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A novel hyperspectral single pixel system was used to com-
pare different compressive basis patterns for intensity
imaging, lifetime imaging, and FRET quantification. Six
popular basis patterns were compared experimentally in
a phantom containing two fluorescent dyes. The basis pat-
terns that performed best for lifetime quantification were
used to measure FRET occurrence in well-plate samples
with varying acceptor–donor ratios. The ABS-WP approach
using Haar patterns and the compressive sensing approach 
with Hadamard Ranked patterns displayed the best overall 
performances at a 50% compression ratio. 

OCIS codes: (070.6120) Spatial light modulators; (110.4234) 
Multispectral and hyperspectral imaging; (170.3010) Image 
reconstruction techniques; (170.3650) Lifetime-based sensing;

(170.6920) Time-resolved imaging; (170.6960) Tomography.

Fluorescence lifetime imaging has been widely used to inves-
tigate biosamples at the macroscopic and microscopic levels
[1–5]. Fluorescence lifetime is an intrinsic property of fluoro-
phores that depends on its molecular environment and not on
its concentration [6]. Its imaging is particularly useful to quan-
tify Förster Resonance Energy Transfer (FRET), which is
widely employed as a nanoproximity assay for biomedical ap-
plications [7–9]. Recently, macroscopic hyperspectral single-
pixel imaging has been proposed as one avenue to spatially
image FRET occurrence in vitro as well as in vivo in preclinical
models [10]. Single-pixel imaging exploits spatially compressed
optical signals to recover 2D images from a few 1D measure-
ments [11]. Mathematically, it consists of inverting the linear
equation to solve for the sample plane s

m � ΔtPs, (1)

Intensity imaging using Hadamard and Fourier patterns have
been compared in Ref. [14]. In this Letter, our contribution is:
(1) to compare patterns (e.g., wavelets) that have not been con-
sidered so far, and (2) to assess fluorescence lifetime and FRET
quantification. Herein, we experimentally investigate six differ-
ent approaches and assess their ability for 2D imaging as well as
to quantify monolifetime and NIR FRET interactions, which
represents a challenging biexponential application.

The hyperspectral single-pixel system employed in this
study is described in Ref. [10] and depicted in Fig. 1(a). In
brief, the system operates in transmission with two digital mi-
cromirror devices (DMD, D4110, Digital Light Innovations,
Texas). The illumination DMD, where compressive basis pat-
terns are implemented, is coupled to a Ti:Sapphire pulsed laser
(Mai Tai HP, Spectra Physics, California) that can be tuned
from 690 to 1020 nm. Light emitted by the sample is collected
through the wide-field detection DMD, which is coupled to a
16-channel detection PMT spectrophotometer (MW-FLIM,
Becker and Hickl GmbH, Germany) via a fiber bundle.
Note that this double-DMD architecture is not required for
2D single-pixel imaging but implemented to also be able to
perform optical tomography [17]. A time-correlated single-
photon counting unit (TCSPC) records the fluorescence decays
over the 16 spectral channels in parallel. The system is con-
trolled through LabView. All patterns are generated using
MatLab, considering 32 × 32 images that are converted to
eight-bit integers and resized to 672 × 672 to match the
DMD physical resolution. The patterns are divided into
positive and negative parts for further processing after data col-
lection. Herein, we used only 512 patterns out of the 32 ×
32 � 1024 patterns, resulting in a 50% compression ratio.
The list of basis patterns to be compared is: (a) Hadamard
Normal, (b) Hadamard Sign, (c) Hadamard Ranked, (d) Speckle,
(e) Fourier, and (f) Haar. The Hadamard patterns are generated
using a natural sequence through theHadamardMatlab function
[18–20]. We consider three different Hadamard pattern orders:
Normal uses the default sequence provided by the function (see
Visualization 1) and Sign are the normal patterns arranged by
positive and negative parts (see Visualization 2). The patterns
are further arranged from low to high spatial frequency to yield
Ranked Hadamard patterns (see Visualization 3). Speckle pat-
terns are obtained from uniformly distributed random multi-
plicative noise using the imnoise Matlab function [15,21]

