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CONVEX COMPACT SURFACES WITH NO BOUND
ON THEIR SYNTHETIC RICCI CURVATURE

C. VERNICOS

Abstract. Using refraction in the setting of normed vector spaces
allows us to present an example of convex compact surface which
admit no lower bound on its Ricci curvature as defined by Lott-
Villani and Sturm.

Introduction and statement of results

Many notions of curvature adapted to a metric measure space have
been defined to extend the ones existing in Riemanniann geometry.
Most of them heavily rely on comparison to the Euclidean space and
that is why they are quite restrictive. For instance a normed vectore
space is CAT(0) if and only if it is a Euclidean space, as a consequence
the only Finsler spaces wich can be CAT(0) are Riemanniann (see also
[BI13]). The same thing happens with the Alexandroff spaces. It is
even more restrictive in that case for an Alexandroff metric space is
almost Riemanniann manifold (see [BBI01] for a precise statement).

Some older notion, such as the Busemann convexity, are less restric-
tive. However they might not pass to the Gromov-Hausdorff limit of a
sequence of metric measured spaces. In the light of the current inter-
est in understanding the limit spaces arising as limits of Riemanniann
metric space, with Ricci curvature bounded from below for instance
this is a huge flaw.

Following the work of Lott-Villani [LV09] and Sturm [Stu06a, Stu06b],
a new family of notion of ”curved” spaces arised. They involve the con-
vexity of an operator on the Lp-Wasserstein space, which is a metriza-
tion of the space of probability measures with finite p-th moment.
Among them one finds the space satisfying the curvature dimension
condition CD(K,N) or the measure contraction propertyMCP (K,N).
The later may be seen as a measure analog to the Busemann convexity.
The former as a generalisation of having Ricci curvature bounded from
below by (N − 1)K and being of dimension less than N . We will refer
to this last notion as synthetic Ricci curvature and describe such spaces
as admitting a lower bound on their synthetic Ricci curvature. An ex-
ample is given by normed vector space of dimension n which satisfy
the curvature dimension condition CD(0, n) (This follows from proof

of the interpolation inequality and concavity of det
1
n ).
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2 C. VERNICOS

Another point of view on curvature in metric spaces is based on
analytical inequalities. For instance Cordero-Erausquin, McCann and
Schmuckenschläger [CEMS01] looked at the Brascamp-Lieb inequality
which is a generalisation of the Prekopa-Leindler inequality that can be
used to prove the Brunn-Minkoswki inequality in the Euclidean space.

The interesting aspect on which this paper is based on is that most
notions of curvature deriving from the work of Lott-Villani and Sturm
imply a Brunn-Minkowski inequality, hence our focus on this inequality.

Our main result is the following

Theorem 1. There exist a compact C1,1 convex surface in R3 with
the norm ||(x, y, z)|| =

√
x2 + y2 + |z| which admits no lower bounds

on its synthetic Ricci curvature.

The idea of that example came from the study of reflections and
refraction in normed (not necessarily reflexive) vector spaces. Section
2 focuses on a specific example which allows us to obtain our convex
set in Section 3.

1. Definitions and notations

Let (X, d, µ) be a metric measured space. For any pairs of point m0,
m1 ∈ X, we call ms ∈ X an s-intermediate point from m0 to m1 if and
only if

d(m0,ms) = sd(m0,m1) and d(ms,m1) = (1− s)d(m0,m1).

Let K0 and K1 be two compact sets in X, the set of s-intermediate
points from points of K0 to points of K1 will be denoted by

(1− s)K0 + sK1.

If (1 − s)K0 + sK1 is not measurable, we will still denote its outer
measure by

µ
(
(1− s)K0 + sK1

)
.

Let us first start with the classical Brunn-Minkowski inequality:

Definition 2 (Classical Brunn-Minkowski inequality). Let N be
greater than 1. We say that the Brunn-Minkowski inequalityBM(0, N)
holds in the metric measured space (X, d, µ) if for every pair of compact
set of non-zero measure K0 and K1, the following inequality is satisfied

(1) µ1/N
(
(1− s)K0 + sK1

)
≥ (1− s)µ1/N(K0) + sµ1/N(K1).

