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CONVEX COMPACT SURFACES WITH NO BOUND
ON THEIR SYNTHETIC RICCI CURVATURE

C. VERNICOS

Abstract. The study of the law of reflection and Snell’s law of
refraction in the setting of (weak) normed vector spaces allows us
to present an example of convex compact surface which admit no
lower bound on its Ricci curvature as defined by Lott-Villani and
Sturm.

Introduction and statement of results

Many notions of curvature adapted to a metric (measured) space
have been defined to extends the ones existing in Riemanniann ge-
ometry. Most of them heavily rely on comparison to the Euclidean
space and that is why they are quite restrictive. For instance a normed
vectore space is CAT(0) if and only if it is a Euclidean space, as a
consequence the only Finsler spaces wich can be CAT(0) are Rieman-
niann. The same thing happens with the Alexandroff spaces. It is even
more restrictive in that case for an Alexandroff metric space is almost
Riemanniann manifold (see [BBI01] for a precise statement).

Some older notion, such as the Busemann convexity, are less restric-
tive. However they might not pass to the Gromov-Hausdorff limit of a
sequence of metric measured spaces. In the light of the current interest
in understanding the limit spaces arising as limits of riemanniann met-
ric space, with Ricci curvature bounded from below for instance this is
a huge flow.

Following the work of Villani-Lott and Sturm, a new family of notion
of ”curved” spaces arised. They involve the convexity of an operator on
the Wasserstein space, which is a metrization of the space of probabil-
ity measures. Among them one finds the space satisfying the curvature
dimension condition CD(K,N) or the measure contraction property
MCP (K,N). The later may be seen as a measure analog to the Buse-
mann convexity. The former as a generalisation of having Ricci cur-
vature bounded from below by (N − 1)K and being of dimension less
than N . We will refer to this last notion as synthetic Ricci curvature
and describe such spaces as admitting a lower bound on their synthetic
Ricci curvature. An exemple is given by normed vector space of di-
mension n which satisfy the curvature dimension condition CD(0, n).
This result is not easily obtained and requires to use the fact that a
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2 C. VERNICOS

normed vector space can be seen as a limit of CD(0, n)-metric spaces
with respect to the Gromov-Hausdorff convergence (see [Vil09]).

Another point of view on curvature in metric spaces is based on
analytical inequalities. For instance Cordero-Erausquin, McCann and
Schmuckenschläger looked at the Brascamp-Lieb inequality which is a
generalisation of the Prekopa-Leindler that can be used to prove the
Brunn-Minkoswki inequality in the euclidean space.

The interesting aspect on which this paper is based on is that most
notions of curvature deriving from the work of Villani-Lott and Sturm
imply a Brunn-Minkowski inequality, hence our focus on this inequality.

Our main result is the following

Theorem 1. There exist a compact C1,1 convex surface in R3 with
the norm ||(x, y, z)|| =

√
x2 + y2 + |z| which admits no lower bounds

on its synthetic Ricci curvature.

The idea of that exemple came from the study of reflections and
refraction in normed (not necessarily reflexive) vector spaces. In rela-
tion with this we describe and prove what we think is the the correct
generalisation of the law of reflection and Snell’s law of refractions in
any normed vector space. The section 2,3 and 4 are devoted to this
generalisation and are interesting on their own. Section 5 studies a
specific example which allows us to obtain our convex set in Section 6.

Aknowledgment

The author is strongly indebted to Juan Carlos Álvarez Paiva who
introduced him to the reflections in normed spaces with strictly convex
unit balls, and shared many hours in Lille on this subject and many
other fruitfull mathematical insights.

I therefore have to present my apologies to him to have use this very
beautiful geometric construction for my own selfish interest in synthetic
ricci curvature, and by using so much analysis to prove all this!

1. Definitions and notations

Let (X, d, µ) be a metric measured space. For any pairs of point m0,
m1 ∈ X, we call ms ∈ X an s-intermediate point from m0 to m1 if and
only if

d(m0,ms) = sd(m0,m1) and d(ms,m1) = (1− s)d(m0,m1).

Let K0 and K1 be two compact sets in X, the set of s-intermediate
points from points of K0 to points of K1 will be denoted by

(1− s)K0 + sK1.

If (1 − s)K0 + sK1 is not measurable, we will still denote its outer
measure by

µ
(
(1− s)K0 + sK1

)
.
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Let us first start with the classical Brunn-Minkowski inequality:

Definition 2 (Classical Brunn-Minkowski inequality). Let N be
greater than 1. We say that the Brunn-Minkowski inequalityBM(0, N)
holds in the metric measured space (X, d, µ) if for every pair of compact
set of non-zero measure K0 and K1, the following inequality is satisfied

(1) µ1/N
(
(1− s)K0 + sK1

)
≥ (1− s)µ1/N(K0) + sµ1/N(K1).

We also say that BM(0,+∞) holds if and only if

(2) µ
(
(1− s)K0 + sK1

)
≥ µ1−s(K0)µ

s(K1).

Remark 3. Notice that if for some n ∈ R∗, and t,a and b ∈ R the
inequality t ≥ (sa1/n + (1− s)b1/n)n holds, then from the concavity of
the logarithm we have

ln t ≥ n ln sa1/n + (1− s)b1/n

≥ s ln a+ 1− s ln b.

Hence any B(0, N) implies B(0,∞).

Now the generale Brunn-Minkowski inequality BM(K,N) requires
the introduction of a family of functions depending on K, N and s ∈
[0, 1] denoted by τ

(s)
K,N : R+ → R+. For a fixed s ∈ [0, 1] and θ ∈ R+,

τ
(s)
K,N(θ) is continuous, nonincreasing in N and nondecreasing in K. Its

exact definition is not important for our applications, refer to [Stu06b].

Definition 4 (Generalised Brunn-Minkowski inequality). Let N be
greater than 1. We say that the Brunn-Minkowski inequalityBM(K,N)
holds in the metric measured space (X, d, µ) if for every pair of compact
set of non-zero measure K0 and K1, the following inequality is satisfied

(3) µ1/N
(
(1− s)K0 + sK1

)
≥ τ

(1−s)
K,N (θ)µ1/N(K0) + τ

(s)
K,N(θ)µ1/N(K1).

where θ is the minimal (resp. maximal) length of a geodesic between
a point in Ko and a point in K1 if K ≥ 0 (resp. K < 0).