where m represents the measured data, P the illumination pat-
terns, and Δt the integration time for each pattern. The imag-
ing performance depends on the choice of compression patterns 
as well as the strategy for selecting a subset for measurements 
[12]. Multiple basis patterns such as Hadamard [13], Fourier 
[14], speckle [15], and wavelet [16] have been proposed.
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with a mean of 0 and variance of 10 (see Visualization 4). Fourier
patterns are accomplished by cosine function generation. The x∕y
frequencies change from 1 to 8 with eight phase shifts (see
Visualization 5). Haar patterns are taken from a Haar wavelet
basis that contains 16 scaling functions [16] (see Visualization 6).
To investigate the performances of these various basis patterns in
the case of monolifetime, we prepared fluorescence phantoms
with RPI letters: R and I contained AF750 (ThermoFisher
Scientific, A33085) fluorescent dye at 4.16 μM concentration
prepared with PBS 1X; letter P contained HITCI (Sigma
Aldrich, 252034) dye at 40 μM concentration prepared with
100% ethanol. The volumes of the RPI letters are 149, 124,
and 81 μL, respectively. Using a piecewise homogeneous phan-
tom allows estimation of the noise of the reconstructed image.

Seven identical phantoms were prepared: one per basis pat-
terns and one for measuring lifetime ground-truth values with a
gated-ICCD system [22,23]. To minimize evaporation effects,
we filled each phantom with the same stock solutions of the
dyes before measuring each basis patterns. Moreover, because
lifetime is considered independent of concentration, minimal
evaporation changes should not compromise its quantification.
The system illumination and detection schemes were calibrated
with the six different pattern sets. The calibration process in-
volved matching the field-of-view of the illumination and de-
tection DMDs. In addition, the patterns were projected on the
image plane and recorded using an external NIR CCD to be
later used during the image reconstruction step [Fig. 1(a)].
Each pattern accounted for 0.5 s exposure time, and the exci-
tation wavelength was 740 nm. A 780 nm (Semrock FF01-
780/12-25) filter with spectral range 774–786 nm was added
to the detection optics, and the PMT detection range was de-
fined from 715 to 778 nm with central wavelength at 742 nm.
The field of view (FOV) was 35 mm × 35 mm, and the optical
power density was ∼5.49 mW∕cm2. Using constant parame-
ters for each basis patterns, we acquired a data cube composed
of one time point spread function (TPSF) per pattern and per
detection channel. The TCSPC unit produced each TPSF over
256 time channels. We first evaluated the 32 × 32 intensity
images recovered by the different approaches for different com-
pression ratios. For all basis patterns, we considered increasing
compression ratios (∼50%, 60%, 70%, 80%, and 90%) by
decreasing the number of patterns. While most approaches se-
lect patterns prior to acquisition [14], adaptive strategies select
patterns during acquisition [16,24]. For Hadamard, Fourier,
and Speckle basis, patterns were chosen a priori, and a linear

solver reconstructed the images from the raw data. We used
the so-called TVAL3 algorithm [25], which promotes piecewise
constant solutions. For Haar wavelet patterns, we implemented
an adaptive basis scan by wavelet prediction (ABS-WP) using
the SPIRIT toolbox [26]. The Haar patterns were selected
among the Haar basis during acquisition, and the image was
simply recovered through fast inverse wavelet transforms of
the raw data. The images reconstructed for a 50% compression
ratio are shown in Fig. 2(a), and the image reconstruction qual-
ity for increasing compression ratios is plotted in Fig. 2(b).

Intensity images are computed by integrating the hyperspec-
tral time-resolved data cube over the detection channel located
between ∼760 and 765 nm and over the 256 time channels.
Before every experiment, a ground-truth image was measured
using the NIRCCD camera described in Fig. 1. The 616 × 619
CCD image is resized to 32 × 32 to match the size of the single-
pixel reconstructed intensity images. Both the ground-truth
and the recovered intensity image are normalized to their maxi-
mum value. We used the structural similarity index (SSIM)
metric to measure the similarity between the ground-truth
and the recovered images

SSIM � �2μxμy � c1��2σxy � c2�
�μ2x � μ2y � c1��σ2x � σ2y � c2�

, (2)

where μx and μy are the local means, σx and σy are the standard
deviations, σxy is the cross-covariance, and the c1 and c2 terms
are regularization constants for luminance and contrast [27].
Variable x constitutes the output 32 × 32 reconstructed image,
and y is the ground-truth 32 × 32 CCD image. In this case
SSIM was calculated globally. Overall, the best intensity images
are recovered by the ABS-WP approach, no matter the com-
pression ratio. Ranked Hadamard patterns provided similar re-
sults to the ABS-WP approach, up to a compression rate of
70%. Normal Hadamard reconstruction shows large artifacts,
which are related to the measurement of high-frequency pat-
terns leading to low signals that are highly affected by noise.
The SSIM values for Sign Hadamard and Fourier patterns
are similar for compression ratios below 70%. Finally, speckle
patterns yielded lower SSIM values than the other basis pat-
terns, except for the normal order Hadamard that led to the
worst image quality. Second, we exploited the time domain data

Fig. 1. (a) Hyperspectral single pixel imaging platform [10] and
(b) RPI phantom and FRET wellplate.