We also say that BM(0,+∞) holds if and only if

(2) µ
(
(1− s)K0 + sK1

)
≥ µ1−s(K0)µ

s(K1).

Remark 3. Notice that if for some n ∈ R∗, and t,a and b ∈ R the
inequality t ≥ (sa1/n + (1− s)b1/n)n holds, then from the concavity of



SURFACE WITHOUT SYNTHETIC RICCI CURVATURE BOUND 3

the logarithm we have

ln t ≥ n ln sa1/n + (1− s)b1/n

≥ s ln a+ 1− s ln b.

Hence any B(0, N) implies B(0,∞).

Now the general Brunn-Minkowski inequality BM(K,N) requires
the introduction of a family of functions depending on K, N and s ∈
[0, 1] denoted by τ

(s)
K,N : R+ → R+. For a fixed s ∈ [0, 1] and θ ∈ R+,

τ
(s)
K,N(θ) is continuous, nonincreasing in N and nondecreasing in K. Its

exact definition is not important for our applications, refer to [Stu06b].

Definition 4 (Generalised Brunn-Minkowski inequality). Let N be
greater than 1. We say that the Brunn-Minkowski inequalityBM(K,N)
holds in the metric measured space (X, d, µ) if for every pair of compact
set of non-zero measure K0 and K1, the following inequality is satisfied

(3) µ1/N
(
(1− s)K0 + sK1

)
≥ τ

(1−s)
K,N (ϑ)µ1/N(K0) + τ

(s)
K,N(ϑ)µ1/N(K1).

where ϑ is the minimal (resp. maximal) length of a geodesic between
a point in Ko and a point in K1 if K ≥ 0 (resp. K < 0).

We can also define the BM(K,+∞) as follows:

(4) µ
(
(1− s)K0 + sK1

)
≥ µ1−s(K0)µ

s(K1)e
Ks(1−s)ϑ2/2.

The curvature dimension property, denoted by CD(K,N) is gener-
alisation of the following sentence to metric measures spaces:

The space has dimension less than N and the ricci cur-
vature is bigger than K.

It is defined in term of a convexity property of the entropy along
geodesics in the space of probability of the metric space (see [Stu06b]
for more precise statements).

For our purpose we only need to know the following properties of
a space satisfying a curvature dimension property (see K.T. Sturm
[Stu06b]).

Property 5. Let (X, d, µ) be a metric measured space. The fol-
lowing implications are valid:

(1) Suppose CD(K,N) holds. If K ′ ≤ K, then CD(K ′, N) holds
as well. If N ′ > N , then CD(K,N ′) holds as well.

(2) Suppose CD(K,N) holds. Then for any α, β > 0, the metric
measured space (X,αd, βµ) satisfies the CD(K/α2, N) condi-
tion.

(3) When N ≥ 1, CD(0, N) implies BM(0, N) and more generally
CD(K,N) implies BM(K,N) .

(4) When N > 1, then CD(K,N) implies the Bishop-Gromov vol-
ume growth inequality with the Riemannian space of constant
curvature K and dimension N .
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2. Brunn-Minkowski inequality is not preserved in a two
layers Banach space

In this section we are going to consider the vector space R2, and
the hyperplane H = {(x, y) ∈ R2 | y = 0}. We are going to put the

classical Euclidean `2 norm ||(x, y)||2 =
√
x2 + y2 on the half space

y > 0 and the `1 norm ||(x, y)||1 = |x| + |y|, on the half space y < 0.
We will denote by (R2, `2,H, `1) the metric space obtained this way.

Now let us specify the measures used here. On either half space we
want a measure which is invariant by translation. This implies that in
each half space it is a multiple of the Lebesgue measure λ. Let us take
λ in the upper half space such that π is the measure of the standard
Euclidean disk. Let α > 0 and take αλ in the lower half space (The
Busemann normalisation would consist in taking α = π/2 for instance).