We can also define the BM(K,+∞) as follows:

(4) µ
(
(1− s)K0 + sK1

)
≥ µ1−s(K0)µ

s(K1)e
Ks(1−s)θ2/2.

The curvature dimension property, denoted by CD(K,N) is gener-
alisation of the following sentence to metric measures spaces:

The space has dimension less than N and the ricci cur-
vature is bigger than K.

It is defined in term of a convexity property of the entropy along
geodesics in the space of probability of the metric space (see [Stu06b]
for more precise statements).

For our purpose we only need to know the following properties of
a space satisfying a curvature dimension property (see K.T. Sturm
[Stu06b]).
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Property 5. Let (X, d, µ) be a metric measured space. The fol-
lowing implications are valid:

(1) Suppose CD(K,N) holds. If K ′ ≤ K, then CD(K ′, N) holds
as well. If N ′ > N , then CD(K,N ′) holds as well.

(2) Suppose CD(K,N) holds. Then for any α, β > 0, the metric
measured space (X,αd, βµ) satisfies the CD(K/α2, N) condi-
tion.

(3) When N ≥ 1, CD(0, N) implies BM(0, N) and more generaly
CD(K,N) implies BM(K,N) .

(4) When N > 1, then CD(K,N) implies the Bishop-Gromov vol-
ume growth inequality with the riemannian space of constant
curvature K and dimension N .

2. Preludes on convexe sets

Let A be a real affine space of finite dimension. We remind the
reader that such a space is naturally endowed with the action of a real
vector space ~D, called its direction, such that:

(1) ∀a, b ∈ A there exists a unique ~v ∈ ~D such that a + ~v = b.

That vector is usually denoted by ~ab (or b− a when there is no

ambiguity). For a fixed the vectors
−→
ab are onto ~D.

(2) The Chasles relation is satisfied:
−→
ab +

−→
bc = −→ac.

More important yet, for any family of points a1, . . . , ak in A and
weights λ1, . . . , λk in R such that

∑k
i=1 λi = 1 there exists a unique

point g, called barycenter, such that

k∑
i=1

λi
−→gai = 0.

The point g is usually denoted by
∑k

i=1 λiai.
Affine functions from A to R (resp. any other real affine space) are

the maps l preserving the barycenter, i.e., for any a1, . . . , ak in A and
weights λ1, . . . , λk in R such that

∑k
i=1 λi = 1 we have

l
( k∑
i=1

λiai
)

=
k∑
i=1

λil(ai).

An affine function l admits a unique linear part ~l from ~D to R (resp.
the direction of the targeted affine space), such that, for any a, b ∈ A
we have

l(b) = l(a) +~l(
−→
ab).

For our purpose let us also recall that the inverse image of a real
number by such an affine map is an affine hyperplane (resp. affine

subspace) whose direction is the kernel of ~l, denoted by ker~l.
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Let us now consider two convex functions n1 and n2 from ~D to R. In
the sequel these maps will be weak norms, that is positive homogeneous
functions satisfying the triangle inequality.

Definition 6. For any pair of points x, y in A, we call generalised
ellipsoid from x to y with respect to n1 and n2 the sets

Ex,y(r, n1, n2) = {z | n1(
−→xz) + n2(

−→zy) ≤ r}.

In the Euclidean geometry one property of ellipsoids, is that when a
ray of light originating from one focus reflects off its inner surface, it
always passes through the other focus.

Another way of stating this is that given two points A and B and
a hyperplane H, if a ray starts at the point A and reflects on the
hyperplane such that its reflection passes through the point B, then
the hyperplane is supporting an ellipsoid whose focal points are A and
B.

To generalise this in an affine setting, we need a completely angle
free point of view. That is the scope of the next proposition. The
sequel of this paper will show that this is indeed the correct point of
view if one requires the ray of lights to take the shortest path.

Proposition 7 (Generalised law of reflection/refraction). The gen-
eralised ellipsoid Ex,y(r, n1, n2) is a convex subset of A. Furthermore,
H is a supporting hyperplane of this generalised ellipsoid at the point
z if and only if there exists

• a supporting hyperplane h1 of B1(x) = {a | n1(
−→xa) ≤ n1(

−→xz)}
at z, and
• a supporting hyperplane h2 of B2(x) = {a | n2(

−→ay) ≤ n1(
−→zy)}

at z

whose directions have the same intersection whith the direction of H.

Proof. The convexity follows from the convexity of n1 and n2: Let a
and b two points in Ex,y(r, n1, n2) and let t ∈ [0, 1], then by definition
of the barycentre ta+ (1− t)b:

−−−−−−−−−−−→
x
(
ta+ (1− t)b

)
= t−→xa+ (1− t)

−→
xb(5)

−−−−−−−−−−−→(
ta+ (1− t)b

)
y = t−→ay + (1− t)

−→
by.(6)

hence by convexity of n1 and n2 we have

n1

(
x
(
ta+ (1− t)b

))
+ n2

((
ta+ (1− t)b

)
y
)
≤ t
(
n1(
−→xa) + n2(

−→ay)
)

(1− t)
(
n1(
−→
xb) + n2(

−→
by)
)
≤ tr + (1− t)r = r

The rest of the proof is an adaptation of a proof from Rockafel-
lar [Roc97]. let H be a supporting hyperplane of Ex,y(r, n1, n2) at z,
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then by convexity of the function

a 7→ n1(
−→xa) + n2(

−→ay)

there exists a supporting hyperplane H̃ of

E = {(a, r) ∈ A× R | n1(
−→xa) + n2(

−→ay) ≤ r}.

at (z, r) defined by an affine function H : A → R, i.e., such that for all
a ∈ A we have

H(a) ≤ n1(
−→xa) + n2(

−→ay) and H(z) = r,

H̃ is the graph of H in A× R, and H = H−1(r).
Let us consider the two following subsets of A× R :

F = {(a, µ) ∈ A× R | n1(
−→xa) ≤ n1(

−→zx) + ~H(−→za) + µ}
G = {(a, µ) ∈ A× R | n2(

−→ay) ≤ n2(
−→zy)− µ}

By convexity of n1 and n2 both sets F and G are convex.
If we consider their relative interior, that is the interior of these sets

in the smaller affine space containing them, we can see that they are
disjoint. Indeed suppose that we have a common point, that would
mean that we have the existence of (v, µ) ∈ X × R such that

n1(
−→xa) < n1(

−→zx) +
−→
H (−→za) + µ and n2(

−→ay) ≤ n2(
−→zy)− µ

which would imply that

(7) n1(
−→xa) + n2(

−→ay) < n1(
−→zx) + n2(

−→zy) +
−→
H (−→za)

= H(z) + ~H(−→za) = H(a)

which contradicts the definition of H.
Hence by the Hahn-Banach separation theorem we have the existence

of hyperplane L in A × R which separates these convex sets. That
hyperplane can be defined thanks to an affine map Λ: A → R and two
numbers λ, c such that

(a, µ) ∈ L ⇐⇒ ~Λ(−→za) + λµ = c.

