 
to ½. 

 

With Theorem 1 we show that, Riemann hypothesis is true. 

 
 

4 CONCLUSION 

.A great step has been done. The demonstration is simple but 
not evident also for me. 