Properties 6. Let X0 = (ρ, θ) be in the upper half plane in polar
coordinates and X1 = (0, y) be in the lower half plane in cartesian
coordinates (y < 0), then

• the geodesic joining X0 to X1 is composed of the line segment
from X0 to the origin and the origin to X1. It is unique.
• The distance between X0 to X1 is equal to ρ− y.
• Let Xs be the s-intermediate point between X0 to X1,

(1) If s(ρ − y) < ρ, then Xs belongs to the upper half plane
and lies on the affine segment from X0 to the origin, and
Xs =

(
(1− s)ρ+ sy, θ

)
in polar coordinates;

(2) If s(ρ − y) > ρ, then Xs belongs to the lower half plane
and lies in the line x = 0, and Xs =

(
0, (1 − s)ρ + sy

)
in

cartesian coordinates.

Proof. The fact that this path is a geodesic is an easy computation
in that case. The only thing we need to prove is uniqueness. Any
geodesic between these points has to pass through the origin. Hence
on the upper half plane, as there is only one geodesic between any two
points we don’t have any choice.

Now on the lower half plane, let γ : [0, 1] → R2 be a piecewise C1

path between the origin and the point (0, y), if γ(t) =
(
x(t), y(t)

)
, then

t→ g(t) = (0, y(t)) is also a piecewise C1 path between the origin and
the point (0, y). Now we have almost everywhere

|ẏ(t)| ≤ |ẋ(t)|+ |ẏ(t)|

therefore the length of γ is bigger that the length of g, except if x(t) =
0 almost everywhere. This implies that the only geodesic between
(0, 0) and (0, y) is the segment between these two points. The other
properties are easy to check. �
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Proposition 7. In the metric space (R2, `2,H, `1) no Brunn-Min-
kowski inequality holds, i.e., for any K ∈ R and N ∈ N ∪ {+∞},
BM(K,N) does not hold.

Proof. First one can notice that for N < +∞ the space (R2, `2,H, `1)
is invariant under linear dilations. This implies that if it is BM(K,N)
then it is BM(0, N).

Let (ρ, θ) be the polar coordinates in R2. Consider the annulus

K0 = {(ρ, θ) | 6 ≤ ρ ≤ 8, π/3 ≤ θ ≤ 2π/3},
and the affine segment

I = {(x, y) ∈ R2 | −101 ≤ y ≤ −100, x = 0}.
Now let X0 = (ρ0, θ) be in K1, and XI = (0,−100−t) in I. Following

the previous section, there is a unique geodesic from X0 to XI , and is
composed of the affine segment joining X0 to the origin O = (0, 0)
and of the affine segment joining the origin to XI . We therefore have
||X0||2 = ρ0 and ||XI ||1 = 100 + t, from which we deduce that the
distance between these two points is ρ0 + 100 + t. Now following the
Properties 6, as

(ρ0 + 100 + t)/2 > 106/2 = 53 > 8 ≥ ρ0,

for s ≥ 1/2 the point Xs =
(
0, (1 − s)ρ0 + s(−100 − t)

)
, is the s-

intermediate point on the geodesic from X0 to XI , From this we easily
deduce that the 1/2-intermediate set from X0 to I is

1

2
K0 +

1

2
I =

{
(x, y) | x = 0,−47, 5 ≤ y ≤ −46

}
.

This suffices to prove that BM(0, N) is not satisfied as

(αλ)
1
N

(1

2
K0 +

1

2
I
)

= 0 <
1

2
λ

1
N (K0)

(Actually, we have that the space is not MCP (0, N)).
Now let us prove that BM(K,+∞) is never satified. For s > 1/2

the s-intermediate set from X0 to I is easily seen to be

(1−s)K0+sI =
{

(0, y) ∈ R2 | −101s+6(1−s) ≤ y ≤ −100s+8(1−s)
}

.

We start by considering some 0 < ε < 1, whose value will be chosen
at the end, and replace I with

K1 =
{

(x, y) ∈ R2 | |x| ≤ ε, |y + 100, 5| ≤ 0, 5
}

.

The next step is to introduce the slices of K1:

Iα = {(x, y) ∈ R2 | −101 ≤ y ≤ −100, x = α}
for 0 < α ≤ ε < ρ, and to identify their intermediate sets (1− s)K0 +
sIα. In order to do this we compute the distance between X0 and (α, 0),
which gives

ρα =
√
ρ20 − 2αρ0 cos θ + α2,
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and it is now easy to check that for X0 in K0 we have

(6− α) ≤ (ρ0 − α) <
√
ρ20 − 2αρ0 + α2 ≤

ρα ≤
√
ρ20 + 2αρ0 + α2 < (ρ0 + α) ≤ (8 + α).