Notice now the following two facts:

(1) λ 6= 0 because otherwise the hyperplane defined by ~Λ(−→za) = c
would separate the projections of F and G onto A, which are
both A.

(2) c = 0, because (z, 0) belongs to both F and G.

Therefore, if ~l = −~Λ/λ, we can suppose that{
~l(−→za) ≤ µ ∀(v, µ) ∈ F
~l(−→az) ≤ −µ ∀(v, µ) ∈ G
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Which implies that

~l(−→za) + ~H(−→za) ≤ n1(
−→xa)− n1(

−→xz),∀a ∈ A(8)

~l(−→az) ≤ n2(
−→ay)− n2(

−→zy),∀a ∈ A.(9)

Therefore, if we consider

F (a) = ~l(−→za) + ~H(−→za) + n1(
−→xz)(10)

G(a) = ~l(−→az) + n2(
−→zy)(11)

we have on one hand that for any a in A

(12) F (a) ≤ n1(
−→xa) and G(a) ≤ n2(

−→ay)

and

(13) F (z) = n1(
−→xz) and G(z) = n2(

−→zy).

which proves that the two hyperplanes F = n1(
−→xz) and G = n2(

−→zy)
are respectively tangent to B1 and B2 at z.

Furthermore the linear parts of F is ~l + ~h and the linear part of

G is −~l. Therefore, the intersections of the directions of these two

hyperplanes with the kernel of ~h coincides .

Reciprocally: Let F and G ne affine maps from A to R such that
F−1

(
n1(
−→xz)
)

is a supporting hyperplane of B1 at z, and G−1
(
n2(
−→zy)
)

is

a supporting hyperplane of B2 at z. If we define H(a) = ~F (−→xa)+ ~G(−→ay),
then we have

H(z) = n1(
−→xz) + n2(

−→zy) = r

and by assumption for any a ∈ Ex,y(r, n1, n2)

H(a) = ~F (−→xa) + ~G(−→ay) ≤ n1(
−→xa) + n2(

−→ay) ≤ r.

Therefore H = r is a supporting hyperplane of Ex,y(r, n1, n2) at z.

Finally notice that ~H(~v) = ~F (~v)− ~G(~v) and therefore the intersection

of ker ~F with ker ~H concides with the intersection of ker ~G with ker ~H.
�

3. Reflection in a Minkowski space

Consider a Minkowski space (X, || · ||) and let H : X → R be a

continuous affine map and denote by ~H its linear part. We are going
to study reflection on the hyperplane H = {x ∈ X | H(x) = 1}. The
unit ball associated to the norm || · || will be denoted by BX , in a more
formal way

BX = {x ∈ X | ||x|| ≤ 1}.
In the case of a Minkowski space we can define ellipsoids, as a par-

ticular case of the generalised ellipsoid seen in the definition 6.
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Definition 8 (Minkowski ellipsoids). Let x and y be two points in
the Minkowski space (X, ||·||). We define the ellipsoid with focal points
from x to y and detour ρ ≥ ||y − x|| , the set

E(x,y)(ρ) = {z | ||y − z||+ ||z − x|| ≤ ρ}.
We will call intermediate points from x to y the set of points z such

that ||y− z||+ ||z− x|| = ||y− z||, that is the ellipsoid E(x,y)(||y− x||).
The generalised law of reflection of Proposition 7 can therefore be

stated in this particular case as follows.

Property 9 (Fundamental property of Minkowski ellipsoids). For
any two points x and y in the Minkowski space (X, ||·||) and ρ > ||y−x||,
the Minkowski ellipsoid E(x,y)(ρ) is a convex set of non empty interior,
and it contains x and y.

Furthermore for any point z on the boundary of the Minkowski el-
lipsoid, H is a supporting hyperplane to the ellipsoid E(x,y)(ρ) at the
point z if and only if there exists

• a supporting hyperplane Hv to the unit ball BX at the point
~v = −→xz/||−→xz||, and
• a supporting hyperplane Hw to the unit ball BX at the point
~w = −→zy/||−→zy||

whose directions have the same intersection with H.

Proof. Let us show that it is of non-empty interior. First of all notice
that the whole segment [x, y] is contained in the interior of the ellipsoid
E(x,y)(ρ). Take any point z such that

||y − z||+ ||z − x|| < ρ

then for some small enough ε we have

||y − z||+ ||z − x|| < (1− 2ε)ρ

hence for any v such that ||t− z|| < ερ and ||z − t|| < ερ, we obtain

||y − t||+ ||t− x|| < ρ.

The rest is a straightforward application of the generalised law of
reflection (Proposition 7) with n1 = n2 = || · || and A = X. �

In a Euclidean vector space, as mentioned in the previous section, the
property 9 is known to characterise reflections. Hence in analogy with
the Euclidean case we are lead to introduce the following definition in
a Minkowski space.

Definition 10. Let ~v be a unit vector in X and H a hyperplane. A
unit vector ~w such that ~H(~v)· ~H(~w) < 0 will be called a reflection of the
vector ~v with respects to the hyperplane H if and only if the following
occurs: the unit ball BX admits two supporting hyperplanes, Hv at ~v
and Hw at ~w whose intersections with the direction of H coincide.
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Remark 11. In this definition, when the hyperplane Hv is parallel
to H then so is the hyperplane Hw. The vector ~w may not be unique if
the unit ball is not strictly convex, neiher the pair of hyperplanes Hv

and Hw if the unit sphere is not C1.

In the sequel we fix an hyperplane H, a unit vector ~v and ~w one of
its reflections with respect to H. Therefore Hv and Hw will be two
hyperplanes satisfying the conditons of the definition 10.