Fig. 2. (a) 32 × 32 pixels ground-truth (GT) and reconstructed in-
tensity images at 512 patterns and (b) SSIM in relation to ground-truth.
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to quantify lifetimes. Each TPSF from the 12th spectral channel
of the recovered data cube was fitted to a monoexponential decay
convolved with the instrument response function (IRF), i.e.,

m�x, y, t� � IRF�t� � exp

�
−t

τ�x, y�

�
, (3)

wherem�x, y, t� is the TPSF recovered at pixel �x, y�, and τ is the
fluorescence lifetime. The IRF was measured after each basis
measurement with a wide-field illumination pattern. Each pixel
of the TPSF is denoised with a one-dimensional low-pass filter
and normalized. The fluorescence decay was then tail-fitted using
a Matlab built-in optimization interior-point algorithm. Initial
values of 1 (ns) with �0.05 (ns) boundaries were provided
for letter P and 0.5 (ns) with �0.05 (ns) for letters R and I,
where the letters are segmented from the ground-truth images
shown in Fig. 2(a). To deliver accurate fits with low residuals,
initialization values were provided to the optimization algorithm
per each letter. The obtained lifetime maps are displayed in
Fig. 3(a). To quantitatively compare the performance of each
compressive basis patterns, we also computed, in each letter,
the mean lifetime and standard deviation values as summarized
in Fig. 3(b).

To compute the descriptive statistics, the lifetime values on
each letter were ordered and 60% of them used, that is 60 pixels
for R, 52 pixels for P and 25 pixels for I. By imaging the addi-
tional RPI phantom on a gated ICCD system, mean values of
0.50� 0.017 (ns) were obtained for letters R and I containing
AF750 dye and 0.92� 0.018 (ns) for letter P containing
HITCI dye. The lifetime range for each letter is evaluated,
and a closer relation of the mean value and standard deviation
to ground-truth are therefore desired. In terms of mean values
for letter P containing HITCI dye, the closest mean relation is
accomplished by ABS-Haar, which also displays the smallest
standard deviation range after the Hadamard Sign. The stan-
dard deviations of the other basis patterns partially contain
the ground-truth range for this letter. On the other hand,

ABS-Haar and Ranked Hadamard better approximate the
ground-truth mean for letters R and I, which contain the same
dye AF750 and therefore should ideally yield the same lifetime
mean. For these letters ABS-Haar, Fourier, and Hadamard
Ranked display the smallest standard deviation ranges. Even
though normal Hadamard encloses the ground-truth values,
its range for letter P also encloses values present in the lifetime
range of letter R and vice-versa. Overall, the ABS-Haar and
Hadamard Ranked basis patterns showed the most accurate
lifetime estimations for all letters (i.e., closer means to ground
truth and smaller standard deviation for both fluorophores). To
further compare these basis patterns, we conducted an exper-
imental study focusing on one of the most challenging lifetime-
based applications, NIR FRET. As the ranked and sign
Hadamard, ABS Haar, and Fourier were the best at quantifying
lifetime on the RPI phantom, the quantification of FRET was
restricted to these basis patterns. The FRET sample contained
AF700 Mouse IgG1 (ThermoFisher Scientific, MG129) donor
dye and AF750 goat antimouse IgG (ThermoFisher Scientific,
A-21037) acceptor dye with respective concentrations of 50
and 100 μg/mL. A PBS 1X solution was used to prepare
the desired concentrations. Six wells were filled with 250 μl
of different acceptor–donor combinations. The wells described
in Fig. 1(b) for well 1 contain AF700 only, well 2 and well 3
PBS only, and wells 4 to 6 contain ratios of AF750 to AF700 of
1∶1, 2∶1, and 3∶1, respectively. The PBS and AF700 only
wells were used as experimental control; therefore, FRET in-
teraction is only expected in wells 4 to 6. Four well-plate sam-
ples were prepared from stock solutions. Samples were excited
at 695 nm and exposed for 1.5 s per pattern. A 715 nm long
pass filter (Semrock, FF01-715/LP-25) was added to the detec-
tion optics. The third channel, which was used for reconstruc-
tions (∼720 to 730 nm), would detect minor acceptor bleed-
through. All the experimental parameters were kept constant
for all patterns. Hadamard Ranked, Hadamard Sign, and
Fourier were reconstructed through TVAL3 and Haar patterns
through the ABS-WP approach. A biexponential fit yielded the
amplitudes and lifetimes of the FRETing and non-FRETing
populations. At each pixel, we assume:

m�t� � IRF�t� �
�
aF exp

�
−t
τF

�
� aNF exp

�
−t
τNF

��
, (4)

where aF , aNF are the amplitudes of the FRETing and non-
FRETing donor and τF , τNF their respective lifetimes.
Amplitudes are normalized such that aF � aNF � 1. Initial
values of 1� 0.05 (ns) and 0.35� 0.05 (ns) for long and short
lifetime were provided. Figure 4(a) shows the FRET donor frac-
tion (aF ) percentage maps for wells 1–4 for the different basis
patterns. For increasing acceptor to donor ratios, the FRET in-
teraction should increase linearly [22]. Although well 1 con-
tains a 0∶1 ratio and no FRET interaction is expected,
relative amplitudes of ∼15% and ∼85% are estimated. The
correction of this inherent type of bias, which has already been
reported in Refs. [10,22,28], falls outside the scope of this
study. Figure 4(c) displays the mean values of each well and
their standard deviation range. ICCD ground-truth values
for the FRET samples are also included. A linear trend within
ground-truth values is observed for the four sets of patterns,
with ABS-Haar displaying the least accurate 0∶1 ratio estima-
tion and linearity. Fourier patterns on the other hand result in a
smoother FRET Donor Fraction (FD%) map (though without

Fig. 3. (a) Lifetime maps. (b) Mean lifetime and standard deviation
within letters R (red), P (blue), and I (black); the horizontal lines in-
dicate ICCD ground-truth values.



recovering the lower FRET donor fraction spatial distribution
in its entirety). It is important to mention that FRET quanti-
fication experiments are limited by the variability of FRET
interactions from sample to sample; however, similar ground-
truth linear trends have been previously reported [10,22,28]. In
summary, all basis patterns investigated herein were successfully
implemented in a single pixel paradigm for lifetime imaging.
In all cases, spatially resolved TPSFs could be reconstructed.
Though, when spatial accuracy and lifetime quantification were
assessed, the ABS-WP approach and ranked Hadamard strategy
outperformed the other compressive basis patterns. The ABS-
WP approach and ranked Hadamard strategy provided very
similar performances for a compression rate at 50%, both for
intensity and lifetime-based quantification. Ranked Hadamard
performed better for FRET quantification. Considering that
the excitation wavelength, exposure time, power density, detec-
tion range, and FOV were kept constant, comparing raw
TPSFs for the highest photon counts between the ABS-WP
approach and ranked Hadamard reveals that ABS-WP based
on Haar patterns lead to more noisy TPSFs with a lower num-
ber of photon counts, as displayed in Fig. 4(b). This is most
likely the reason why ranked Hadamard performs better in
the case of biexponential fitting with short components
(NIR FRET). However, it is important to note that the
ABS-WP approach performed better at higher compression ra-
tios for intensity reconstructions. Because employing higher
compression ratios is critical to enable the implementation
in single-pixel methodologies for bed side applications, this
finding elicits the need for further refinements and investiga-
tion on the performances of the ABS-WP approach at very
high compression ratios. The ABS-WP approach implemented
herein used the Haar wavelets, but further evaluation of ABS-
WP wavelets like biorthogonal CDF [29] should be carried out
and compared to the ranked Hadamard methodology.
Additionally, in this study, the ABS-WP approach was imple-
mented a posteriori (the whole Haar basis patterns were
acquired and then pattern prediction was performed postacqui-
sition). Further study should focus on seamless experimental
implementation of on-the-fly prediction and compare its com-
putational burden to the fixed pattern basis as obtained with
ranked Hadamard. It is expected that the implementation of
the ABS-WP approach will then lead to robust and very fast

imaging protocols for lifetime imaging, especially in the case
of monolifetime applications. Overall, after selection of the
appropriate illumination basis patterns and the reconstruction
approach, compression ratios higher than 50% should be
explored to improve both resolution and acquisition times.
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