(5)

The description we were seeking is therefore (recall that s > 1/2)

(1−s)K0 + sIα ={
(α, y) ∈ R2 | −101s+ (1− s)

√
62 − 6α + α2 ≤ y

≤ −100s+
√

82 + 8α + α2(1− s)
}

.

(6)

To obtain an upper bound on its area we notice that it can be seen as
a subset as follows

(1− s)K0 + sIα ⊂{
(α, y) ∈ R2 | −101s+ (1− s)(6− α) ≤ y

≤ −100s+ (1− s)(8 + α)
}

,

(7)

Therefore the area of the intermediate set Ks = (1− s)K0 + sK1 is less
than

ε ·
(
16− 15s

)
up to some multiplicative constant C, depending on the normalisation
chosen for the Lebesgue measure.

This also tells us (depending on the sign of K) that (see definition 3
for the definition of ϑ)

(8) 105 ≤ 106− ε ≤ ϑ(ε) ≤ 108 + ε ≤ 109.

The area of K1 is exactly 2ε. Hence, for some fixed constant C we have

(9)
µ
(
(1− s)K0 + sK1

)
µs(K1)

≤ ε1−s · C1−s ·
(

8− 15

2
s
)

We need now to compare, as s→ 1, the right hand part of (9) with

µ1−s(K0)e
Ks(1−s)ϑ(ε)2/2,

which is the same as comparing ε · C ·
(
8− 15

2
s
)1/(1−s)

with

µ(K0)e
Ksϑ(ε)2/2.

This last term converges towards µ(K0)e
Kϑ(ε)2/2, while the first to ε ·

C · e15/2.
To conclude, as ϑ(ε) stays bounded, we can find and fix an ε small

enough such that

ε · C · e15/2 < 1

2
µ(K0)e

Kθ(ε)2/2.
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Then, for values of s close enough to 1, we will obtain

(10) µ1−s(K0)e
Ks(1−s)ϑ(ε)2/2 >

µ
(
(1− s)K0 +K1

)
µs(K1)

,

which contradicts BM(K,+∞). �

Proposition 8. There exists a Minkowski norm f on R2 such that
that BM(−1,+∞) does not hold in the metric space (R2, `2,H, f).

Proof. Recall that a Minkowski norm f is twice differentiable on R2 \
{0}, with a definite positive Hessian.

Let (fn)n∈N be a sequence of Minkowski norms, converging towards
the `1 norm. Up to a rescaling we can suppose that the intersection of
their unit ball with H coincide with the intersection of the unit ball of
the `1 norm. In any case we will consider the measures µn such that
µn = λ on the upper half plane, and µn = αnλ on the lower half plane
where

αn =
π

λ({fn ≤ 1})
.

(Observe also that we can chose the norms fn such that their tangents
at their point of intersection with H is orthogonal to H. This will be
useful in the last section of this paper.)

Then the sequence of metric spaces (R2, `2,H, fn) converges in the
Gromov-Haussdorf measured topology towards (R2, `2,H, `1).

Consider again the sets K0 and K1 and the intermediate set Ks as in
the proof of Proposition 7. Then for any n we would get another inter-
mediate set Ks(n), and another function θ(n) which is the maximum
(resp. Minimum) between two points from K0 to K1 or from K1 to K0.
Following our assumption we have that θ(n) converges towards the θ of
the limit, µ(K0) does not change and µn(K1) converges towards µ(K1)
thanks to the gromov-hausdorff measured convergence.

We suppose that s is close enough to 1 to be on the lower half plane.
We need to prove that limµn(Ks(n)) ≤ µ(Ks) as n goes to infin-

ity. First notice that Ks is a compact closed set, and so are the sets
Ks(n). Secondly, the geodesics from a point on the upper half space to
the lower half space are unique, because both norms are strictly con-
vex. Hence the geodesics are converging to the geodesics, thus Ks(n)
converges to a subset K ′s of Ks.