Our next step consists in proving that if we think of the hyperplanes
parallel to Hv as wave fronts, then the hyperplanes parallel to Hw can
be seen as their reflection on the hyperplane H.

To do so, let us point out that given given the vector ~v as above, the
hyperplane H determines two half spaces. One of those half spaces is
composed of those points x where the “positive” half line originating
at x and directed by ~v meets the hyperplane H. We shal denote by H+

this half space, that is,

H+ = {x|∃t > 0, x+ t~v ∈ H}.
Given the unit vector ~v as above, let us consider four points x,x′,y,y′

in this half space H+ and two points z,z′ on the hyperplane H such
that

• −→xz and
−→
x′z′ are parallel to the vector ~v,

• −→zy and
−→
z′y′ are parallel to the same vector ~w, which is a reflec-

tion of the vector ~v,
• x and x′ belong to the same hyperplane parallel to Hv,
• y and y′ belong to the same hyperplane parallel to Hw.

Then we have the following lemma, which is a generalisation of the
Huygens-Fresnel principle.

Lemma 12 (Wave front lemma). Let ~w be a reflection of the vector
~v on the hyperplane H, if the six points x,y,z and x′,y′ and z′ are in
the situation described above, we have

||z′ − x′||+ ||y′ − z′|| = ||z − x||+ ||y − z||.

Proof. Let us denote by Hw(y) the hyperplane parallel to Hw contain-
ing both y and y′. We will then denote by Hv(y) the hyperplane parallel
to Hv whose interection with Hw(y) lies on H, and by Y , Y ′ the inter-
sections of Hv(y) with, respectively, the lines (xz) and (x′z′). Then on
the one hand as xx′Y ′Y is a parallellogram we have

||Y ′ − x′|| = ||Y − x||.
Furthermore, as x′, Y ′,z′ (resp, x, z, y) are on the same line we have

||Y ′ − z′||+ ||z′ − x′|| = ||Y − z||+ ||z − x||.
On the other hand, by definition of the vectors ~w, both Y ′ and y′

(resp. Y and y) lie on the same sphere centred at z′ (resp. z) which
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implies

||Y ′ − z′|| = ||y′ − z′||, and ||Y − z|| = ||y − z||.
�

The following proposition states that the length minimization prop-
erty of a reflection in a Euclidean ellipsoid is also true in a Minkowski
one. Recall that H = {x ∈ X | H(x) = 1}.

Proposition 13. Let x and y be two points in the half space H < 1.
For any z ∈ H define the path form x to y composed of the straight
segments [x, z] and [z, y]. This path has minimal length as a function
of z if and only if one of the following occurs

• z is an intermediate point from x to y, i.e.,

(14) ||z − x||+ ||y − z|| = ||y − x||,
• or

(15)
y − z
||y − z||

is a reflection of
z − x
||z − x||

with respect to H.

Such a minimizing path exists.

Proof. Let lz be the length of the path defined as above. We are going
to show that this path has minimal length. If z is an intermediate point
from x to y, this follows from the triangle inequality.

Hence we can suppose that z satisfies the property (15). Therefore,
let us consider (see Figure 3)

• z′ any other point inH, and lz′ the length of the path [xz′]∪[z′y].
• ξ′ be the hyperplane passing by x and parallel to ξ the support-

ing hyperplane of the unit ball in the direction of z − x.
• η′ be the hyperplane passing by y and parallel to η the support-

ing hyperplane of the unit ball in the direction of y − z.
• ζ be the hyperplane parallel to ξ passing by z′.

Then we can define

• x′′ the intersection of the segment [x, z] with ζ, and
• x′ the intersection of ξ′ with the line passing by z′ and parallel

to the line (xz).

Then on the one hand, as the hyperplane ζ is tangent at z′ to the
sphere centred at x′ and passing by z′ we have

(16) ||z′ − x′|| ≤ ||z′ − x||.
On the other hand as η′ is tangent at y′ to the sphere centred at z′

and passing by y′ we have

(17) ||y′ − z′|| ≤ ||y − z′||.
From these two equation it follows that

(18) ||y′ − z′||+ ||z′ − x′|| ≤ lz′ .
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x y

E(x,y)(||y − x||∞)

H

Figure 1. An example where E(x,y)(||y − x||) is not a segment

Now it suffices to see that by construction and following lemma 12
we have pz = ||y′ − z′||+ ||z′ − x′|| ≤ lz′ .

Reciprocal and existence: Let the direction of H be ~H (which is the
kernel of H), and let us suppose, without loss of generality, that x and
y lye on the half space H < 1.

Let us define for any z ∈ X
(19) N(z) = ||y − z||+ ||z − x|| − ||y − x||.

Let r ≥ 0. By convexity there exists at least two points on the
boundary of the Minkowski ellipsoid E(x,y)(r + ||y − x||) which admits

a supporting hyperplane directed by ~H, i.e., parallel to H.
Therefore these hyperplanes can be identified with a level set of H,

Let us call h(r) the biggest real number corresponding to one of these
supporting hyperplanes.

First case: Suppose that h(0) ≥ 1, in other words E(x,y)(||y − x||)
intersects the hyperplane H. Then for any point of this intersection
(which can be reduced to a point), the assumption is satisfied. These
corresponds to intermediate points from x to y on the hyperplane.

Notice that this case does not occur if the norm is strictly convex.
Second case: We suppose that h(0) < 1. then given a fixed z′ in the

half space H > 1 we have h(N(z′)) > 1.
The continuity of h and the intermediate value theorem gives us

therefore the existence of a real number 0 < r < N(z′) such that
h(r) = 1, in other words, there exists some finite real number ρ >
||y − x|| such that H is a supporting hyperplane of E(x,y)(ρ) at some
point z (which need not be unique). We can now conclude thanks to the
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Figure 2. Proof of Proposition 13, a.k.a Huygens-
Fresnel principle

fundamental property of Minkowski ellipsoids 9 that the property (15)
is satisfied. �

4. Change of layers in Banach spaces, a generalisation of
Snell-Descartes law

Consider a real vector space X endowed with two Minkowski norms
|| · ||1, || · ||2.

Let us denote by B1 = {x ∈ X | ||x||1 ≤ 1} and B2 = {x ∈ X |
||x||2 ≤ 1} the unit balls associated to || · ||1 and || · ||2.

We can study the generalised ellipsoids in that setting as well, which
can be defined as follows:

Definition 14 (Bi-Minkowski ellipsoids). Let x and y be two points
in the ”Bi-Minkowski” vector space (X, || · ||1, || · ||2). We define the
ellipsoid with focal points from x to y and detour

ρ ≥ ρ0(x, y) = min
{
||y − z||2 + ||z − x||1 | z ∈ X

}
as the set

E(x,y)(ρ) =
{
z ∈ X | ||y − z||2 + ||z − x||1 ≤ ρ

}
.

The set E(x,y)

(
ρ0(x, y)

)
will be called the set of intermediate points

from x to y.
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Even if the convexity of the norms guaranties the convexity of these
ellipsoids, their shape is rather unpredictable. The easy case is when
one norm dominates the other. For instance if ||v||1 < ||v||2 for all
v ∈ X, then E(x,y)(ρ0) restricts to the point y. Otherwise anything can
happen, i.e., E(x,y)(ρ0) may contain both x and y or neither of them.

We now translate in that setting the generalized law of reflection.

Property 15 (Fundamental property of Bi-Minkowski ellipsoids).
For any two points x and y in the Bi-Minkowski space (X, || · ||1, || · ||2)
and ρ > ρ0(x, y), E(x,y)(ρ) is convex of non empty interior..

Furthermore for any point z on the boundary of the Bi-Minkowski
ellipsoid, H is a supporting hyperplane to the ellipsoid E(x,y)(ρ) at the
point z if and only if there exists

• a supporting hyperplane Hv to the unit ball B1 at the point
~v = −→xz/||−→xz||, and
• a supporting hyperplane Hw to the unit ball B2 at the point
~w = −→zy/||−→zy||

whose directions have the same intersection with the direction of H.

Proof. The fact that E(x,y)(ρ) is not empty comes from the definition
of ρ0(x, y). Let us show that it is of non-empty interior.

Take any point z such that

||y − z||2 + ||z − x||1 < ρ

then for some small enough ε we have

||y − z||2 + ||z − x||1 < (1− 2ε)ρ

hence for any v such that ||t− z||1 < ερ and ||z − t||2 < ερ, we obtain

||y − t||2 + ||t− x||1 < ρ.

The rest is a straightforward application of the generalised law of
reflection 7 with n1 = || · ||1, n2 = || · ||2 and A = X. �

Let H : X → R be a continuous affine map and ~H its linear part.
We are going to study change of layer through the hyperplane H =
{x ∈ X | H(x) = 1}. That is to say that we will endow the half space
H < 1 with a first minkowski norm || · ||1 and the half space H > 1
with a second minkowski norm || · ||2. Let us denote this metric space
by

(X, || · ||1,H, || · ||2)
An exemple of such a phenomenum is when the two norms are pro-

portional to the same euclidean norm. In that case our problem is
related to the refraction of light and the ratio of these norms is the
ratio of the indicies of refraction of the two half spaces.

That is why we introduce the following definition in the space (X, || ·
||1,H, || · ||2).
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Definition 16. Let ~v be a unit vector for the first norm in the space
X pointing toward the half space H > 1 (in other words ~H(~v) > 1).

A unit vector ~w with respect to the second norm, also pointing to-
ward the half space H > 1 will be called a refraction of the vector ~v
with respects to the hyperplane H if and only if the following occurs:

There exists a supporting hyperplane Hv to the first unit ball B1 at
~v, and a supporting hyperplane Hw to the second unit ball B2 at ~w.
whose intersections with the direction of H coincide.

Let us keep the notations of the definition 16. Given the unit vector
~v as above, let us consider two points x,x′ in the half space H < 1,
two points y, y′ in the half space H > 1 and two points z,z′ on the
hyperplane H such that

• −→xz and
−→
x′z′ are parallel to the vector ~v,

• −→zy and
−→
z′y′ are parallel to the same vector ~w, which is a refrac-

tion of the vector ~v,
• x and x′ belong to the same hyperplane parallel to Hv,
• y and y′ belong to the same hyperplane parallel to Hw.

Once again we have a Huygens-Fresnel principle in the following
lemma:

Lemma 17 (Wave front lemma). Let ~w be a refraction of the vector
~v on the hyperplane H, if the six points x,y,z and x′,y′ and z′ are in
the situation described above, we have

||z′ − x′||1 + ||y′ − z′||2 = ||z − x||1 + ||y − z||2.

Proof. Almost same proof as the previous wave front lemma 12.
Let Hw(y) be the hyperplane parallel to Hw containing both y and y′.

Let us denote by Hv(y) the hyperplane parallel to Hv whose intersecton
with Hw(y) lies of H. Let Y and Y ′ the intersections of Hv(y) with,
respectively, the lines (xz) and (x′z′).

On the one hand as xx′Y ′Y is a parallellogram we have

||Y ′ − x′||1 = ||Y − x||1.
Furthermore, as x′,z′,Y ′ (resp. x, z, Y ) are on the same line we have

||Y ′ − z′||1 + ||z′ − x′||1 = ||Y − z||1 + ||z − x||1.
On the other hand, by definition of the vector ~w, and the hyperplanes
Hw(y) and Hv(y) we have

||Y ′ − z′||1 = ||y′ − z′||2, and ||Y − z||1 = ||y − z||2.
To see this one can apply a dilation centred at z′ (resp. z).

�

Proposition 18 (Generalized minkowskian law of refraction). Let
x, y be two points in X which are not in the same half space defined
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by H, say H(x) < 1 and H(y) > 1. For any z ∈ H define the path
form x to y composed of the straight segments [x, z] and [z, y] and let
us denoted by pz = ||y − z||2 + ||z − x||1 the length of that path in
(X, || · ||1,H, || · ||2).

This path has minimal length as a function of z if and only if one of
the following occurs:

• z is an intermediate point from x to y, i.e.,

(20) ||z − x||1 + ||y − z||2 = ρ0(x, y),

• or

(21)
y − z
||y − z||2

is a refraction of
z − x
||z − x||1

with respect to H.

Such a minimizing path exists.

Proof. If z is an intermediate point from x to y it is a global minimum
over all X, hence it is a minimum path.

Suppose now that z satisfies the property (21) and let z′ any other
point in H.