Therefore we get limµn(Ks(n)) ≤ µ(K ′s) ≤ µ(Ks).
Now let us take K0, K1 as in the proof of Proposition 7 and s close

enough to one such that

λ1−s(K0)e
−s(1−s)ϑ(ε)2/2 > α1−sλ

(
(1− s)K0 +K1

)
λs(K1)

,
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then for any n large enough we would also get

λ1−s(K0)e
−s(1−s)ϑ(ε)2/2 > α1−s

n

λ
(
Ks(n))

λs(K1)
,

which concludes our proof, because any fn for n large enough can be
chosen. �

3. A compact Finsler surface with no lower ricci bound
embbeded in a Minkowski space

3.1. First example. Let us consider in the Euclidean three-dimensional
space, the two-dimensional disk

S =
{

(x, y, z) | z = 0, x2 + y2 ≤ 1
}

,

and let B be the conve hull of

S ∪
{

(0, 0, 1), (0, 0,−1)
}

.

We now endow R3 with the norm || · ||B whose unit ball is B. In other
words for any (x, y, z) ∈ R3,

||(x, y, z)||B =
√
x2 + y2 + |z|.

The affine planes normal to the vector (0, 0, 1) endowed with the
norm induced by || · ||B are all isometric to the two dimensional Eu-
clidean plane. In the same way, the affines planes containing the direc-
tion (0, 0, 1) are isometric to the `1-plane (i.e., that is the manhattan
distance).

In this normed vector space, we will consider the cube Cρ obtained
as the convex hull of the eight points{

(±ρ,±ρ,±ρ)
}

.

The cube Cρ admits two faces which are Euclidean, and four faces which
are `1. The measures considered are the Hausdorff measures. In other
words, λ(B) = 4

3
π and for any linear subspace L of dimension 2, the

measure is the Lebesgue measure λL normalised such that

λL(B ∩ L) = π.

Proposition 9. Let R3 be endowed with the norm || · ||B. Then the
cube C1 with the metric induced by ||·||B does not satisfy any curvature
dimension.

Proof. Let us denote by dρ the distance induced on Cρ by || · ||B and
µρ the induced Lebesgue measure. Focus on two adjacent faces of Cρ,
one Euclidean and the second one `1. Then we are locally exactly as
in section 2, and therefore the same computations as in section 2 show
that for any ρ ∈ R∗, the Brunn-Minkowski BM(K,N) inequality does
not hold for any N ∈ N ∪ {+∞} and any K ∈ R.

Therefore in
(
Cρ, dρ, λρ

)
the curvarture dimension CD(K,N) does

not hold for any K and any N . �
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Corollary 10. There exists a C1,1 compact and convex surface in
(R3, ||·||B) such that for anyN ∈ N∪{+∞} and anyK ∈ R , CD(K,N)
does not hold.

Remark here that in our example both the C1,1 assumption and the
fact that the norm is not smooth restricted to the surface are important.
If the objects are too smooth, there is always some K and N for which
it is CD(K,N).

Proof. letB(ε) be the Euclidean ball of radius ε. Consider the Minkowski
sum of the cube and this ball, that is,

C(ε) = B(ε) + C1 = {x+ y | x ∈ B(ε), y ∈ C1},

with the unduced metric by || · ||B. Then C(ε) is C1,1, and as ε goes to
zero, it converges in the Gromov-Hausdorff measured topology towards
C1.

Actually C(ε) is obtained by translating the faces of the cube C1
outward at a Euclidean distance ε and then closing by rolling the Eu-
clidean ball of radius ε along the edges, from the inside.

Hence the difference is on the surface obtained along these curved
edges. On the flat section we have the same distance than in C1.

Fix some K = −1 and N = +∞. We can use the annulus K0 and
the rectangle K1 from the proof of Proposition 7, the only thing that
will change is the s-intermediate set from K0 to K1, denoted by Ks(ε).

Fix an s such that we get the inequality (10) as in proof of Proposi-
tion 7 for K0, K1 and Ks.

Then as ε goes to zero the corresponding sequence of s-intermediate
sets Ks(ε) converges towards a subset of Ks and thus

lim
ε→0

λε(Ks(ε)) ≤ λ(Ks),

where Ks is the same as in the proof of Proposition 7. Hence for some
ε small enough, we would get the same contradiction.