Let ξ′ be the hyperplane passing by x and parallel to ξ the supporting
hyperplane of the unit ball in the direction of z − x.

Let η′ be the hyperplane passing by y and parallel to η the supporting
hyperplane of the unit ball in the direction of y − z.

let ζ be the hyperplane parallel to ξ passing by z′.
Then let x′′ be the intersection of the segment [x, z] with ζ and let

x′ be the intersection of ξ′ with the line passing by z′ and parallel to
the line (xz).

Then on one hand we have ||z′ − x′||1 ≤ ||z′ − x||1 because the
hyperplane ζ is tangent at z′ to the sphere centred at x′ and passing
by z′.

On the second hand we have

||y′ − z′||2 ≤ ||y − z′||2

because η′ is tangent at y′ to the sphere centred at z′ and passing by
y′.

From this it follows that

||y′ − z′||2 + ||z′ − x′||1 ≤ pz′ .

Now it suffices to see that by construction and following lemma 17
we have pz = ||y′ − z′||2 + ||z′ − x′||1.

Reciprocal and existence: Let H be the level set of the affine map
H : X → R associated to 1, whose direction is ~H and let us define for
any z ∈ X and ρ0(x, y) = min

{
||t− x||1 + ||y − t||2 | t ∈ X

}
,

N(z) = ||y − z||2 + ||z − x||1 − ρ0(x, y).
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First case: suppose that E(x,y)

(
ρ0(x, y)

)
intersects H, then any point

of this intersection satisfies our assumption. These are intermediate
points from x to y.

Second case: We suppose now that E(x,y)

(
ρ0(x, y)

)
does not intersect

H. Without loss of generality we may assume that it lyes on the half
space H < 1. Let r ≥ 0, then E(x,y)

(
r+ρ0(x, y)

)
admits two supporting

hyperplanes directed by ~H.
Therefore these hyperplanes can be identified with a level set of H.

As in the minkowski case, let us denote by h(r) the biggest real num-
ber corresponding to one of this supporting hyperplanes. Then by
assumption h(0) < 1 and for some z′ in the half space H > 1 we have
h
(
N(z′)

)
> 1.

The continuity of h and the intermediate value theorem gives us the
existence of 0 < r < N(z′) such that h(r) = 1, in other words, there
exists some finite real number ρ > ρ0(x, y) such that H is a supporting
hyperplane of E(x,y)(ρ) at some point z (which need not be unique). We
can now conclude thanks to the fundamental property of Bi-Minkowski
Ellipsoids 15 that the property (21) is satisfied. �

5. Brunn-Minkowski inequality is not preserved in a two
layers Banach space

In this section we are going to consider the vector space R2, and
the hyperplane H = {(x, y) ∈ R2 | y = 0}. We are going to put the

classical euclidean `2 norm ||(x, y)||2 =
√
x2 + y2 on the half space

y > 0 and the `1 norm ||(x, y)||1 = |x| + |y|, on the half space y < 0.
Hence we are going to work, using the notation of the previous section,
on the metric space (R2, `2,H, `1).

Properties 19. Let X0 = (ρ, θ) be in the upper half plane and
X1 = (0, y) be in the lower half plane (y < 0), then

• the geodesic joining X0 to X1 is composed of the line segment
from X0 to the origin and the origin to X1. It is unique.
• The distance between X0 to X1 is equal to ρ− y.
• Let Xs be the s-intermediate point between X0 to X1,

(1) If s(ρ − y) < ρ, then Xs belongs to the upper half plane
and lies on the affine segment from X0 to the origin, and
Xs =

(
(1− s)ρ+ sy, θ

)
in polar coordinates;

(2) If s(ρ − y) > ρ, then Xs belongs to the lower half plane
and lies in the line x = 0, and Xs =

(
0, (1 − s)ρ + sy

)
in

cartesian coordinates.

Proof. The fact that this path is a geodesic is a direct consequence of
Proposition 18. The only thing we need to prove is uniqueness. Any
geodesic between these points has to pass through the origin. Hence
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on the upper half plane, as there is only one geodesic between any two
points we don’t have any choice.

Now on the lower half plane, let γ : [0, 1] → R2 be a piecewise C1

path between the origin and the point (0, y), if γ(t) =
(
x(t), y(t)

)
, then

t→ g(t) = (0, y(t)) is also a piecewise C1 path between the origin and
the point (0, y). Now we have almost everywhere

|ẏ(t)| ≤ |ẋ(t)|+ |ẏ(t)|

therefore the length of γ is bigger that the length of g, except if x(t) =
0 almost everywhere. This implies that the only geodesic between
(0, 0) and (0, y) is the segment between these two points. The other
properties are easy to check. �

Proposition 20. In the metric space (R2, `2,H, `1) no Brunn-Min-
kowski inequality holds, i.e., for any K ∈ R and N ∈ N ∪ {+∞},
BM(K,N) does not hold.

Proof. Let (ρ, θ) be the polar coordinates in R2. Consider the annulus

K0 = {(ρ, θ) | 6 ≤ ρ ≤ 8, π/3 ≤ θ ≤ 2π/3},

and the affine segment

I = {(x, y) ∈ R2 | −101 ≤ y ≤ −100, x = 0}.

Now let X0 = (ρ0, θ) be in K1, and XI = (0,−100−t) in I. Following
the previous section, there is a unique geodesic from X0 to XI , and is
composed of the affine segment joining X0 to the origin O = (0, 0)
and of the affine segment joining the origin to XI . We therefore have
||X0||2 = ρ0 and ||XI ||1 = 100 + t, from which we deduce that the
distance between these two points is ρ0 + 100 + t. Now following the
Properties 19, as

(ρ0 + 100 + t)/2 > 106/2 = 53 > 8 ≥ ρ0,

for s ≥ 1/2 the point Xs =
(
0, (1 − s)ρ0 + s(−100 − t)

)
, is the s-

intermediate point on the geodesic from X0 to XI , From this we easily
deduce that the 1/2-intermediate set from X0 to I is

1

2
K0 +

1

2
I =

{
(x, y) | x = 0,−47, 5 ≤ y ≤ −46

}
.

This suffices to prove that no BM(K,N) is satisfied.
Now let us prove that BM(K,+∞) is never satified. For s > 1/2

the s-intermediate set from X0 to I is easily seen to be

(1−s)K0+sI =
{

(0, y) ∈ R2 | −101s+6(1−s) ≤ y ≤ −100s+8(1−s)
}

.

We start by considering some 0 < ε < 1, whose value will be chosen
at the end, and replace I with

K1 =
{

(x, y) ∈ R2 | |x| ≤ ε, |y + 100, 5| ≤ 0, 5
}

.
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The next step is to introduce the slices of K1:

Iα = {(x, y) ∈ R2 | −101 ≤ y ≤ −100, x = α}

for 0 < α ≤ ε < ρ, and to identify their intermediate sets (1− s)K0 +
sIα. In order to do this we compute the distance between X0 and (α, 0),
which gives

ρα =
√
ρ20 − 2αρ0 cos θ + α2,

and it is now easy to check that for X0 in K0 we have

(6− α) ≤ (ρ0 − α) <
√
ρ20 − αρ0 + α2 ≤

ρα ≤
√
ρ20 + αρ0 + α2 < (ρ0 + α) ≤ (8 + α).

(22)

The description we were seeking is therefore

(1−s)K0 + sIα ={
(α, y) ∈ R2 | −101s+ (1− s)

√
62 − 6α + α2 ≤ y

≤ −100s+
√

82 + 8α + α2(1− s)
}

.

(23)

To obtain an upper bound on its area we notice that it can be seen as
a subset as follows

(1− s)K0 + sIα ⊂{
(α, y) ∈ R2 | −101s+ (1− s)(6− α) ≤ y

≤ −100s+ (1− s)(8 + α)
}

,

(24)

Therefore the area of the intermediate set Ks = (1− s)K0 + sK1 is less
than

ε ·
(
16− 15s

)
up to some multiplicative constant C, depending on the normalisation
chosen for the Lebesgue measure.

This also tells us (depending on the sign of K) that

(25) 105 ≤ 106− ε ≤ θ(ε) ≤ 108 + ε ≤ 109.

The area of K1 is exactly 2ε. Hence, for some fixed constant C we have

(26)
µ
(
(1− s)K0 +K1

)
µs(K1)

≤ ε1−s · C1−s ·
(

8− 15

2
s
)

We need now to compare, as s→ 1, the right hand part of (26) with

µ1−s(K0)e
Ks(1−s)θ(ε)2/2,

which is the same as comparing ε · C ·
(
8− 15

2
s
)1/(1−s)

with

µ(K0)e
Ksθ(ε)2/2.
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This last term converges towards µ(K0)e
Kθ(ε)2/2, while the first to ε ·

C · e15/2.
To conclude, as θ(ε) stays bounded, we can find and fix an ε small

enough such that

ε · C · e15/2 < 1

2
µ(K0)e

Kθ(ε)2/2.

Then, for values of s close enough to 1, we will obtain

µ1−s(K0)e
Ks(1−s)θ(ε)2/2 >

µ
(
(1− s)K0 +K1

)
µs(K1)

,

which contradicts BM(K,+∞). �

Proposition 21. There exists a Minkowski norm f on R2 such that
that BM(−1,+∞) does not hold in the metric space (R2, `2,H, f).

Proof. Recall that a Minkowski norm f is twice differentiable on R2 \
{0}, with a definite positive Hessian. Let (fn)n∈N be a sequence of
Minkowski norm, converging towards the `1 norm. Up to a rescaling
we can suppose that the intersection of their unit ball with H coincide
with the intersection of the unit ball of the `1 norm.

Observe also that we can chose the norms fn such that their tangents
at their point of intersection with H is orthogonal to H. This will be
useful in the last section of this paper.

Then the sequence of metric spaces (R2, `2,H, fn) converges in the
Gromov-Haussdorf measured topology towards (R2, `2,H, `1).

Let us denote by µn the Hausdorff measure associated to fn. On
the upper half space it does not change, but it varies on the lower half
space.

Consider again the sets K0 and K1 and the intermediate set Ks as
in the proof of Proposition 20. Then for any n we would get another
intermediate set Ks(n), and another function θ(n) which is the maxi-
mum (resp. Minimum) between two points from K0 to K1 or from K1

to K0. Following our assumption we have that θ(n) converges towards
the θ of the limit, µ(K0) does not change and µn(K1) converges towards
µ(K1) thanks to the gromov-hausdorff measured convergence.

We suppose that s is close enough to 1 to be on the lower half plane.
We need to prove that µn(Ks(n)) converges towards µ(Ks) as n goes

to infinity. First notice that Ks is a compact closed set, and so are
the sets Ks(n). Secondly, the geodesics from a point on the upper
half space to the lower half space are unique, because both norms are
strictly convex. Hence the geodesics are converging to the geodesics.

Now consider a finite covering of K0 by balls of radius ε centered
at points x1, . . . , xk in and a finite covering of K1 by balls of raidus ε
centered at points y1, . . . , ym in (R2, `2,H, `1). Then consider the m×k
geodesics between the x′is and the y′js, and the m × k corresponding
intermediate points zij. Then there exists a constant c ≥ 1 such that



20 C. VERNICOS

the balls of radius cε centered at the points zij form a covering of the
Ks. To see this, look at the s-intermediate set from a ball or radius ε
on the upper half space to a ball of radius ε on the lower half space.

Now for any n we can consider the corresponding family zij(n) of s-
intermediate points. The uniqueness of the geodesic and the fact that
the norms are strictly convex and smooth implies the uniqueness of
these points and the gromov-hausdorff convergences implies that the
zij(n) converge uniformly towards the zij. But for any n we will also
have the existence of some constant c(n) ≥ 1 such that the ball of radius
c(n)ε center at zij(n) cover Ks(n), and as n → ∞, c(n) will converge
towards c because these constants are related to the ratio between the
`2 norm and the fn norm respectively the `1 norm for c.

This tells us that the sequence of sets Ks(n) converge in the gromov-
Hausdorff sense towards Ks. Hence in our case, the measures converg-
ing as well we can say that they converge in the measured Gromov-
Hausdorff sense.

Hence for any n large enough, we would get a contradiction to
BM(−1,+∞) if we choose K0, K1 and s as in the proof of Propo-
sition 20 to contradict BM(−1,+∞) in (R2, `2,H, `1).