Let us now fix such an ε for K = −1.
Let hρ be the dilation of ratio ρ of center the origin. Consider the

images of K0, K1 and Ks(ε) by hρ, they all lie on Cρ+B(ρ ·ε). Further-
more the image of Ks(ε) by hρ is the s-intermediate set from hρ(K0)
to hρ(K1) on Cρ + B(ρ · ε). Therefore we still get the inequality 10
which is invariant by dilations, which proves that Cρ + B(ρ · ε) is not
BM(−1,+∞) as well.

Hence for any ρ > 0, Cρ + B(ρ · ε) is not BM(−1,+∞) (and not
CD(−1,+∞)).

Now let us suppose that C1 + B(ε) is CD(K,N) for some K < −1.
Then

(
C1 +B(ε), ρd, ρ2λ

)
is CD(K/ρ2, N). Observe now that hρ is an

isometry between
(
C1 +B(ε), ρd, ρ2λ

)
and Cρ +B(ρ · ε), because,

d(hρ(x), hρ(y)) = ρ · d(x, y)
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but then for ρ2 > −K, we get that Cρ + B(ρ · ε) is C(−1, N), which
contradicts the choice of ε. �

The question I am often asked with this example is why C(ε) does
not satisfies some CD(K,N) with K → −∞ as ε → 0 ? In the proof
one can see that this is due to the very nature of all the objects defined
here which behave nicely with respect to dilation on one side, and the
translation on the other side. That is to say that the very specificity of
the Lebesgue measure, that its homogeneity by dilation and invariance
by translation are important here.

Another point of view should be from the point of view of optics,
as was explained to me a long time ago. The laws of refraction are an
approximation, that is to say that in realiy there is no discontinuity of
the differential of a ray of light, but to our eyes it looks like that. In
other words the intersection between two media behaves as C(ε) for ε
small, but our CD(K,N)-eyes see C(0) = C1.

3.2. Second example. This second example is to justify that one can
get an example with a smoother norm.

Let H in R3 be the x-axis (that is the line z = 0 an y = 0). Consider
f a norm in the plane y = 0 such that (y = 0, `2,H, f) does not
satisfy CD(−1,+∞) as in proposition 8. Then consider Bf the convex
obtained by rotating the norm f around the z-axis.

Then let us denote by || · ||f the norm whose unit ball coincide with
Bf .

Proposition 11. There exists a C1,1 compact and convex surface
in (R3, || · ||f ) such that for any N ∈ N ∪ {+∞} and any K ∈ R ,
CD(K,N) does not hold.

Proof. Again, let us consider the family of cubes Cρ with our two
sets K0 and K1. Then for any ρ, Cρ with the induced metric in not
BM(−1,+∞).

Then let us also consider C1 +B(ε), then for some ε small enough it
will not be BM(−1,+∞) as in the previous example. And again, by
homotating the sets contradicting BM(−1,+∞), we obtain that for
any ρ > 0, Cρ +B(ε · ρ) is not BM(−1,+∞).

Again the same reasoning by contradiction as in the proof of Corol-
lary 10 shows that C1 + B(ε) can not satisfy any CD(K,N), for any
K and any N . �

4. Concluding remarks

The current work has been the subject of various talk and discutions
with many colleagues having their own idea of what is a good notion
of curvature in metric measured spaces.

The first main problem which forbids the notion of synthetic Ricci
curvature to apply in our first example is the branching occuring when
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one passes from one media to another. It is also related to the Finslerian
nature of our spaces.

Both these problems excludes all the notions of curvatures that have
been presented to us by our various colleagues. For instance one could
decide to work with spaces admitting a Gromov-Bishop comparison
theorem, as some nice theorem and results in Riemannian geometry are
actully based on the fact that manifolds with Ricci curvature bounded
from below admits such a comparison. An easy computation shows
that the metric space (R2, `2,H, `1) does not satisfy such a comparison
with the standard hyperbolic plane.

Notice that by smoothing our norm, we still got a surface without
synthetic Ricci curvature bounded from below, but without branching.
This illustrate the fact that by being close to a branching space is also
problematic.
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