�

6. A compact Finsler surface with no lower ricci bound
embbeded in a Minkowski space

6.1. First example. Let us consider in the Euclidean three-dimensional
space, the two-dimensional disk

S =
{

(x, y, z) | z = 0, x2 + y2 ≤ 1
}

,

and let B be the conve hull of

S ∪
{

(0, 0, 1), (0, 0,−1)
}

.

We now endow R3 with the norm || · ||B whose unit ball is B. In other
words for any (x, y, z) ∈ R3,

||(x, y, z)||B =
√
x2 + y2 + |z|.

The affine planes normal to the vector (0, 0, 1) endowed with the
norm induced by || · ||B are all isometric to the two dimensional eu-
clidean plane. In the same way, the affines planes containing the direc-
tion (0, 0, 1) are isometric to the `1-plane (i.e., that is the manhattan
distance).

In this normed vector space, we will consider the cube Cρ obtained
as the convex hull of the eight points{

(±ρ,±ρ,±ρ)
}

.

The cube Cρ admits two faces which are euclidean, and four faces which
are `1.



COUNTER EXAMPLE 21

Proposition 22. Let R3 be endowed with the norm || · ||B. Then
the cube C1 with the metric induced by || · ||B does not satisfy any
curvature dimension.

Proof. Let us denote by dρ the distance induced on Cρ by || · ||B and
µρ the induced Lebesgue measure. Focus on two adjacent faces of Cρ,
one euclidean and the second one `1. Then we are locally exactly as
in section 5, and therefore the same computations as in section 5 show
that for any ρ ∈ R∗, the Brunn-Minkowski BM(K,N) inequality does
not hold for any N ∈ N ∪ {+∞} and any K ∈ R.

Therefore in
(
Cρ, dρ, µρ

)
the curvarture dimension CD(K,N) does

not hold for any K and any N . �

Corollary 23. There exists a C1,1 compact and convex surface in
(R3, ||·||B) such that for anyN ∈ N∪{+∞} and anyK ∈ R , CD(K,N)
does not hold.

Proof. letB(ε) be the euclidean ball of radius ε. Consider the Minkowski
sum of the cube and this ball, that is,

C(ε) = B(ε) + C1 = {x+ y | x ∈ B(ε), y ∈ C1},
with the unduced metric by || · ||B. Then C(ε) is smooth, and as ε
goes to zero, it converges in the Gromov-Hausdorff measured topology
towards C1.

Actually C(ε) is obtained by translating the faces of the cube C1
outward at a euclidean distance ε and then close by rolling the euclidean
ball of radius ε along the edges, from the inside. Hence the difference
is on the surface obtained along these curved edges. On the flat section
we have the same distance than in C1.

Fix some K and N = +∞. We can use the annulus K0 and the
rectangle K1 from the proof of Proposition 20, the only thing which
will change is the s-intermediate set from K0 to K1, denoted by Ks(ε).
Fix an s such that we get the contradiction as in proof of Proposition 20.

Then as ε goes to zero Ks(ε) the corresponding s-intermediate set
and in particular its measure converges towards the measure of the s-
intermediate Ks of the proof of Proposition 20. Hence for some ε small
enough, we would get the same contradiction.

Let us fix such a ε for K = −1. The images by the dilation hρ of
ratio ρ of center the origin of K0, K1 and Ks(ε) lie on Cρ + B(ρ · ε)
where they give a counter example to BM(−1,+∞) as well, because
the image of Ks(ε) by hρ is the s-intermediate set from hρ(K0) to
hρ(K1) on Cρ + B(ρ · ε). Hence for any ρ > 0, Cρ + B(ρ · ε) is not
BM(−1,+∞), hence not CD(−1,+∞).

Now let us suppose that C1 + B(ε) is CD(K,N) for some K < −1.
Then

(
C1 +B(ε), ρd, ρn−1µ

)
is CD(K/ρ2, N). Observe now that hρ is

an isometry between
(
C1 +B(ε), ρd, ρn−1µ

)
and Cρ +B(ρ · ε), because,

d(hρ(x), hρ(y)) = ρ · d(x, y)
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but then for ρ2 > −K, we get that Cρ + B(ρ · ε) is C(−1, N), which
contradicts the choice of ε. �

6.2. Second example. This second example is to justify that one can
get an example with a smoother norm.

Let H in R3 be the x-axis (that is the line z = 0 an y = 0). Consider
f a norm in the plane y = 0 such that (y = 0, `2,H, f) does not
satisfy CD(−1,+∞) as in proposition 21. Then consider Bf the convex
obtained by rotating the norm f around the z-axis.

Then let us denote by || · ||f the norm whose unit ball coincide with
Bf .

Proposition 24. There exists a C1,1 compact and convex surface
in (R3, || · ||f ) such that for any N ∈ N ∪ {+∞} and any K ∈ R ,
CD(K,N) does not hold.

Proof. Again, let us consider the family of cubes Cρ with our two
sets K0 and K1. Then for any ρ, Cρ with the induced metric in not
BM(−1,+∞).

Then let us also consider C1 +B(ε), then for some ε small enough it
will not be BM(−1,+∞) as in the previous example. And again, by
homotating the sets contradicting BM(−1,+∞), we obtain that for
any ρ > 0, Cρ +B(ε · ρ) is not BM(−1,+∞).

Again the same reasoning by contradiction as in the proof of Corol-
lary 23 shows that C1 + B(ε) can not satisfy any CD(K,N), for any
K and any N . �

7. Concluding remarks

The current work has been the subject of various talk and discutions
with many colleagues having their own idea of what is a good notion
of curvature in metric measured spaces.

The first main problem which forbids the notion of synthetic Ricci
curvature to apply in our first example is the branching occuring when
one passes from one media to another. It is also related to the Finslerian
nature of our spaces.

Both these problems excludes all the notions of curvatures that have
been presented to us by our various colleagues. For instance one could
decide to work with spaces admitting a Gromov-Bishop comparison
theorem, as some nice theorem and results in Riemannian geometry are
actully based on the fact that manifolds with Ricci curvature bounded
from below admits such a comparison. An easy computation shows
that the metric space (R2, `2,H, `1) does not satisfy such a comparison
with the standard hyperbolic plane.

Notice that by smoothing our norm, we still got a surface without
synthetic Ricci curvature bounded from below, but without branching.
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This illustrate the fact that by being close to a branching space is also
problematic.
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